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LUSTERNIK–SCHNIRELMANN CATEGORY FOR
CELL COMPLEXES AND POSETS

KOHEI TANAKA

Abstract. This paper introduces two analogues of the
Lusternik–Schnirelmann category from a combinatorial view-
point. One analogue is defined for finite cell complexes using

their subcomplexes and simple homotopy theory; the other is

an invariant for finite posets with respect to simple equivalence

based on the notion of weak beat points. We examine the re-
lation between these two invariants by taking the face posets of
complexes or order complexes of posets.

1. Introduction

The Lusternik–Schnirelmann category (LS-category for short) of a space X
is a fundamental topological (homotopy) invariant, originally introduced by
Lusternik and Schnirelmann in [10]. This is simply defined by the minimal
number of contractible open subspaces covering X .

When a space is equipped with a combinatorial structure (for example, a
simplicial complex or cell complex), we can consider some discrete versions of
the LS-category. The discrete LS-category of a finite simplicial complex was
defined using collapsible subcomplexes instead of contractible open subspaces
[1], whereas the simplicial LS-category was introduced as an invariant with
respect to strong homotopy [7].

In this paper, we propose another notion of the combinatorial (geometric)
LS-category cgcat(Y ) for a (regular) finite cell complex Y using contractible
subcomplexes. To make this a simple homotopy invariant, we introduce the
combinatorial strong LS-category cCat(Y ) based on the strong LS-category
concept introduced by Ganea [9]. Throughout the paper, X will denote
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a general topological space, whereas, for distinction, Y will be a (regular)
cell complex.

There is another notion of a modified LS-category using weakly contractible
open subspaces. This is called the quasi-(geometric) LS-category qgcat(X) of
a space X . Using Ganea’s idea again, the quasi-strong LS-category qCat(X)
can be naturally defined as a weak homotopy (simply equivalent) invariant.
When X is a finite space, these are closely related to the combinatorial LS-
category defined above. A finite space can be regarded as a finite poset [2],
[12]. Hence, we will identify both.

Theorem 3.15. Let Y be a finite regular cell complex. The following equal-
ity holds:

cgcat(Y ) = qgcat
(
χ(Y )

)
,

where χ(Y ) is the face poset of Y .

The order complex K(P ) of a poset P is (the geometric realization of) a sim-
plicial complex consisting of ordered sequences of P formed of p0 < · · ·< pn.
This is known as an inverse operation for taking face posets, because K(χ(Y ))
and Y are isomorphic for any regular cell complex Y . We naturally expect
that an equality similar to the above will hold: cgcat(K(P )) = qgcat(P ) for
a finite poset P . In general, however, this is not true. The equality holds in
the case of the strong version of each LS-category.

Theorem 3.17. Let P be a finite poset. The following equality holds:

cCat
(
K(P )

)
= qCat(P ).

The classical LS-category was originally defined as a lower bound for the
number of critical points of a Morse function on some manifold M . A discrete
version of this property for a discrete Morse function [8] on a simplicial com-
plex and discrete LS-category was derived in [1]. We present a simple proof of
this property for general finite regular cell complexes and our combinatorial
LS-category.

Theorem 4.4. Given a discrete Morse function on a finite regular cell
complex Y with n+ 1 critical cells, we have the following inequality:

cgcat(Y )≤ n.

The remainder of this paper is organized as follows. Section 2 recalls some
basic notions with respect to the classical LS-category. We introduce the
notion of a combinatorial LS-category based on subcomplexes and simple
homotopy theory. Section 3 yields another invariant of spaces, the quasi-LS-
category based on weak homotopy equivalence. We focus on the case of finite
posets, and compare the combinatorial LS-category. In Section 4, we prove a
discrete analogue of the Lusternik–Schnirelmann theorem for a discrete Morse
function on a finite regular cell complex.
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2. LS-category for regular cell complexes and
simple homotopy theory

We first introduce the definition of the geometric LS-category of a space.
This is a topological invariant, but is not a homotopy invariant of spaces [6].

Definition 2.1. Let X be a space. The geometric LS-category gcat(X) is
the smallest non-negative integer n such that X can be covered by n+1 open
subspaces that are contractible in themselves.

On the other hand, the LS-category is a homotopy invariant defined using
open subspaces that are contractible in X , but not in themselves.

Definition 2.2. The LS-category cat(X) of a space X is the smallest non-
negative integer n such that X can be covered by n+ 1 open subspaces that
are contractible in X .

The following describes another way to make the geometric LS-category a
homotopy invariant.

Definition 2.3. Let X be a space. The strong LS-category Cat(X) is
the minimum value of the geometric LS-category cat(X ′) over all spaces X ′

having the homotopy type of X :

Cat(X) := min
{
gcat

(
X ′) |X ′ �X

}
.

The above definitions immediately give the inequalities cat(X)≤ gcat(X)
and Cat(X) ≤ gcat(X) for any space X . Takens [13] derived the following
relation between the LS-category and the strong LS-category of a space X :

cat(X)≤Cat(X)≤ cat(X) + 1.

When X is a CW-complex, we can consider an analogue of the LS-category
using its subcomplexes.

Definition 2.4. Let Y be a CW-complex. The combinatorial LS-category
cgcat(Y ) is the smallest non-negative integer n such that Y can be covered
by n+ 1 subcomplexes that are contractible in themselves.

The combinatorial LS-category definition above was introduced in [1] (it
was called the closed geometric category). A subcomplex A of a CW-complex
admits an open neighborhood U with a deformation retraction onto A. This
property guarantees the following inequality.

Proposition 2.5 (Theorem 7 of [1]). The following inequality holds for a
CW-complex Y :

gcat(Y )≤ cgcat(Y ).

With respect to the combinatorial LS-category, the following subadditivity
property holds, because contractible subcomplexes in a subcomplex of a CW-
complex remain in the total complex.
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Proposition 2.6. Let a CW-complex Y be the union of subcomplexes A
and B of Y . The following subadditivity with respect to the combinatorial
LS-category holds:

cgcat(Y )≤ cgcat(A) + cgcat(B) + 1.

A cell complex (CW-complex) is called regular if every characteristic map is
a homeomorphism onto its image. For finite regular cell complexes, some com-
binatorial versions of homotopy theory have been considered in the literature.
One of these is known as simple homotopy theory [14].

Definition 2.7. A face d of a cell e in a regular cell complex is called free
when e is a unique coface of d with dime= dimd+ 1.

Let Y and Y ′ be two finite regular cell complexes. We say that Y collapses
to Y ′ by an elementary collapse, or that Y ′ extends to Y by an elementary
expansion, if Y ′ is the subcomplex formed by removing a cell together with a
free face of Y . We denote this by Y e↗ Y ′, or Y ↘e Y ′.

Two finite regular cell complexes Y and Y ′ are simple homotopy equivalent
to each other if there exists a sequence Y = Z1,Z2, . . . ,Zn = Y ′ of finite regular
cell complexes such that Zi ↘e Zi+1 or Zi

e↗ Zi+1 for all i. We denote this by
Y � Y ′. In particular, when Y ′ is a single point and Zi ↘e Zi+1 for all i, we
say that Y is elementary collapsible.

If a finite regular cell complex Y is simple homotopy equivalent to another
complex Y ′, then Y is clearly homotopy equivalent to Y ′. However, the
converse is not generally true. This relation is controlled byWhitehead torsion
or the Whitehead group of the fundamental group (see [14] for details). It
depends only on the fundamental group; hence, two simply connected spaces
are homotopy equivalent if and only if they are simple homotopy equivalent.

The combinatorial geometric LS-category is not homotopy invariant, like
the standard geometric LS-category. As the following example demonstrates,
it is not even simple homotopy invariant.

Example 2.8. Consider the following two cell decompositions of the torus
T 2 = S1 × S1. We will show that cgcat(T 2) = 3 while cgcat(sd(T 2)) = 2.

As a classical result, it is well known that gcat(T 2) = 2. Proposition 2.5
guarantees the inequality cgcat(T 2)≥ 2 for any cell decomposition on T 2.

(1) A circle S1 possesses the minimal regular cell decomposition with two
0-cells and two 1-cells:

S1 = e0+ ∪ e0− ∪ e1+ ∪ e1−.

This gives rise to the product cell decomposition on T 2 shown on the left-
hand side of Figure 1. This can be covered by four closed 2-cells; hence,
we have cgcat(T 2) ≤ 3. However, cgcat(T 2) �= 2 for this cell decomposition.
If cgcat(T 2) = 2, there exist three contractible subcomplexes A1, A2, and
A3 covering T 2. Thus, some Ai must include at least two closed 2-cells.
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Figure 1. Two cell decompositions of the torus (the upper
boundary is identified with the lower one, and the right-hand
boundary is identified with the left-hand one for each square).

Figure 2. Three contractible subcomplexes in sd(T 2).

This is not contractible, which leads to a contradiction. It turns out that
cgcat(T 2) = 3.

(2) Next, we consider the barycentric subdivision sd(T 2) of T 2 with the
decomposition shown on the right-hand side of Figure 1. Unlike the previous
case, we are able to choose three contractible subcomplexes because of the
finer decomposition (Figure 2). It turns out that cgcat(sd(T 2)) = 2.

The barycentric subdivision sd(Y ) of a regular cell complex Y is simple
homotopy equivalent to the original complex Y (see Theorem 3.9). The ex-
amples above show that the combinatorial LS-category is not simple homotopy
invariant.

As the example above shows, the following inequality holds in general,
because a subcomplex of Y is also a subcomplex of the barycentric subdivision
sd(Y ).

Proposition 2.9. For a finite regular cell complex Y , the following in-
equality holds:

cgcat
(
sd(Y )

)
≤ cgcat(Y ).

To make the combinatorial LS-category simple homotopy invariant, we
naturally conceive an analogue of the strong LS-category in Definition 2.3.

Definition 2.10. Let Y be a finite regular cell complex. The combinatorial
strong LS-category cCat(Y ) is the minimum value of the combinatorial LS-
category cgcat(Y ′) over all finite regular cell complexes Y ′ having the simple
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homotopy type of Y :

cCat(Y ) := min
{
cgcat

(
Y ′) | Y ′� Y

}
.

3. LS-category for finite posets and weak beat points

This section proposes another analogue of the LS-category. The idea of the
definition is to use weakly contractible covers instead of contractible covers.

Definition 3.1. Let X be a space. The quasi-geometric LS-category
qgcat(X) is the smallest nonnegative integer n such that X can be covered
by n+ 1 weakly contractible (homotopically trivial) open subspaces.

This definition immediately gives the inequality qgcat(X) ≤ gcat(X) for
any space X . We can state the following subadditivity property with respect
to the quasi-geometric LS-category in a similar way to Proposition 2.6.

Proposition 3.2. Let a space X be the union of open subspaces A and
B of X . The following subadditivity with respect to the quasi-geometric LS-
category holds:

qgcat(X)≤ qgcat(A) + qgcat(B) + 1.

We are interested in the case when X is a finite poset (space). A poset
P can be regarded as a T0-Alexandroff space whose underlying set is P with
the topology generated from all ideals of P . Here, an ideal of a poset P is
a subposet Q that is closed under the lower order, that is, any element p in
P belongs to Q if p≤ q for some q in Q. Conversely, for any T0-Alexandroff
space X , the underlying set is equipped with a partial order x ≤ y defined
by x ∈ y, where y is the minimal open set including y. These correspon-
dences ensure that the category of posets is equivalent to the category of
T0-Alexandroff spaces. For this reason, we regard a poset as a T0-Alexandroff
space throughout this paper. In particular, a finite poset can be regarded as
a finite T0-space.

The notions of beat points and weak beat points play an important role in
homotopy theory for posets.

Definition 3.3. Let P be a poset. An element x in P is called an up-beat
point if the subposet {y ∈ P | x > y} possesses a unique maximal element.
Down-beat points are defined dually. We refer to a point as simply a beat
point if it is either an up-beat point or a down-beat point.

A beat point of a poset does not affect the homotopy type. We obtain a
minimal model with respect to the homotopy type of a finite poset by removing
all beat points one by one. This is called the core of a poset. It is well known
that the core is determined uniquely up to isomorphism, regardless of the
order in which the points are removed. Stong classified the homotopy type of
finite posets using their cores.
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Theorem 3.4 (Theorem 4 of [12]). Let P and Q be finite posets. P is
homotopy equivalent to Q if and only if their cores are isomorphic to each
other. In particular, a finite poset P is contractible if and only if the core
consists of a single point.

Weak beat points are a generalization of beat points.

Definition 3.5. Let P be a poset. A point x in P is called a weak up-beat
point if the subposet {y ∈ P | x > y} is contractible. Weak down-beat points
are defined dually. We refer to a point as simply a weak beat point if it is
either a weak up-beat point or a weak down-beat point.

A weak beat point of a poset does not affect the weak homotopy type or
the homotopy type of the order complex. We can consider an analogue of the
core as a minimal finite model formed by removing all weak beat points. Note
that the core is determined uniquely up to isomorphism, but the minimal
finite model is not [3], [4].

The following Wallet example clarifies the notions of beat points and weak
beat points.

Example 3.6 (Example 4.2.1 of [2]). Consider the poset described as the
following Hasse diagram.

• • x• •

• x2• • x4•

x1• x3• x5•

It does not have beat points; however, the point x is a weak beat point. Indeed,
the subposet {y ∈ P | x > y} can be written as x1 < x2 > x3 < x4 > x5, and is
contractible. By removing the point x from the diagram, the subposet does
have beat points and is contractible. Consequently, the original poset is not
contractible, but weakly contractible (the order complex is contractible).

Definition 3.7. Let P and Q be two finite posets. We say that P col-
lapses to Q by an elementary collapse, or Q expands to P by an elementary
expansion, if Q is the subposet of P formed by removing a weak beat point.
We denote this by P ↘e Q, or Q e↗ P .

Two finite posets P and Q are simply equivalent to each other if there
exists a sequence P = P1, P2, . . . , Pn =Q of finite posets such that Pi ↘e Pi+1

or Pi
e↗ Pi+1 for all i. We denote this by P � Q.
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This definition of simple equivalence for finite posets is similar to that of
simple homotopy equivalence for complexes in Definition 2.7. These corre-
spond to one another by taking order complexes, or face posets.

Definition 3.8. Let P be a poset and Y be a cell complex.

(1) The face poset χ(Y ) consists of cells of Y with the order relation given
by d≤ e if d⊂ e.

(2) The order complex K(P ) is a simplicial complex whose n-simplexes are
ordered sequences p0 < · · ·< pn in P .

For a cell complex Y , the barycentric subdivision sd(Y ) is (the geometric
realization of) the order complex of the face poset of Y . Similarly, for a
poset P , the barycentric subdivision sd(P ) (we use the same symbol as for
complexes) is the face poset of the order complex of P .

The following are fundamental properties of order complexes and face
posets. For more details, we refer readers to [11], [5], and [4].

Theorem 3.9. Let P be a finite poset and Y be a finite regular cell com-
plex.

(1) A natural map K(P )→ P is a weak homotopy equivalence (not gener-
ally a homotopy equivalence).

(2) sd(P ) and P are simply equivalent to each other.
(3) sd(Y ) and Y are simple homotopy equivalent to each other.

Theorem 3.10 (Theorem 3.10 of [4]). Let P , Q be finite posets, and Y , Z
be finite regular cell complexes.

(1) P is simply equivalent to Q if and only if the order complex K(P ) is
simple homotopy equivalent to K(Q).

(2) Y is simple homotopy equivalent to Z if and only if the face poset χ(Y )
is simply equivalent to χ(Z).

Barmak and Minian originally proved the second statement for simplicial
complexes [4]. It is not difficult to extend this result to regular cell complexes.
For a finite regular cell complex Y , the barycentric subdivision sd(Y ) is a sim-
plicial complex that is simple homotopy equivalent to the original Y . This
implies that Y is simple homotopy equivalent to Z if and only if sd(Y ) is sim-
ply equivalent to sd(Z). Similarly, χ(sd(Y )) = sd(χ(Y )) is simply equivalent
to χ(Y ). This completes the second statement in the above theorem.

The next corollary follows from Theorem 3.10, Whitehead’s simple homo-
topy theorem, and McCord’s theorem.

Corollary 3.11. Let P be a finite poset. The following are equivalent:

(1) P is weakly contractible.
(2) The order complex K(P ) is contractible.
(3) P is simply equivalent to a single point.
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Proof. 1⇔ 2: McCord’s theorem states that the natural map K(P )→ P is
a weak homotopy equivalence. A poset P is weakly contractible if and only
if K(P ) is contractible, since K(P ) is a simplicial complex.

2⇔ 3: For an arbitrary simplicial complex Y , being contractible is equiv-
alent to being simple homotopy equivalent to a single point, since the White-
head group Wh(π1(Y )) is trivial. Theorem 3.10 completes the result. �

Let us again discuss the quasi-geometric LS-category for a finite poset. Re-
calling the topology of a finite poset P given at the start of Section 3, the
quasi-geometric LS-category qgcat(P ) is the smallest nonnegative integer n
such that P can be covered by n + 1 weakly contractible ideals. Unfortu-
nately, the quasi-geometric LS-category is not invariant with respect to weak
homotopy equivalence or simple equivalence. For example, consider the face
poset χ(T 2) of the torus with cell decomposition (1) in Example 2.8. Then,
we have the strict inequality qgcat(χ(T 2)) > qgcat(sd(χ(T 2))), even though
χ(T 2) and the barycentric subdivision sd(χ(T 2)) are simply equivalent (weak
homotopy equivalent) to each other (see Remark 3.16 and Theorem 3.15 for
more details).

To improve this situation, we propose the next invariant as a discrete ana-
logue of the strong LS-category for finite posets.

Definition 3.12. Let P be a finite poset. The quasi-strong LS-category
qCat(P ) is the minimum value of the quasi-geometric LS-category qgcat(Q)
over all finite posets Q that are simply equivalent to P :

qCat(P ) := min
{
qgcat(Q) |Q� P

}
.

Remark 3.13. In a more general way, we can define a weak homotopy in-
variant for an arbitrary space X as the minimum value of the quasi-geometric
LS-category qgcat(X ′) over all spaces X ′ that are weak homotopy equivalent
to X . However, weak homotopy equivalent finite posets X and X ′ are not,
in general, simply equivalent to each other (the converse is true). This holds
when the Whitehead group Wh(π1(X)) is trivial. As we have seen in The-
orem 3.10, the notion of simple equivalence in finite posets is closely related
to simple homotopy theory in finite complexes. For this reason, we adopt a
definition of the quasi-strong LS-category for finite posets using simple equiv-
alence.

Remark 3.14. Our concept of a combinatorial analogue of the LS-category
using simple homotopy and weak beat points of posets has already been men-
tioned, although no details were given, in Remark 3, Section 4 of [7].

We now derive the relation between the combinatorial geometric (strong)
LS-category and the quasi-geometric (strong) LS-category.



632 K. TANAKA

Theorem 3.15. Let Y be a finite regular cell complex. We have the fol-
lowing equality:

qgcat
(
χ(Y )

)
= cgcat(Y ).

Proof. If cgcat(Y ) = n, there exist contractible subcomplexes A0, . . . ,An

covering Y . These face posets χ(A0), . . . , χ(An) are ideals, and cover χ(Y ).
By Corollary 3.11, each χ(Ak) is weakly contractible, since K(χ(Ak)) is ho-
motopy equivalent to Ak and a single point. Thus, we have the inequality
qgcat(χ(Y ))≤ cgcat(Y ).

Next, we will show the converse inequality. If qgcat(χ(Y )) = n, there exist
weakly contractible ideals I0, . . . , In covering χ(Y ). For each ideal Ik, any
face of a cell in Ik again belongs to Ik. This implies that the union Yk =⋃

e∈Ik
e is closed, and this is a subcomplex of Y with the face poset Ik. These

subcomplexes Y0, . . . , Yn cover Y , and each Yk is contractible, since sd(Yk) =
K(Ik) is contractible by Corollary 3.11 and Theorem 3.9. This gives the
desired inequality qgcat(χ(Y ))≥ cgcat(Y ). �

Remark 3.16. Note that cgcat(K(P )) �= qgcat(P ) for some finite poset P .
The inequality cgcat(K(P )) ≤ qgcat(P ) always holds, whereas the converse
inequality is not always true. Consider the face poset χ(T 2) of the torus with
cell decomposition (1) in Example 2.8. We have the following strict inequality:

cgcat
(
K
(
χ
(
T 2

)))
= cgcat

(
sd
(
T 2

))
= 2< 3 = cgcat

(
T 2

)
= qgcat

(
χ
(
T 2

))
.

Even though cgcat(K(−)) �= qgcat(−) as above, the equality always holds
when passing to the strong version.

Theorem 3.17. Let P be a finite poset. We have the following equality:

cCat
(
K(P )

)
= qCat(P ).

Proof. If cgcat(P ) = n, there exist weakly contractible ideals I0, . . . , In cov-
ering P . These order complexes are contractible subcomplexes, and cover
K(P ). Hence, we have the following inequality:

qgcat
(
sd(P )

)
≤ cgcat

(
K(P )

)
≤ qgcat(P ).

Theorem 3.10 guarantees that this inequality is preserved in the case of the
combinatorial or quasi-strong LS-category:

qCat
(
sd(P )

)
≤ cCat

(
K(P )

)
≤ qCat(P ).

Since the barycentric subdivision sd(P ) and the original poset P are simply
equivalent to each other, the equality cCat(sd(P )) = cCat(P ) holds. This
leads to the desired result:

cCat
(
K(P )

)
= qCat(P ). �

Theorem 3.15 immediately leads to the following result for face posets.
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Corollary 3.18. Let Y be a finite regular cell complex. We have the
following equality:

qCat
(
χ(Y )

)
= cCat(Y ).

4. Discrete Morse theory and the
Lusternik–Schnirelmann theorem

The classical Lusternik–Schnirelmann theorem relates the LS-category of a
closed manifold M with the number of critical points of a Morse function f ,
i.e., the inequality cat(M)≤ n holds if f has n+ 1 critical points. A discrete
analogue of Morse functions was introduced by Forman [8].

Definition 4.1. Let Y be a finite regular cell complex. A discrete Morse
function on Y is a real-valued function f : χ(Y )→ R on the face poset of Y
satisfying the following two conditions:

(1) For any cell e ∈ χ(Y ), the number of codimension-one faces d of e that
satisfy f(e)≤ f(d) is at most one.

(2) For any cell d ∈ χ(Y ), the number of cells e having d as a codimension-
one face that satisfy f(d)≥ f(e) is at most one.

A discrete Morse function on Y yields an acyclic matching on the face poset
χ(Y ), that is, a pair of a cell e and its codimension-one face d is matched if
f(e)≤ f(d). Unmatched cells are said to be critical. This separates the face
posets into three distinct subsets: χ(Y ) =DC U , where:

(1) D denotes the set of cells matched with co-boundary cells.
(2) C denotes the set of critical cells.
(3) U denote the set of cells matched with boundary cells.

The discrete Morse function is equipped with a bijection μf :D→ U given by
μf (d) = e for the matched pair (d, e).

A discrete version of the Lusternik–Schnirelmann theorem was shown in
[1] for discrete Morse functions on simplicial complexes. It is not difficult to
extend this theorem to regular cell complexes. The following definition of the
discrete LS-category is based on Definition 8 in [1].

Definition 4.2. Let Y be a finite regular cell complex. The discrete geo-

metric LS-category dgcat(Y ) (denoted by d̃cat(Y ) and called the discrete geo-
metric pre-category in [1]) is the smallest non-negative integer such that Y can
be covered by n+1 elementary collapsible subcomplexes. The discrete strong
LS-category dCat(Y ) (denoted by dcat(Y ) and called the discrete category
in [1]) is the minimum value of the discrete geometric LS-category dgcat(Y ′)
over all finite regular cell complexes Y ′ such that Y collapses to Y ′:

dCat(Y ) := min
{
dgcat

(
Y ′) | Y ↘ Y ′}.
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Elementary collapse is a special case of the simple homotopy in Defi-
nition 2.7. Thus, it is obvious that cgcat(Y ) ≤ dgcat(Y ) and cCat(Y ) ≤
dCat(Y ) for every finite regular cell complex Y . Furthermore, the above
definition implies that dCat(Y ) ≤ dgcat(Y ). Theorem 26 in [1] states that
dCat(Y ) ≤ n for a discrete Morse function on a simplicial complex Y with
n+ 1 critical cells.

We will present a simple proof of the above theorem for the case of cgcat(Y )
instead of dCat(Y ) for a general finite regular cell complex Y . Our proof uses
the subadditivity of the combinatorial geometric LS-category.

Definition 4.3. Given a discrete Morse function f on a regular cell com-
plex Y , the level subcomplex Y (a) at a ∈ R is a subcomplex of Y generated
from cells e with f(e)≤ a:

Y (a) =
⋃

f(e)≤a

( ⋃
e′⊂e

e′
)
.

Similarly, for b < a in R, we define Y (b, a) to be a subcomplex of Y generated
from cells e with b≤ f(e)≤ a.

Referring to the proof of Theorem 3.3 in [8], we may assume that our
discrete Morse function f is injective. That is, we can perturb f to an injective
discrete Morse function without affecting which cells are critical.

Theorem 4.4. Given an injective discrete Morse function f on Y with
n+ 1 critical cells, we have the following inequality:

cgcat(Y )≤ n.

Proof. By the assumption of the injectivity of f , the critical cells can be
ordered as c0, . . . , cn such that f(ci)< f(ci+1) for any i. Furthermore, we can
choose a real number ai as f(ci)− ε for a sufficiently small ε > 0 such that
there is no cell e with ai ≤ f(e)< f(ci). For convenience, define an+1 as the
maximal value of f . It suffices to show that cgcat(Y (ai))≤ i− 1 for each i.
We proceed by induction.

When i= 1, the level subcomplex Y (a1) contains only one critical cell c0.
This is a 0-cell, and takes the minimal value of f (see Example 2.3 of [8]).
Since cell d in Y (a1) with the maximal value of f is a free face, we can
collapse Y (a1) onto Y (a1)\(d∪ μf (d)). By repeating this process, Y (a1) can
be collapsed onto the critical 0-cell c0, and cgcat(Y (a1)) = 0.

Assume that cgcat(Y (ai)) ≤ i − 1. The level subcomplex Y (ai+1) is the
union of Y (ai) and Y (ai, ai+1). Here, the subcomplex Y (ai, ai+1) can be
collapsed onto Y (ai, f(ci)) by repeatedly collapsing the pair of cells d and
μf (d), where d is the cell of Y (ai, ai+1) with the maximal value of f . The
subcomplex Y (ai, f(ci)) simply forms the closed cell ci. This is homotopy
equivalent to a single point; hence, cgcat(Y (ai, ai+1)) = 0. The subadditivity



LS-CATEGORY FOR CELL COMPLEX AND POSETS 635

(Proposition 2.6) with respect to the combinatorial geometric LS-category
gives the desired inequality:

cgcat
(
Y (ai+1)

)
≤ cgcat

(
Y (ai)

)
+ cgcat

(
Y (ai, ai+1)

)
+ 1

≤ (i− 1) + 0+ 1 = i. �

Future work. Finally, we mention some future directions suggested by this
paper that may be interesting to explore. This paper has focused on the LS-
category from a combinatorial viewpoint. Although it is not easy to calculate
the standard LS-category of a space, we can use combinatorial techniques to
approach the point at which a space is equipped with a combinatorial struc-
ture. These discrete methods are suitable for computer calculations such as
choosing ideals, finding (weak) beat points and removing them, and repeat-
ing these operations. It is advantageous to calculate the LS-category using a
computer.

Our strong combinatorial LS-category cCat(−) is a simple homotopy in-
variant that is analogous to the strong LS-category Cat(−). On the other
hand, the simplicial LS-category scat(−) introduced in [7] is a strong ho-
motopy invariant that is analogous to the standard LS-category cat(−). The
relation between cCat(−) and scat(−) has not yet been clarified. However, we
naturally expect that there will be a similar relation to that between Cat(−)
and cat(−) described in Section 2.

In connection with the above, we may need to establish some combinatorial
versions of invariants or techniques related to the LS-category of a space such
as the cone length, cup length, weak LS-category, and topological complexity.
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