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ISOMETRIES ON THE VECTOR VALUED LITTLE
BLOCH SPACE

FERNANDA BOTELHO AND JAMES JAMISON

Abstract. In this paper, we describe the surjective linear isome-
tries on a vector valued little Bloch space with range space a

smooth, strictly convex and reflexive complex Banach space. We

also describe the hermitian operators and the generalized bi-
circular projections supported by these spaces.

1. Introduction

The type of linear surjective isometries supported by a given Banach space
depends largely on the geometric properties of the space, see [21], [22] and [25].
Often, these operators are described from their induced actions on the set of
extreme points of the unit ball of the dual space, see [9] and [14]. In addition of
being a class of operators of great intrinsic interest, linear surjective isometries
play a crucial role in the definition of other important classes of operators such
as the hermitian operators and the generalized bi-circular projections, see [23].
In this paper, we give a characterization of the surjective isometries on a class
of vector valued little Bloch spaces and then derive the form of the hermitian
operators and the generalized bi-circular projections.

The little Bloch space consists of all analytic functions f defined on the
open unit disc, �= {z ∈ C : |z|< 1}, with values in a Banach space E with
norm ‖ · ‖E , which satisfy the condition

lim
|z|→1

(
1− |z|2

)∥∥f ′(z)
∥∥
E
= 0.

This space with the norm ‖f‖B = ‖f(0)‖E + supz∈�(1 − |z|2)‖f ′(z)‖E is a
Banach space and will be denoted by B∗(�,E). Towards a characterization
of the surjective linear isometries on this setting, we start by considering
surjective isometries on B0(�,E), the subspace consisting of all functions in
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B∗(�,E) vanishing at zero. The reason for this restriction is that B∗(�,E)
is isometrically isomorphic to B0(�,E) ⊕1 E, and when the range space E
does not support L1-projections (see [1] and also [13]), B0(�,E) also does not
support L1-projections. This implies that an isometry on B∗(�,E) admits a
natural decomposition into an isometry on B0(�,E) and an isometry on E,
cf. [1] and [18].

In order to derive a representation for the surjective isometries on B0(�,E),
we define an embedding of B0(�,E) onto Y , a closed subspace of C0(�,E).
Then we use that the adjoint of a surjective isometry on Y defines a permu-
tation on the set of extreme points of Y∗

1 . In this process we employ a result
due to Brosowski and Deutsch (see [19, Corollary 2.3.6, p. 33]) stating that
any extreme point of Y∗

1 is of the form e∗δz , with e∗ a norm one functional
in E∗ and δz a point evaluation functional. The forthcoming Corollary 2.2
states that all such functionals are extreme points of Y∗

1 . This allows us to
derive the form for the surjective isometries as described in Theorem 3.5.

It was shown by Vidav in [31], [32] that hermitian operators are essen-
tially the generators of strongly continuous one parameter groups of surjective
isometries. The knowledge of the surjective isometries defines naturally a class
of operators containing the hermitian operators. In particular, we will show
that bounded hermitian operators on B0(�,E) are in a one-to-one correspon-
dence with the bounded hermitian operators of the range space. Another class
of operators considered here and directly linked to surjective isometries are
the generalized bi-circular projections, introduced in [20]. These projections
have been studied and characterized in a variety of spaces. In most known
cases, generalized bi-circular projections can be expressed as the average of
the identity with an isometric reflection, see for example [10], [11], [26] and
also [30]. In the last section of this paper, we extend this representation to
generalized bi-circular projections on this new collection of spaces.

Throughout this paper, we assume that the range space E is a smooth,
strictly convex and reflexive Banach space, however some results hold under
weaker conditions.

Given a Banach space X , X∗
1 denotes the unit ball of its dual space, and

ext(X∗
1 ) denotes the set of extreme points of X∗

1 .

2. Extreme points of B0(�,E)∗1

We consider the following embedding of B0(�,E) into C0(�,E)

Φ : B0(�,E)→C0(�,E),

f → F =Φ(f) : �→E,

given by Φ(f)(z) = (1 − |z|2)f ′(z). The map Φ is a linear isometry onto a
closed subspace of C0(�,E), denoted by Y . We recall that C0(�,E) is the set
of all E-valued continuous functions defined on � such that lim|z|→1F (z) = 0.
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A result due to Brosowski and Deutsch (see [19], Corollary 2.3.6) implies
that extreme points of the unit ball of the dual space of Y are functionals of
the form e�δz , with e� ∈ ext(E∗

1 ), z ∈� and δz : B0(�,E)→E the evaluation
map δz(f) = f(z).

We now show that all such functionals are extreme points of Y∗
1 . We

observe that the smoothness and reflexivity assumption on E implies that E∗

is strictly convex and then every norm 1 functional in E∗ is an extreme point
of E∗

1 . Furthermore, the smoothness and the reflexivity of E implies that for
every unit vector v in E, there exists a unique functional v∗ in E∗

1 , such that
v∗(v) = 1.

Lemma 2.1. A functional τ is an extreme point of Y∗
1 if and only if τ =

e∗δz , with e∗ ∈ ext(E∗
1 ) and z ∈�.

Proof. We refer the reader to Corollary 2.3.6 in [19] which states that
ext(Y∗

1 )⊂ {e∗δz : e∗ ∈ ext(E∗
1 ), and z ∈ �}. Given z0 ∈ � and e∗ ∈ ext(E∗

1 )
we show that e∗δz0 is an extreme point of Y∗

1 . We assume otherwise, then

(1) e∗δz0 =
ϕ1 +ϕ2

2
,

for ϕ1 and ϕ2 in Y∗
1 .

Since Y is a closed subspace of C0(�,E), the Hahn–Banach theorem implies
the existence of extensions of ϕ1 and ϕ2, to C0(�,E). These functionals are
written as

ϕ̃1(F ) =

∫
�
F dν∗ and ϕ̃2(F ) =

∫
�
F dμ∗,

with ν∗ and μ∗ representing regular vector valued Borel measures on � with
values on E∗.

We consider the function in B0(�,E)

f0(z) =
(1− |z0|2)z
1− z0z

e,

with e ∈ E such that e∗(e) = 1. Furthermore, sup|z|<1(1 − |z|2)‖f ′
0(z)‖ =

(1− |z0|2)‖f ′
0(z0)‖ and, for all z ∈� \ {z0},(

1− |z|2
)∥∥f ′

0(z)
∥∥ <

(
1− |z0|2

)∥∥f ′
0(z0)

∥∥ = 1.

We apply (1) to the function F0(z) = (1−|z|2)f ′
0(z) to conclude that ϕ1(F0) =

ϕ2(F0) = 1. If |ν∗|(� \ {z0}) > 0, then there exists a compact subset K of
�\ {z0} such that |ν∗|(K)> 0. Clearly,

sup
z∈K

∥∥F0(z)
∥∥ = sup

z∈K

(
1− |z|2

)∥∥f ′
0(z)

∥∥ = α< 1.
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Hence,

1 = ϕ̃1(F0) =

∣∣∣∣
∫
�
F0 dν

∗
∣∣∣∣ =

∣∣∣∣
∫
{z0}

F0 dν
∗ +

∫
K

F0 dν
∗ +

∫
(�\{z0})\K

F0 dν
∗
∣∣∣∣

≤
∣∣ν∗∣∣({z0})+ α

∣∣ν∗∣∣(K) +
∣∣ν∗∣∣((�\ {z0}

)
\K

)
<

∣∣ν∗∣∣(�) = 1.

This leads to an absurdity and shows that |ν∗|(� \ {z0}) = 0 and ν∗(� \
{z0}) = 0. This also implies that ν∗{z0} is a norm one functional. A similar
reasoning applies to μ∗. Given F ∈ Y , we have

e∗δz0(F ) =
(
1− |z0|2

)
e∗

(
f ′(z0)

)
=

ϕ̃1(F ) + ϕ̃2(F )

2

=
1

2

(∫
{z0}

F dν∗ +

∫
{z0}

F dμ∗
)

=
1

2

[
ν∗(z0)

(
1− |z0|2

)
f ′(z0) + μ∗(z0)

(
1− |z0|2

)
f ′(z0)

]
.

Therefore,

e∗
(
f ′(z0)

)
=

ν∗(z0)(f
′(z0)) + μ∗(z0)(f

′(z0))

2
.

The strict convexity of the scalar field implies that e∗(f ′(z0)) = ν∗(z0)×
(f ′(z0)) = μ∗(z0)(f

′(z0)). From the smoothness of E we have that e∗ = ν∗ =
μ∗ and ϕ1 = ϕ2. This completes the proof. �

The next corollary gives a description of the extreme points of B0(�,E)∗1.

Corollary 2.2. A functional τ ∈ B0(�,E)∗1 is an extreme point if and
only if τ(f) = e∗(Φ(f)(z)), with z ∈� and e∗ ∈ ext(E∗

1 ).

Proof. The isometry Φ induces the isometry Φ∗ : Y∗ →B0(�,E)∗, which
defines a bijection between the corresponding sets of extreme points, conse-
quently we have that Φ∗(e∗δz) ∈ ext(B0(�,E)∗1), with e∗δz ∈ ext(Y∗

1 ). There-
fore,

Φ∗(e∗δz)(f) = e∗
(
Φ(f)(z)

)
.

This completes the proof. �

Remark 2.3. We observe that the function f → (f(0), f − f(0)) defines a
surjective isometry from B∗(�,E) onto E ⊕1 B0(�,E).

It is well known (cf. [19]) that ext(B∗(�,E)∗1) = ext(E∗
1 ⊕∞ (B0(�,E)∗1)).

Therefore, ext(B∗(�,E)∗1) = {(v∗, τ) : v∗ ∈ ext(E∗
1 ), τ ∈ ext(B0(�,E)∗1) with

(v∗, τ)(f) = v∗(f(0)) + τ(f − f(0))}.

We recall that the assumptions on E imply that every norm one functional
in E∗ is an extreme point of E∗

1 .
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3. A characterization of the surjective isometries on B0(�,E)

In this section, we show that surjective linear isometries on B0(�,E) are
translations of weighted composition operators.

We consider a surjective linear isometry T : B0(�,E)→B0(�,E) and de-
fine S : Y → Y such that S ◦ Φ = Φ ◦ T . Hence, S∗ : Y∗ → Y∗ induces a
permutation of ext(Y∗

1 ). Therefore, for every u∗ ∈ ext(E∗
1 ) and z ∈�, there

exist v∗ ∈ ext(E∗
1 ) and w ∈� such that

S∗(u∗δz
)
= v∗δw,

equivalently we write

(2)
(
1− |z|2

)
u∗((Tf)′(z)) = (

1− |w|2
)
v∗

(
f ′(w)

)
, for every f ∈ B0(�,E).

Conceivably v∗ and w depend on the choice of u∗ and z, this determines
the following two maps:

σ : �×E∗
1 →�,

(z,u∗) → w,
and

Γ : �×E∗
1 → E∗

1 ,
(z,u∗) → v∗.

In the next two lemmas, we show that σ is independent of the second coordi-
nate and Γ is independent of the first.

Lemma 3.1. Let z0 ∈ � and u∗
0 ∈ E∗

1 . Then σ restricted to the set
{(z0, u∗) : u∗ ∈E∗

1} is constant and it induces a disc automorphism, also de-
noted by σ, defined by σ(z) = σ(z,u∗

0).

Proof. We consider two distinct functionals in E∗
1 , u

∗ and u∗
1, then we write

(3)
(
1− |z0|2

)
u∗((Tf)′(z0)) = (

1− |w|2
)
v∗

(
f ′(w)

)
and

(4)
(
1− |z0|2

)
u∗
1

(
(Tf)′(z0)

)
=

(
1− |w1|2

)
v∗1

(
f ′(w1)

)
.

We consider f0 ∈ B0(�,E), given by f0(z) = z · v, with v ∈ E such that

v∗(v) = 1. Applying equation (3) to f0 we obtain u∗((Tf0)
′(z0)) =

1−|w|2
1−|z0|2 ≤ 1

and |w| ≥ |z0|. Since T is surjective there exists f ∈ B0(�,E) such that
(Tf)(z) = z ·u, then equation (3) applied to this function f yields (1−|z0|2) =
(1− |w|2)v∗(f ′(w)). Hence, (1− |z0|2) ≤ (1− |w|2) or |w| ≤ |z0|. Therefore,
|w|= |z0|. A similar argument using (4) implies that |w1|= |z0| and |w|= |w1|.
If w �= w1, then we select a norm 1 function f1 such that f ′

1(w) = v and
f ′
1(w1) = v1. The equations in (3) and (4) applied to f1 yield

u∗[(Tf1)′(z0)] = u∗
1

[
(Tf1)

′(z0)
]
= 1.

It follows from the smoothness of E∗
1 that u∗ = u∗

1. Therefore,

(5) v∗
(
f ′(w)

)
= v∗1

(
f ′(w1)

)
, for every f ∈ B0(�,E).

This implies that v∗ = v∗1 and f ′(w) = f ′(w1), for every f ∈ B0(�,E). This
contradiction implies that σ only depends on the value of the first coordinate.
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Thus it induces a map (also denoted by σ) on the open disc. Since T is a
surjective isometry the same reasoning applied to the inverse implies that σ
is bijective.

We now show that σ is analytic. We apply the equation (2) to the functions

f0(z) =
z2

2 v and f1(z) = zv to obtain the following:(
1− |z|2

)
u∗[(Tf0)′(z)] = (

1−
∣∣σ(z)∣∣2)v∗(f ′

0

(
σ(z)

))
and (

1− |z|2
)
u∗[(Tf1)′(z)] = (

1−
∣∣σ(z)∣∣2).

For every z ∈�, we have u∗[(Tf1)
′(z)] �= 0. Therefore

σ(z) =
u∗[(Tf0)

′(z)]

u∗[(Tf1)′(z)]
.

This shows that σ is analytic and then a disc automorphism. �

A disc automorphism σ is a bijective and analytic map on the open disc.
It is of the form σ(z) = λ z−z0

1−z0z
, with λ a modulus one complex number and

z0 ∈�. The derivative σ′(z) = λ 1−|z0|2
(1−z0z)2

. It is a straightforward calculation

to check that |σ′(z)|= 1−|σ(z)|2
1−|z|2 .

Lemma 3.2. If u∗ ∈ E∗
1 , then Γ restricted to the set {(z,u∗) : z ∈ �} is

constant.

Proof. The equation displayed in (2) is rewritten as(
1− |z|2

)
u∗[(Tf)′(z)]

=
(
1−

∣∣σ(z)∣∣2)Γ(
u∗, z

)[
f ′(σ(z))], ∀f ∈ B0(�,E) and z ∈�.

Therefore, we get

u∗[(Tf)′(z)] = |σ′(z)|
σ′(z)

Γ
(
u∗, z

)[
(f ◦ σ)′(z)

]
, ∀f ∈ B0(�,E),

since 1−|σ(z)|2
1−|z|2 σ′(z) = |σ′(z)|.

Equivalently, we write

u∗[(Tf)′(z)]

Γ(u∗, z)[(f ◦ σ)′(z)] =
|σ′(z)|
σ′(z)

.

Thus the left-hand side is independent of the choice of u∗ and f . Further,
|σ′(z)|
σ′(z) is analytic on the open disc because z → u∗[(Tf)′(z)]

Γ(u∗,z)[(f◦σ)′(z)] is analytic. An

application of the Maximum Modulus Principle asserts that |σ′(z)|
σ′(z) is constant,

i.e. |σ′(z)|
σ′(z) = eiα, for every z in the disc.

Then

(6) u∗[(Tf)′(z)] = eiαΓ
(
u∗, z

)[
(f ◦ σ)′(z)

]
, ∀z ∈�.
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We set v∗z =Γ(u∗, z), for every z ∈�. Since T is surjective, let f be such that
(Tf)(z) = eiαzu, then (f ◦ σ)′(z) = vz . The map z → (f ◦ σ)′(z) is analytic,
this means for every bounded functional, τ in E∗, z → τ((f ◦σ)′(z)) is analytic.
In particular, given z0 ∈ �, z → v∗z0((f ◦ σ)′(z)) is analytic and attains a
maximum value at z0. This implies that Γ(u∗, z) is constant.

Thus, Γ restricted to {(z,u∗) : z ∈�} is constant. �
Remark 3.3. The previous lemma implies that Γ induces a mapping from

E∗
1 onto E∗

1 , which for simplicity it will also be denoted by Γ.

We collect some useful properties of Γ. First Γ(λu∗) = λΓ(u∗), with λ
a modulus 1 complex number. Then, for every scalar λ, we set Γ(λu∗) =

λΓ(u∗). If we set v∗1 =Γ(u∗
1), v

∗
2 =Γ(u∗

2) and v∗ =Γ(
u∗
1+u∗

2

‖u∗
1+u∗

2‖
), then for every

f ∈ B0(�,E) and z ∈�,

(
1− |z|2

) u∗
1 + u∗

2

‖u∗
1 + u∗

2‖
[
(Tf)′(z)

]
=

(
1−

∣∣σ(z)∣∣2)v∗[f ′(σ(z))]

=
1

‖u∗
1 + u∗

2‖
(
1−

∣∣σ(z)∣∣2)[v∗1 + v∗2
][
f ′(σ(z))].

This implies that v∗ = v∗
1+v∗

2

‖u∗
1+u∗

2‖
, or equivalently

Γ

(
u∗
1 + u∗

2

‖u∗
1 + u∗

2‖

)
=

1

‖u∗
1 + u∗

2‖
(
Γ
(
u∗
1

)
+Γ

(
u∗
2

))
.

Hence, we extend Γ to a linear map Γ : E∗ →E∗. We notice that given two

distinct functionals u∗
1 and u∗

2 we set Γ(
u∗
1−u∗

2

‖u∗
1−u∗

2‖
) = w∗. Therefore, Γ(u∗

1)−
Γ(u∗

2) = ‖u∗
1 − u∗

2‖w∗ and∥∥Γ(
u∗
1

)
− Γ

(
u∗
2

)∥∥ ≤
∥∥u∗

1 − u∗
2

∥∥.
As in [12] (see p. 60) we employ the following result due to G. Ding from [16],
see also [15].

Theorem 3.4. Let E and F be two real Banach spaces. Suppose V0 is a
Lipschitz mapping from E1 into F1 (the respective unit spheres) with Lipschitz
constant equal to 1, that is ‖V0(x)− V0(y)‖ ≤ ‖x− y‖, for every x, y in E1.
Assume also that V0 is a surjective mapping such that for any x, y ∈E1 and
r > 0, we have∥∥V0(x)− rV0(y)

∥∥∧
∥∥V0(x) + rV0(−y)

∥∥ ≤ ‖x− ry‖
and ‖V0(x)− V0(−x)‖= 2. Then V0 can be extended to be a real linear isom-
etry from E onto F .

Since Γ satisfies the conditions set in the Theorem 3.4, this assures the
existence of a surjective real linear isometry from E∗ → E∗ that extends Γ.
For simplicity of notation, we denote this extension also by Γ. We observe
that the complex linearity of the isometry T implies that of Γ. Since E is
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reflexive then the adjoint of Γ induces a surjective linear isometry on E, we
call this isometry V , therefore we have

u∗((Tf)′(z)) = u∗(V (f ◦ σ)′(z)
)
,

for every u∗ ∈ E∗, f ∈ B0(�,E) and z ∈ �. This implies that (Tf)′(z) =
V (f ◦ σ)′(z). A straightforward integration yields

Tf(z) = V
[
(f ◦ σ)(z)− (f ◦ σ)(0)

]
, ∀f ∈ B0(�,E), and z ∈�.

We summarize these considerations in the following theorem.

Theorem 3.5. Let E be a smooth, strictly convex and reflexive complex
Banach space. Then T : B0(�,E)→B0(�,E) is a surjective linear isometry
if and only if there exist a surjective linear isometry V : E → E and a disc
automorphism σ such that for every f ∈ B0(�,E) and z ∈�,

Tf(z) = V
[
(f ◦ σ)(z)− (f ◦ σ)(0)

]
.

Proof. The necessity follows from previous considerations. We now show
the sufficiency, that is, any mapping of the form described in the theorem
is indeed a surjective isometry. Such an operator is bijective, with inverse
T−1f(z) = V −1[f(σ−1(z))− f(σ−1(0))]. We now show that Tf(x) = V [(f ◦
σ)(x)− (f ◦ σ)(0)], with σ a disc automorphism and V a surjective isometry
on E, is an isometry. We have

‖Tf‖B0(�,E) = sup
z∈�

(
1− |z|2

)∥∥σ′(z)V
(
f ′(σ(z)))∥∥

= sup
z∈�

(
1− |z|2

)∣∣σ′(z)
∣∣∥∥f ′(σ(z))∥∥.

We set w = σ(z), then if σ(z) = λ z−a
1−az we have σ−1(w) = λa+w

λ+aw . Therefore

(
1− |z|2

)∣∣σ′(z)
∣∣ = (1− |a|2)

|1− aw+λa
λ+aw |2

(
1−

∣∣∣∣w+ λa

λ+ aw

∣∣∣∣
2)

=
(
1− |w|2

)
.

This implies that ‖Tf‖B0(�,E) = ‖f‖B0(�,E) and completes the proof. �

4. Hermitian operators

In this section, we use the form of the surjective isometries to derive in-
formation about the hermitian operators on B0(�,E), see [2] and [3]. An
operator A is hermitian if and only if iA is the generator of a strongly con-
tinuous one-parameter group of surjective isometries, see [17]. We recall that
bounded hermitian operators give rise to uniformly continuous one-parameter
groups of surjective isometries.

We consider one-parameter group of surjective isometries on B0(�,E),
Theorem 3.5 implies that each isometry determines both a disc automor-
phism and a surjective isometry on E. The next proposition states that the
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group properties of the underlying group of isometries transfer to the defining
families.

Proposition 4.1. Let E be a smooth, strictly convex and reflexive complex
Banach space, then {Tt}t∈R is a one parameter group of surjective isometries
on B0(�,E) if and only if there exist a one parameter group of disc auto-
morphisms {σt}t∈R and one parameter group of surjective isometries on E,
{Vt}t∈R such that

Tt(f)(z) = Vt

[
f
(
σt(z)

)
− f

(
σt(0)

)]
, ∀f ∈ B0(�,E).

Proof. Let {Tt}t∈R be a one parameter group of surjective isometries on
B0(�,E). If T0 = I we have

V0

[
f ◦ σ0 − f

(
σ0(0)

)]
= f, ∀f ∈ B0(�,E).

For f1(z) = zv and f2(z) = z2v, with v a unit vector in E, we obtain[
σ0(z)− σ0(0)

]
V0(v) = zv,[

σ0(z)
2 − σ0(0)

2
]
V0(v) = z2v.

This implies that [σ0(z) + σ0(0)]zv = z2v and σ0(z) + σ0(0) = z, for every
z ∈ � \ {0}. The continuity of σ0 implies that σ0(z) + σ0(0) = z, for every
z ∈ �. If z = 0 then σ0(0) = 0 and σ0(z) = z. Given t and s in R, we have
Tt+s(f) = Tt[Ts(f)], then

Tt

[
Ts(f)

]
= Vt

[
Ts(f) ◦ σt − Ts(f)

(
σt(0)

)]
= Vt

{
Vs

[
f(σs ◦ σt)− f

(
σs(0)

)]
− Vs

[
f(σs ◦ σt)(0)− f

(
σs(0)

)]}
= VtVs

(
f(σs ◦ σt)− f

(
σs

(
σt(0)

)))
.

On the other hand, Tt+s(f) = Vt+s[f ◦ σt+s − f(σt+s(0))]. Hence,

Vt+s

[
f ◦ σt+s − f

(
σt+s(0)

)]
(∗)

= VtVs

(
f(σs ◦ σt)− f

(
σs

(
σt(0)

)))
, ∀f ∈ B0(�,E).

In particular, for f1 and f2 defined above, we have

[VtVsv]
[
(σs ◦ σt)(z)− (σs ◦ σt)(0)

]
= Vt+sv

[
σs+t(z)− σt+s(0)

]
,

[VtVsv]
[
(σs ◦ σt)(z)

2 − (σs ◦ σt)(0)
2
]
= Vt+sv

[
σs+t(z)

2 − σt+s(0)
2
]
.

Therefore,[
(σs ◦ σt)(z) + (σs ◦ σt)(0)

][
σs+t(z)− σt+s(0)

]
= σs+t(z)

2 − σt+s(0)
2.

For z �= 0, we have that

(σs ◦ σt)(z) + (σs ◦ σt)(0) = σs+t(z) + σt+s(0).

Since all functions are continuous

(σs ◦ σt)(z) + (σs ◦ σt)(0) = σs+t(z) + σt+s(0), ∀z ∈�.
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For z = 0, we have (σs ◦ σt)(0) = σt+s(0). Then σs ◦ σt = σs+t and from
(∗) we conclude that VtVs = Vt+s. The converse implication follows from
straightforward calculations. This concludes the proof. �

The next result addresses the question of whether the strong continuity of
a one-parameter group of surjective isometries {Tt}t∈R also transfers to the
defining symbols.

Proposition 4.2. Let E be a smooth, strictly convex and reflexive complex
Banach space. If {Tt}t∈R is a strongly continuous one parameter group of sur-
jective isometries on B0(�,E), then there exist a strongly continuous one pa-
rameter group of surjective isometries on E, {Vt}t∈R and a continuous one
parameter group of disc automorphisms {σt}t∈R such that

Tt(f)(z) = Vt

(
f
(
σt(z)

)
− f

(
σt(0)

))
, ∀f ∈ B0(�,E) ∀z ∈�.

Proof. Proposition 4.1 implies the existence of one parameter groups of sur-
jective isometries on E and disc automorphisms, {St} and {σt} respectively,
such that

Tt(f)(z) = Vt

(
f
(
σt(z)

)
− f

(
σt(0)

))
, ∀f ∈ B0(�,E) ∀z ∈�.

Since {Tt}t∈R is strongly continuous, in particular for f1(z) = zv, f2(z) = z2v
and f3(z) = z3v (v ∈E1, z ∈� and i= 1,2, or 3) we have∥∥[

σt(z)
i − σt(0)

i
]
Vt(v)− ziv

∥∥ → 0 as t→ 0.

Given z0 �= 0, and ϕ ∈E∗
1 such that ϕ(v) = 1,

lim
t→0

[
σt(z0)− σt(0)

]
ϕ
(
Vt(v)

)
= z0 and

lim
t→0

[
σt(z0)

2 − σt(0)
2
]
ϕ
(
Vt(v)

)
= z20 ,

implies that

(7) lim
t→0

(
σt(z0) + σt(0)

)
= z0.

Also

lim
t→0

[
σt(z0)− σt(0)

]
ϕ
(
Vt(v)

)
= z0 and

lim
t→0

[
σt(z0)

3 − σt(0)
3
]
ϕ
(
Vt(v)

)
= z30 ,

implies

(8) lim
t→0

(
σt(z0)

2 + σt(z0)σt(0) + σt(0)
2
)
= z20 .

It follows from (7) and (8) that limt→0 σt(z0)σt(0) = 0. This implies that
limt→0 σt(0) = 0, otherwise there exists a sequence {tn} such that σtn(0) would
converges to some complex number w( �= 0) in the closed disc. Hence, for every
z0 �= 0 {σtn(z0)}n converges to zero and w = z0. This leads to an absurdity
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and proves that limt→0 σt(0) = 0 and limt→0 σt(z0) = z0. This establishes the
continuity of {σt}. For z0 �= 0,

lim
t→0

[σt(z0)− σt(0)]Vt(v)

σt(z0)− σt(0)
=

z0v

z0
= v,

which completes the proof. �

Corollary 4.3. Let E be a smooth, strictly convex and reflexive complex
Banach space. If A is a (not necessarily bounded) hermitian operator on
B0(�,E), then there exist a hermitian operator (not necessarily bounded) V
on E and a continuous group of disc automorphisms {σt}t∈R such that

A(f)(z) = V
[
f(z)

]
+

[
∂tσt(z)

]
t=0

f ′(z).

If A is bounded then {σt}t∈R is the trivial group and A(f)(z) = V [f(z)], with
V bounded.

Nontrivial disc automorphisms can be extended to conformal maps on the
plane and as such, they are characterized according to their fixed points. More
precisely, they fall into three types: an elliptic automorphism has a single
fixed point in the disc and another one in the interior of its complement;
a hyperbolic automorphism has two distinct fixed points on the boundary of
the disc and a parabolic has a single fixed point on the boundary of the disc,
cf. [27] and [29].

It has been shown that all disc automorphisms of a nontrivial one-
parameter group family of disc automorphisms share the same fixed points,
cf. [5] and also [6]. Thus, we consider the following three cases:

(i) Elliptic.

ϕt(z) =
(eict − |τ |2)z − τ(eict − 1)

1− |τ |2eict − τ(1− eict)z
,

with c ∈R \ {0}, τ ∈C such that |τ |< 1.
(ii) Hyperbolic.

ϕt(z) =
(βect − α)z + αβ(1− ect)

(ect − 1)z + (β − αect)
,

with c a positive real number, |α|= |β|= 1 and α �= β.
(iii) Parabolic.

ϕt(z) =
(1− ict)z + ictα

−icαtz + 1+ ict
,

with c ∈R \ {0} and |α|= 1.

In [4], Berkson, Kaufman and Porta show the existence of an invariant
polynomial associated with one parameter group of disc automorphisms

ϕt(z) = a(t)
z − b(t)

1− b(t)z
,
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with |a(t)|= 1 and |b(t)|< 1. This polynomial is given by

P (z) = b′(0)z2 + a′(0)z − b′(0).

It is a straightforward computation to check that

∂tϕt(z)|t=0 = P (z) and ∂tϕ
′
t(z)|t=0 = P ′(z).

The invariant polynomial for each of the three types of nontrivial disc
automorphisms is given by:

(i) Elliptic. P (z) =− ic
1−|τ |2 {(τz − 1)(z − τ)} (|τ |< 1).

(ii) Hyperbolic. P (z) =− c
β−α{z2− (α+β)z+αβ} (|α|= |β|= 1 and α �= β).

(iii) Parabolic. P (z) = iαc(z − α)2 (c ∈R \ {0} and |α|= 1).

Since hermitian operators are generators of strongly continuous one-parameter
groups of surjective isometries we derive a representation for the B0(�,E)
setting.

Proposition 4.4. Let E be a smooth, strictly convex and reflexive complex
Banach space. If a closed operator A with domain D(A), a dense subset of
B0(�,E) is hermitian then there exists a closed and densely defined hermitian
operator V on E and a nonzero real number c, and complex numbers τ , α and
β such that |τ |< 1 and |α|= |β|= 1 and one of the following holds:

(1) A(f)(z) = V (f(z)), f ∈ B0(�,E) and z ∈�.
(2) A(f)(z) = V (f(z)) + c

1−|τ |2 {(τz − 1)(z − τ)}f ′(z), f ∈D(A) and z ∈�.

(3) A(f)(z) = V (f(z))− i |c|
β−α{z2− (α+β)z+αβ}f ′(z), f ∈D(A) and z ∈�.

(4) A(f)(z) = V (f(z))− αc(z − α)2f ′(z), f ∈D(A) and z ∈�.

Proof. Given a hermitian operator A satisfying the conditions stated, then
{e−itA}t∈R is a strongly continuous one-parameter group of surjective isome-
tries on B0(�,E). Theorem 3.5 applies to assert the existence of a strongly
continuous one-parameter group of surjective isometries on E, {Vt}t∈R and a
continuous group of disc automorphisms {σt}t∈R such that

e−itA(f)(z) = Vt

(
f
(
σt(z)

)
− f

(
σt(0)

))
, ∀f ∈D(A).

We denote by V the generator of {Vt}t∈R then

A(f)(z) = V
(
f(z)

)
− i∂t

(
σ′
t(z)

)
|t=0f

′(z), ∀f ∈D(A).

The considerations in the preamble to the proposition justify the three
last cases listed. If σt(z) = z for all t, then ∂t(σ

′
t(z)) = 0 and A(f)(z) =

V (f(z)), f ∈ B0(�,E) and z ∈�. This completes the proof. �

Remark 4.5. In the scalar case, B(�) is known be a Grothendieck space
with the Dunford–Pettis property (see [28]). As a consequence of this fact
Blasco et. al. in [7] (see also [8]) showed that all strongly continuous groups
on B(�) are uniformly continuous. Therefore only the trivial group of disc
automorphisms is permissible (i.e., {σt}= {id}) and the hermitian operators
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are just real multiples of the identity. This is in contrast with our case because
of the following example. Suppose E = �2, σt(z) = z and set

Tt(f)(z) =
(
eitf1(z), e

2itf2(z), . . .
)
.

This is a family of strongly continuous surjective isometries but not uniformly
continuous. The generator of this group is given by

Af(z) =
(
f1(z),2f2(z),3f3(z), . . .

)
which is clearly an unbounded operator.

We also have the following characterization for bounded hermitian opera-
tors on B0(�,E).

Corollary 4.6. Let E be a smooth, strictly convex and reflexive complex
Banach space. If A is a bounded hermitian operator on B0(�,E) then there
exists a bounded hermitian operator V on E such that

A(f)(z) = V
(
f(z)

)
, ∀f ∈ B0(�,E) and z ∈�.

Proof. The operator A is of one of the forms listed in the Proposition 4.4,
the sequence of functions fn(z) = znv, with v a unit vector in E, are in
B0(�,E). Thus, the respective sequence of norms is uniformly bounded and
‖Af‖ is unbounded. This implies that σ′

t(z)|t=0 = 0 and σt(z) = z. This
completes the proof. �

Remark 4.7. It is a known fact that Banach spaces with the Grothendieck
property and the Dunford–Pettits property only support bounded hermit-
ian operators, see [7], [28]. The little Bloch scalar valued space, B0(�) has
these two properties (cf. [28]) and thus every hermitian operator on B(�) is
bounded. This implies that if a hermitian operator A on B0(�,E) with an
eigenspace containing one dimensional subspace {h(z)v : h ∈ B(�), v ∈ E1}
then A is of the form A(f)(z) = V f(z).

Corollary 4.6 allows us to extend our characterization to surjective isome-
tries of B∗(�,E). As pointed out in Remark 2.3, B∗(�,E) is isometrically
isomorphic to the �1-sum of E with B0(�,E). Moreover, if E does not admit
L1-projections (i.e. a bounded hermitian operator P on E such that P 2 = P
and for every v ∈E, ‖v‖E = ‖Pv‖E + ‖(I − P )v‖E) then also B0(�,E) does
not admit L1-projections. In fact, assuming P represents a L1-projection on
B0(�,E), Corollary 4.6 implies that P (f)(z) = V (f(z)), with V a bounded
hermitian projection on E. Therefore P (hv)(z) = h(z)V v, for h ∈ B0(�).
In particular for h(z) = z, ‖v‖ = ‖V v‖ + ‖(I − V )v‖ which implies that E
supports L1-projections.

We employ Proposition 4.3 in [24], a surjective isometry on B∗(�,E) can be
written as a direct sum of a surjective isometry on E and a surjective isometry
on B0(�,E). Therefore, a surjective isometry T on B∗(�,E) is given by

T (f)(z) = Uf(0) + V
[
(f ◦ σ)(x)− (f ◦ σ)(0)

]
,
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with σ a disc automorphism, U and V surjective isometries on E. We sum-
marize these considerations in the next result.

Theorem 4.8. Let E be a smooth, strictly convex and reflexive complex
Banach space. Then T : B∗(�,E)→B∗(�,E) is a surjective linear isometry
if and only if there exist surjective linear isometries on E, U and V , and a
disc automorphism σ such that, for every f ∈ B∗(�,E) and z ∈�,

Tf(z) = U
[
f(0)

]
+ V

[
f
(
σ(z)

)
− f

(
σ(0)

)]
.

The next corollary extends the results stated in Propositions 4.1 and 4.2
to B∗(�,E).

Corollary 4.9. Let E be a smooth, strictly convex and reflexive complex
Banach space. Then {Tt}t∈R is a strongly continuous one parameter group of
surjective isometries on B∗(�,E) if and only if there exist a continuous one
parameter group of disc automorphisms {σt}t∈R and strongly continuous one
parameter groups of surjective isometries on E, {Ut}t∈R and {Vt}t∈R such
that

Tt(f)(z) = Ut

(
f(0)

)
+ Vt

(
f
(
σt(z)

)
− f

(
σt(0)

))
, ∀f ∈ B0(�,E) ∀z ∈�.

Proof. Since E is a smooth and strictly convex complex Banach space, it
does not support L1-projections, Theorem 4.8 applies and for each t ∈R,

Tt(f)(z) = Ut

(
f(0)

)
+ Vt

(
f
(
σt(z)

)
− f

(
σt(0)

))
, ∀f ∈ B0(�,E) ∀z ∈�.

The proof given for Proposition 4.2 shows that {σt}t∈R is a one parameter
group of disc automorphisms and {St}t∈R is a strongly continuous one pa-
rameter group of surjective isometries on E. Then by considering constant
functions we also derive that {Ut}t∈R is a strongly continuous one parame-
ter group of surjective isometries on E. The converse implies follows from
straightforward computations. �

Corollary 4.10. Let E be a Hilbert space. If A is a (not necessarily
bounded) hermitian operator on B∗(�,E), then there exist hermitian operators
(not necessarily bounded) U and V on E and a continuous group of disc
automorphisms {σt}t∈R such that

A(f)(z) = U
[
f(0)

]
+ V

[
f(z)

]
+

[
∂tσt(z)

]
t=0

f ′(z).

If A is bounded then A(f)(z) = U [f(0)] + V [f(z)], with U and V bounded.

5. Generalized bi-circular projections

In this section, we characterize the generalized bi-circular projections on
B0(�,E). We recall that a generalized bi-circular projection P satisfies P 2 =
P and P + λ(I − P ) = T with T a surjective isometry and λ a modulus 1
complex number different from 1, [20]. We refer the reader to the following
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papers for additional information about this type of projections, [10], [11],
[20] and [26].

A straightforward computation yields the following algebraic equation T 2−
(λ+ 1)T + λI = 0.

Theorem 5.1. Let E be a smooth and strictly convex complex Banach
space. Then P is a generalized bi-circular projection on B0(�,E) if and only
if there exists an isometric reflection T (i.e. T 2 = I) such that

P =
I + T

2
.

Proof. If P is a generalized bi-circular projection, then P + λ(I − P ) = T
with λ ∈ T \ {1} and T a surjective isometry. An application of Theorem 3.5
implies that there exist a surjective linear isometry V : E → E and a disc
automorphism σ such that for every f ∈ B0(�,E) and z ∈�

Tf(z) = V
[
(f ◦ σ)(z)− (f ◦ σ)(0)

]
.

The automorphism σ is of the form σ(z) = μ z−α
1−αz with μ ∈ T and |α|< 1. The

condition P 2 = P implies that T 2 − (λ+ 1)T + λI = 0. Therefore, we have

V 2
[
f
(
(σ ◦ σ)(z)

)
− f

(
(σ ◦ σ)(0)

)]
(9)

− (λ+ 1)V
[
f
(
(σ)(z)

)
− f

(
(σ)(0)

)]
+ λf(z) = 0,

for every f ∈ B0(�,E) and z ∈�. By differentiating (9), we obtain

V 2
[
f ′((σ ◦ σ)(z)

)
σ′(σ(z))σ′(z)

]
(10)

− (λ+ 1)V
[
f ′((σ)(z))σ′(z)

]
+ λf ′(z) = 0.

The equation displayed in (10) applied to f(z) = z2

2 v (with v a vector in E
of norm 1) and with z = α yields

V 2v=
λ

μ3
v.

Applying (10) to f(z) = z2

2 v and setting z = 0, we obtain

(
V 2v

)
μ3−μα− α

1 + μ|α|2
1− |α|2

(1 + μ|α|2)2
(
1− |α|2

)
− (V v)(λ+1)(−μα)μ

(
1− |α|2

)
= 0.

We assume that λ �=−1, then straightforward calculations show that

(11) V =
λ(μ+ 1)(1− |α|2)

(λ+ 1)μ2(1 + μ|α|2)3 I.

This last equation implies that μ �= −1. Once more, applying equation (10)
to f(z) = zv and setting z = α we obtain

(12) V =
λ(μ+ 1)(1− |α|2)

μ2(λ+ 1)
I.
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From (11) and (12), we derive (1 + μ|α|2)3 = 1. This leads to 1 + μ|α|2 = 1,
1+μ|α|2 = cos π

3 +i sin π
3 or 1+μ|α|2 = cos 2π

3 +i sin 2π
3 . It is easy to show that

only the first equation leads to the solution α = 0. Therefore, V = λ(μ+1)
(λ+1)μ2 I

and σ(z) = μz. Since V is an isometry the |μ+ 1|= |λ+ 1|, and thus μ= λ
or λ= μ.

We consider two cases.
1. If λ= μ, then V = λI and equation (9) applied to f(z) = zv implies

λ4 − λ(λ+ 1) + λ= 0

and thus λ= 1. This is impossible.
2. If λ = μ, then V = μ2I . We differentiate equation (9) and applied to

f(z) = z3v to obtain

μ4 − (μ+ 1)μ2 + μ= 0.

This equation has solutions ±1. Either case leads to a contradiction since we
have assumed that λ �=−1.

This contradiction shows that λ=−1 and (10) reduces to

(13) V 2
[
f ′((σ ◦ σ)(z)

)
σ′(σ(z))σ′(z)

]
= f ′(z),

which applied to f(z) = z2

2 v with z = α yields(
V 2v

)(
−μ3α

)
= αv.

Therefore, V 2 =−μ3I .
The equation (13) applied to f(z) = zv and z = α gives

−μ3σ′(0)σ′(α) = 1.

Therefore, μ=−1 and V 2 = I . We also have σ ◦ σ(z) = z. Therefore, T 2 = I
and proves that P is the average of the identity operator with a reflection.
The reverse implication is clear. �

A generalized bi-circular projection P on B∗(�,E) is given

P =
1

1− λ
(T − λI)

with T a surjective isometry on B∗(�,E) and λ a modulus 1 scalar different
from 1. Theorem 4.8 implies the existence of surjective isometries on E, U and
V , also a disc automorphism σ such that T (f)(z) = U(f(0)) + V [f(σ(z)) −
f(σ(0))].

The form for the surjective isometries on B∗(�,E) implies that P leaves
invariant the subspace of all constant functions and also B0(�,E). Applying
Theorem 5.1, we conclude that the restriction of P to B0(�,E) is the average
of I with an isometric reflection on B0(�,E), thus V 2 = I and σ2 = id�.
Therefore, P is the average of the identity on B∗(�,E) with a surjective
isometry T . Since T = 2P − I is such that T 2 = I , then generalized bi-circular
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projections on B∗(�,E) are the average of the identity operator with an
isometric reflection.
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