Illinois Journal of Mathematics
Volume 59, Number 2, Summer 2015, Pages 337-344
S 0019-2082

A SCHAUDER BASIS FOR L;(0,00) CONSISTING OF
NON-NEGATIVE FUNCTIONS

WILLIAM B. JOHNSON AND GIDEON SCHECHTMAN

ABSTRACT. We construct a Schauder basis for L; consisting of
non-negative functions and investigate unconditionally basic and
quasibasic sequences of non-negative functions in Ly, 1 < p < co.

1. Introduction

In [5], Powell and Spaeth investigate non-negative sequences of functions in
L,, 1 <p< oo, that satisfy some kind of basis condition, with a view to deter-
mining whether such a sequence can span all of L,,. They prove, for example,
that there is no unconditional basis or even unconditional quasibasis (frame)
for L, consisting of non-negative functions. On the other hand, they prove
that there are non-negative quasibases and non-negative M-bases for L,. The
most important question left open by their investigation is whether there is a
(Schauder) basis for L, consisting of non-negative functions. In Section 2, we
show that there is basis for L; consisting of non-negative functions.

In Section 3, we discuss the structure of unconditionally basic non-negative
normalized sequences in L,, 1 <p < oco. The main result is that such a se-
quence is equivalent to the unit vector basis of £,. We also prove that the
closed span in L, of any unconditional quasibasic sequence embeds isomor-
phically into £p,.

We use standard Banach space theory, as can be found in [4] or [1]. Let us
just mention that L, is L,(0,00), but in as much as this space is isometrically
isomorphic under an order preserving operator to L,(u) for any separable
purely non-atomic measure p, our choice of L(0,00) rather than, for example,
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L,(0,1), is a matter of convenience. Again as a matter of convenience, in the
last part of Section 3, we revert to using L,(0,1) as a model for L.

2. A Schauder basis for L;(0,00) consisting of non-negative
functions

For j =1,2,... let {hfm Z‘f&i:l be the mean zero L; normalized Haar
functions on the interval (j — 1, 7). That is, for n=0,1,...,i=1,2,...,2",

, n, o142 <t<i— 1+ 2,
h i) =9 —2", j—1+4373 <t<j—1+ 574,
0, otherwise.

The system {h }n 251 1,j=1+ in any order which preserves the lexicographic
order of {h/ . Ol , for each j, constitutes a basis for the subspace of
L1(0,00) cons,‘lstlng of all functions whose restriction to each interval (j —1, )
have mean zero. To bimplify notation, for each j we shall denote by {hf 21
the system {h? Joy.i=1 n its lexicographic order. We shall also denote by
{h;}22, the union of the systems {h7}>° , j=1,2,..., in any order that re-
spects the individual orders of each of the {hf 21

Let m be any permutation of the natural numbers and for each i € N let F;
be the two dimensional space spanned by 21 ((;)—1,x(:)) + |hi| and h;.

PROPOSITION 1. Y22 F; is an FDD of span”*{F;}3°,.

Proof. The assertion will follow from the following inequality, which holds
for all scalars {a;}2; and {b;}5°,,

(1) —Z|az|+ th

Y @i (2L (o)1) + hil) + Y bi

i=1 i=1
0o (°%S)
i=1 i=1

The right inequality in (1) follows easily from the triangle inequality. As for
the left inequality, notice that the conditional expectation projection onto the
closed span of {1(;_1 ) }2; is of norm one and the complementary projection,
onto the closed span of {h;}$2,, is of norm 2. It follows that

iai@l(ﬂ (i)—1,7 )) Zb h > max{QZ |a1 ibzhz
i=1 i=1

<
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Since || 3252, ailhalll < 35724 lail, we get

o0 oo o0 1 oo
;ai (21(7r(1')—l,7'r(i)) + \hz|) + ; bihi|| > max{; s, 1 ; b;h; }
from which the left-hand side inequality in (1) follows easily. O

PROPOSITION 2. Let w be any permutation of the natural numbers and for
each i € N let F; be the two dimensional space spanned by 21(r(i)—1,x(:)) +
|h;| and h;. Then span'{F;}2, admits a basis consisting of non-negative
functions.

Proof. In view of Proposition 1, it is enough to show that each F; has a
two term basis consisting of non-negative functions and with uniform basis
constant. Put x; = 21(,T(i),17ﬂ.(i)) + |hl| +h; and y; = 21(7r(i),17ﬂ.(i)) + |hz| — h;.
Then clearly z;,y; > 0 everywhere and ||z;|| = |ly:|| = 3. We now distinguish
two cases: If 1(x(j)—1,7(s)) is disjoint from the support of h; then, for all scalars
a,b,

llaz; + byl > [|a(lhil + i) +b(|hi| — ha) || = la] + [b].
If the support of h; is included in (7(i) — 1,7(¢)), let 2% be the size of that
support, s > 0. Then for all scalars a, b,

lai +byill = [|a(1hil + ha) + b(1hil = i) +2(a +b) Loupp(ni)
=277 1|2 + 2)a+ 20| + | (2°F +2)b + 24|
> ma{ o}, 1]} -

THEOREM 1. L;1(0,00), and consequently any separable Ly space, admits a
Schauder basis consisting of non-negative functions.

Proof. When choosing the order on {h;} we can and shall assume that
hy = h(lu; that is, the first mean zero Haar function on the interval (0,1). Let

7 be any permutation of N such that 7(1) =1 and for ¢ > 1, if h; = hfhk for
some n,k, and j then (i) > j. It follows that except for ¢ =1 the support
of h; is disjoint from the interval (w(i) — 1,7 (¢)). It is easy to see that such
a permutation exists. We shall show that under these assumptions Y .-, F;
spans L1(0,00) and, in view of Proposition 2, this will prove the theorem for
L1(0,00). First, since (1) = 1 we get that 31(,1) = 21(x(1)—1,x(1)) + | 1| € F1,
and since all the mean zero Haar functions on (0,1) are clearly in Y .o, Fj,
we get that L;(0,1) C > 2 F;.

Assume by induction that L;(0,5) C > .o, F;. Let I be such that () =
j+1. By our assumption on 7, the support of h; is included in (0, ), and so by
the induction hypothesis, || € Y=, F;. Since also 21(; j41) + || € Y2 F;
we get that 1; ;1) € >~ F;. Since the mean zero Haar functions on (j,j+1)
are also in ) ;- F; we conclude that Ly(0,5 +1) C Y .2, F;.
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This finishes the proof for L (0,00). Since every separable L space is order
isometric to one of the spaces ¢f, k=1,2,..., £1,L1(0,00), L1(0,00) P, ¢},
k=1,2,..., or L1(0,00)@P, ¢1, and since the discrete L; spaces ko k=
1,2,..., and ¢; clearly have non-negative bases, we get the conclusion for
any separable L; space. O

3. Unconditional non-negative sequences in L,
Here we prove the following theorem.

THEOREM 2. Suppose that {x,}32, is a normalized unconditionally ba-
sic sequence of non-negative functions in Ly, 1 <p < oo. Then {x,}5, is
equivalent to the unit vector basis of €.

Proof. First, we give a sketch of the proof, which should be enough for ex-
perts in Banach space theory. By unconditionality, we have for all coefficients
an that || Y, ana, ||, is equivalent to the square function ||(3°,, an|?22)Y/2||,,
and, by nonnegativity of z,, is also equivalent to | > |an|2s|p. Thus
by trivial interpolation when 1 < p < 2, and by extrapolation when 2 <
p < oo, we see that ||, anw,|l, is equivalent to [|(33,, |an|P2R) 7|, =
(5, lanl?)12.

We now give a formal argument for the benefit of readers who are not
familiar with the background we assumed when giving the sketch. Let K be
the unconditional constant of {z,}32 ;. Then

N N 1/2
(2) K1 Z anZn|| < B, (Z |an|2xi>
n=1 P n=1 P
N
n=1 p
N

<B,K Z anTyl| ,

n=1 P

where the first inequality is obtained by integrating against the Rademacher
functions (see, e.g., [4, Theorem 2.b.3]). The constant B, is Khintchine’s
constant, so B, =1 for p <2 and B, is of order VP forp>2. If1<p<2, we

get from (2)
N 1/p
(Swr)
n=1

Since [|(XN |an|P22) /7], = (XN, |an|P)'/?, this completes the proof when
1<p<2. When 2 <p < o0, we need to extrapolate rather than do (trivial)

N
E AnTn

n=1

N
E AnTn

n=1

(3) K~! <

<K
p

p p
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interpolation. Write 1/2=60/1+ (1 —6)/p. Then

N N 1/2
W KBS | < (zmnmz)
n=1 P n=1 P
N 0 N 1/p;1—0
<[> anie (zmmz)
n=1 P n=1 P
N o/ N (1-6)/p
<K Zanxn <Z|an|p> , so that
n=1 p n=1

2 N (—1)/(1-8) || al e N
(K*B,) Z AnTn|| < Z |an|P <K Z An T,
n=1 n=1 n=1

O

p p

As stated, Theorem 2 gives no information when p = 2 because every nor-
malized unconditionally basic sequence in a Hilbert space is equivalent to
the unit vector basis of /5. However, if we extrapolate slightly differently in
the above argument (writing 1/2=0/1+ (1 —0)/c0) we see that, no matter
what p is, || 25:1 anTy||p is also equivalent to || max, |a,|z,||,. From this one
can deduce, for example, that only finitely many Rademachers can be in the
closed span of {z, }>2,; in particular, {z,}>2; cannot be a basis for L, even
when p =2. However, the proof given in [5] that a normalized uncondition-
ally basic sequence of non-negative functions {z,}32; in L, cannot span L,
actually shows that only finitely many Rademachers can be in the closed span
of {x,}22 ;. This is improved in our last result, which shows that the closed
span of an unconditionally non-negative quasibasic sequence in L,(0,1) can-
not contain any strongly embedded infinite dimensional subspace (a subspace
X of L,(0,1) is said to be strongly embedded if the L,(0, 1) norm is equivalent
to the L,(0,1) norm on X for some — or, equivalently, for all — r < p; see e.g.
[1, p. 151]). The main work for proving this is contained in Lemma 1.

Before stating Lemma 1, we recall that a quasibasis for a Banach space
X is a sequence {fy,gn}52; in X x X* such that for each = in X the series
Y nlgn, ) fr converges to z. (In [5], a sequence {f,}72; in X is a called a
quasibasis for X provided there exists such a sequence {g,}5> ;. Since the
sequence {g,}22, is typically not unique, we prefer to specify it up front.)
The quasibasis {fn, gn}52, is said to be unconditional provided that for each
x in X the series ) (gn,x)fn converges unconditionally to x. One then
gets from the uniform boundedness principle (see, e.g., [5, Lemma 3.2]) that
there is a constant K so that for all  and all scalars a,, with |a,| <1, we
have || >, an(gn,x) fn]| < K|z||. A sequence {f,,gn}pe; in X x X* is said
to be [unconditionally] quasibasic provided {f,,h,}52; is an [unconditional]
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quasibasis for the closed span [f,] of {f,}52, where h,, is the restriction of
gn to [fn]

LEMMA 1. Suppose that {fn,gn}22, is an uncondtionally quasibasic se-
quence in L,(0,1), 1 <p < oo, with each f, non-negative. If {y,}2, is a
normalized weakly null sequence in the closed linear span [fn] of {fn}Soq,
then ||ynlli = 0 as n — oo.

Proof. If the conclusion is false, we get a normalized weakly null sequence
{yn}2, in [f,] and a ¢ > 0 so that for all n we have ||y,||1 > c.

By passing to a subsequence of {y,}°2,, we can assume that there are
integers 0 =my < mg < --- so that for each n,

mn
> (g ya) | filly <27""%¢  and
(5) h=1

oo

Z }<gkayn>|fk

k=mpq1+1

< 27" 3¢,

P

Effecting the first inequality in (5) is no problem because y, — 0 weakly,

but the second inequality perhaps requires a comment. If y, satisfies the

first inquality in (5), from the unconditional convergence of the expansion of

yn and the nonnegativity of all fi we get that || > 7o\ |(gk, Yn) | fxllp = O as

n — oo, which allows us to select m,, 11 to satisfy the second inequality in (5).
Since ||yn|l1 > ¢, from (5) we also have for every n that

Mn41 Mn+41
(6) ST Kawwadlfe =11 D2 (gkounfi| >c/2.
k=mn+1 1 k=mn+1 1

Since L, has an unconditional basis, by passing to a further subsequence
we can assume that {y,}>2; is unconditionally basic with, say, constant K.
Set s=pA2. Then L, has type s (see [1, Theorem 6.2.14]), so for some
constant Kzlv we have for every N the inequality
N
> tn

n=1

1/s
(7) < K,N'*.

p

On the other hand, letting & = sign{gx,y») when m, + 1 < k < mp41,
n=1,2,3,..., we have

N

> un

n=1 P

N oo
ZZ gkayn
n=1k=1

8) KK,

p
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Mp41 N
> Z Z [grsyn) | fr]| — Z Z 61 { 9K yn) fr
n=1k=m,+1 p n=1k¢[mp+1,mp41] P
Mp41 N
> Z ST Kawwadfe| (D0 Do gmwn)|fe
n=1k=m,+1 1 n=1k¢[m,+1,mn41] P
N Mn+1
>y | {ghs )| fi
n=1|lk=m,+1 1
N My o
-3 Z| gey) | Ifello +| D Kgwsynd|fu
n=1 k=mn4+1+1 P
> Nc/2 —c/4 by (6) and (5)
This contradicts (7). O

THEOREM 3. Let {fn,gn}o2, be an unconditional quasibasic sequence in
L,(0,1), 1 <p < oo, with each f, non-negative. Then the closed span [f,] of
{fn}52 embeds isomorphically into £,.

Proof. The case p =1 is especially easy: Assume, as we may, that
|l fnll1 = 1. There is a constant K so that for each y in [f,]

[ee]
9) il < |32 [gm )| fa| < Kyl
n=1 1
hence the mapping y — {{gx,y)}7>, is an isomorphism from [f,] into ¢;.

So in the sequel assume that p > 1. From Lemma 1 and standard arguments
(see, e.g., [1, Theorem 6.4.7]), we have that every normalized weakly null
sequence in [f,] has a subsequence that is an arbitrarily small perturbation
of a disjoint sequence and hence the subsequence is 1 + e-equivalent to the
unit vector basis for ¢,. This implies that [f,,] embeds isomorphically into £,
(see [3] for the case p > 2 and [2, Theorems II1.9, III.1, and IIL.2] for the case
p<2). O

REFERENCES

[1] F. Albiac and N. J. Kalton, Topics in Banach space theory, Graduate Texts in Mathe-
matics, vol. 233, Springer, New York, 2006. MR 2192298

[2] W. B. Johnson, On quotients of L, which are quotients of £,, Compos. Math. 34 (1977),
no. 1, 69-89. MR 0454595

[3] W. B. Johnson and E. Odell, Subspaces of L, which embed into £,, Compos. Math. 28
(1974), 37-49. MR 0352938

[4] J. Lindenstrauss and L. Tzafriri, Classical Banach spaces. 1. Sequence spaces, Ergeb-
nisse der Mathematik und ihrer Grenzgebiete, vol. 92, Springer, Berlin, 1977.
MR 0500056

[5] A. M. Powell and A. H. Spaeth, Nonnegativity constraints for structured complete sys-
tems, to appear in Trans. Amer. Math. Soc.; DOI:10.1090/tran/6562.


http://www.ams.org/mathscinet-getitem?mr=2192298
http://www.ams.org/mathscinet-getitem?mr=0454595
http://www.ams.org/mathscinet-getitem?mr=0352938
http://www.ams.org/mathscinet-getitem?mr=0500056
http://dx.doi.org/10.1090/tran/6562

344 W. B. JOHNSON AND G. SCHECHTMAN

WiLLIAM B. JOHNSON, DEPARTMENT OF MATHEMATICS, TEXAS A&M UNIVERSITY, COL-
LEGE STATION, TX 77843, USA

E-mail address: johnson@math.tamu.edu

GIDEON SCHECHTMAN, DEPARTMENT OF MATHEMATICS, WEIZMANN INSTITUTE OF SCI-
ENCE, REHOVOT, ISRAEL

E-mail address: gideon@weizmann.ac.il


mailto:johnson@math.tamu.edu
mailto:gideon@weizmann.ac.il

	Introduction
	A Schauder basis for L1(0,infty) consisting of non-negative functions
	Unconditional non-negative sequences in Lp
	References
	Author's Addresses

