ISOMETRIES ON THE VECTOR VALUED LITTLE BLOCH SPACE

FERNANDA BOTELHO AND JAMES JAMISON

Abstract

In this paper, we describe the surjective linear isometries on a vector valued little Bloch space with range space a smooth, strictly convex and reflexive complex Banach space. We also describe the hermitian operators and the generalized bicircular projections supported by these spaces.

1. Introduction

The type of linear surjective isometries supported by a given Banach space depends largely on the geometric properties of the space, see [21], [22] and [25]. Often, these operators are described from their induced actions on the set of extreme points of the unit ball of the dual space, see [9] and [14]. In addition of being a class of operators of great intrinsic interest, linear surjective isometries play a crucial role in the definition of other important classes of operators such as the hermitian operators and the generalized bi-circular projections, see [23]. In this paper, we give a characterization of the surjective isometries on a class of vector valued little Bloch spaces and then derive the form of the hermitian operators and the generalized bi-circular projections.

The little Bloch space consists of all analytic functions f defined on the open unit disc, $\triangle=\{z \in \mathbb{C}:|z|<1\}$, with values in a Banach space E with norm $\|\cdot\|_{E}$, which satisfy the condition

$$
\lim _{|z| \rightarrow 1}\left(1-|z|^{2}\right)\left\|f^{\prime}(z)\right\|_{E}=0
$$

This space with the norm $\|f\|_{\mathcal{B}}=\|f(0)\|_{E}+\sup _{z \in \triangle}\left(1-|z|^{2}\right)\left\|f^{\prime}(z)\right\|_{E}$ is a Banach space and will be denoted by $\mathcal{B}_{*}(\triangle, E)$. Towards a characterization of the surjective linear isometries on this setting, we start by considering surjective isometries on $\mathcal{B}_{0}(\triangle, E)$, the subspace consisting of all functions in
$\mathcal{B}_{*}(\triangle, E)$ vanishing at zero. The reason for this restriction is that $\mathcal{B}_{*}(\triangle, E)$ is isometrically isomorphic to $\mathcal{B}_{0}(\triangle, E) \oplus_{1} E$, and when the range space E does not support L_{1}-projections (see [1] and also [13]), $\mathcal{B}_{0}(\triangle, E)$ also does not support L_{1}-projections. This implies that an isometry on $\mathcal{B}_{*}(\triangle, E)$ admits a natural decomposition into an isometry on $\mathcal{B}_{0}(\triangle, E)$ and an isometry on E, cf. [1] and [18].

In order to derive a representation for the surjective isometries on $\mathcal{B}_{0}(\triangle, E)$, we define an embedding of $\mathcal{B}_{0}(\triangle, E)$ onto \mathcal{Y}, a closed subspace of $\mathcal{C}_{0}(\triangle, E)$. Then we use that the adjoint of a surjective isometry on \mathcal{Y} defines a permutation on the set of extreme points of \mathcal{Y}_{1}^{*}. In this process we employ a result due to Brosowski and Deutsch (see [19, Corollary 2.3.6, p. 33]) stating that any extreme point of \mathcal{Y}_{1}^{*} is of the form $e^{*} \delta_{z}$, with e^{*} a norm one functional in E^{*} and δ_{z} a point evaluation functional. The forthcoming Corollary 2.2 states that all such functionals are extreme points of \mathcal{Y}_{1}^{*}. This allows us to derive the form for the surjective isometries as described in Theorem 3.5.

It was shown by Vidav in [31], [32] that hermitian operators are essentially the generators of strongly continuous one parameter groups of surjective isometries. The knowledge of the surjective isometries defines naturally a class of operators containing the hermitian operators. In particular, we will show that bounded hermitian operators on $\mathcal{B}_{0}(\triangle, E)$ are in a one-to-one correspondence with the bounded hermitian operators of the range space. Another class of operators considered here and directly linked to surjective isometries are the generalized bi-circular projections, introduced in [20]. These projections have been studied and characterized in a variety of spaces. In most known cases, generalized bi-circular projections can be expressed as the average of the identity with an isometric reflection, see for example [10], [11], [26] and also [30]. In the last section of this paper, we extend this representation to generalized bi-circular projections on this new collection of spaces.

Throughout this paper, we assume that the range space E is a smooth, strictly convex and reflexive Banach space, however some results hold under weaker conditions.

Given a Banach space X, X_{1}^{*} denotes the unit ball of its dual space, and $\operatorname{ext}\left(X_{1}^{*}\right)$ denotes the set of extreme points of X_{1}^{*}.

2. Extreme points of $\mathcal{B}_{0}(\triangle, E)_{1}^{*}$

We consider the following embedding of $\mathcal{B}_{0}(\triangle, E)$ into $\mathcal{C}_{0}(\triangle, E)$

$$
\begin{aligned}
\Phi: \mathcal{B}_{0}(\triangle, E) & \rightarrow \mathcal{C}_{0}(\triangle, E), \\
f & \rightarrow F=\Phi(f): \triangle \rightarrow E,
\end{aligned}
$$

given by $\Phi(f)(z)=\left(1-|z|^{2}\right) f^{\prime}(z)$. The map Φ is a linear isometry onto a closed subspace of $\mathcal{C}_{0}(\triangle, E)$, denoted by \mathcal{Y}. We recall that $\mathcal{C}_{0}(\triangle, E)$ is the set of all E-valued continuous functions defined on \triangle such that $\lim _{|z| \rightarrow 1} F(z)=0$.

A result due to Brosowski and Deutsch (see [19], Corollary 2.3.6) implies that extreme points of the unit ball of the dual space of \mathcal{Y} are functionals of the form $e^{\star} \delta_{z}$, with $e^{\star} \in \operatorname{ext}\left(E_{1}^{*}\right), z \in \triangle$ and $\delta_{z}: \mathcal{B}_{0}(\triangle, E) \rightarrow E$ the evaluation $\operatorname{map} \delta_{z}(f)=f(z)$.

We now show that all such functionals are extreme points of \mathcal{Y}_{1}^{*}. We observe that the smoothness and reflexivity assumption on E implies that E^{*} is strictly convex and then every norm 1 functional in E^{*} is an extreme point of E_{1}^{*}. Furthermore, the smoothness and the reflexivity of E implies that for every unit vector v in E, there exists a unique functional v^{*} in E_{1}^{*}, such that $v^{*}(v)=1$.

Lemma 2.1. A functional τ is an extreme point of \mathcal{Y}_{1}^{*} if and only if $\tau=$ $e^{*} \delta_{z}$, with $e^{*} \in \operatorname{ext}\left(E_{1}^{*}\right)$ and $z \in \triangle$.

Proof. We refer the reader to Corollary 2.3.6 in [19] which states that $\operatorname{ext}\left(\mathcal{Y}_{1}^{*}\right) \subset\left\{e^{*} \delta_{z}: e^{*} \in \operatorname{ext}\left(E_{1}^{*}\right)\right.$, and $\left.z \in \triangle\right\}$. Given $z_{0} \in \triangle$ and $e^{*} \in \operatorname{ext}\left(E_{1}^{*}\right)$ we show that $e^{*} \delta_{z_{0}}$ is an extreme point of \mathcal{Y}_{1}^{*}. We assume otherwise, then

$$
\begin{equation*}
e^{*} \delta_{z_{0}}=\frac{\varphi_{1}+\varphi_{2}}{2} \tag{1}
\end{equation*}
$$

for φ_{1} and φ_{2} in \mathcal{Y}_{1}^{*}.
Since \mathcal{Y} is a closed subspace of $\mathcal{C}_{0}(\triangle, E)$, the Hahn-Banach theorem implies the existence of extensions of φ_{1} and φ_{2}, to $\mathcal{C}_{0}(\triangle, E)$. These functionals are written as

$$
\tilde{\varphi}_{1}(F)=\int_{\triangle} F d \nu^{*} \quad \text { and } \quad \tilde{\varphi_{2}}(F)=\int_{\triangle} F d \mu^{*}
$$

with ν^{*} and μ^{*} representing regular vector valued Borel measures on \triangle with values on E^{*}.

We consider the function in $\mathcal{B}_{0}(\triangle, E)$

$$
f_{0}(z)=\frac{\left(1-\left|z_{0}\right|^{2}\right) z}{1-\overline{z_{0}} z} e
$$

with $e \in E$ such that $e^{*}(e)=1$. Furthermore, $\sup _{|z|<1}\left(1-|z|^{2}\right)\left\|f_{0}^{\prime}(z)\right\|=$ $\left(1-\left|z_{0}\right|^{2}\right)\left\|f_{0}^{\prime}\left(z_{0}\right)\right\|$ and, for all $z \in \triangle \backslash\left\{z_{0}\right\}$,

$$
\left(1-|z|^{2}\right)\left\|f_{0}^{\prime}(z)\right\|<\left(1-\left|z_{0}\right|^{2}\right)\left\|f_{0}^{\prime}\left(z_{0}\right)\right\|=1
$$

We apply (1) to the function $F_{0}(z)=\left(1-|z|^{2}\right) f_{0}^{\prime}(z)$ to conclude that $\varphi_{1}\left(F_{0}\right)=$ $\varphi_{2}\left(F_{0}\right)=1$. If $\left|\nu^{*}\right|\left(\triangle \backslash\left\{z_{0}\right\}\right)>0$, then there exists a compact subset K of $\triangle \backslash\left\{z_{0}\right\}$ such that $\left|\nu^{*}\right|(K)>0$. Clearly,

$$
\sup _{z \in K}\left\|F_{0}(z)\right\|=\sup _{z \in K}\left(1-|z|^{2}\right)\left\|f_{0}^{\prime}(z)\right\|=\alpha<1
$$

Hence,

$$
\begin{aligned}
1 & =\tilde{\varphi}_{1}\left(F_{0}\right)=\left|\int_{\triangle} F_{0} d \nu^{*}\right|=\left|\int_{\left\{z_{0}\right\}} F_{0} d \nu^{*}+\int_{K} F_{0} d \nu^{*}+\int_{\left(\triangle \backslash\left\{z_{0}\right\}\right) \backslash K} F_{0} d \nu^{*}\right| \\
& \leq\left|\nu^{*}\right|\left(\left\{z_{0}\right\}\right)+\alpha\left|\nu^{*}\right|(K)+\left|\nu^{*}\right|\left(\left(\triangle \backslash\left\{z_{0}\right\}\right) \backslash K\right) \\
& <\left|\nu^{*}\right|(\triangle)=1
\end{aligned}
$$

This leads to an absurdity and shows that $\left|\nu^{*}\right|\left(\triangle \backslash\left\{z_{0}\right\}\right)=0$ and $\nu^{*}(\triangle \backslash$ $\left.\left\{z_{0}\right\}\right)=0$. This also implies that $\nu^{*}\left\{z_{0}\right\}$ is a norm one functional. A similar reasoning applies to μ^{*}. Given $F \in \mathcal{Y}$, we have

$$
\begin{aligned}
e^{*} \delta_{z_{0}}(F) & =\left(1-\left|z_{0}\right|^{2}\right) e^{*}\left(f^{\prime}\left(z_{0}\right)\right)=\frac{\tilde{\varphi_{1}}(F)+\tilde{\varphi_{2}}(F)}{2} \\
& =\frac{1}{2}\left(\int_{\left\{z_{0}\right\}} F d \nu^{*}+\int_{\left\{z_{0}\right\}} F d \mu^{*}\right) \\
& =\frac{1}{2}\left[\nu^{*}\left(z_{0}\right)\left(1-\left|z_{0}\right|^{2}\right) f^{\prime}\left(z_{0}\right)+\mu^{*}\left(z_{0}\right)\left(1-\left|z_{0}\right|^{2}\right) f^{\prime}\left(z_{0}\right)\right] .
\end{aligned}
$$

Therefore,

$$
e^{*}\left(f^{\prime}\left(z_{0}\right)\right)=\frac{\nu^{*}\left(z_{0}\right)\left(f^{\prime}\left(z_{0}\right)\right)+\mu^{*}\left(z_{0}\right)\left(f^{\prime}\left(z_{0}\right)\right)}{2}
$$

The strict convexity of the scalar field implies that $e^{*}\left(f^{\prime}\left(z_{0}\right)\right)=\nu^{*}\left(z_{0}\right) \times$ $\left(f^{\prime}\left(z_{0}\right)\right)=\mu^{*}\left(z_{0}\right)\left(f^{\prime}\left(z_{0}\right)\right)$. From the smoothness of E we have that $e^{*}=\nu^{*}=$ μ^{*} and $\varphi_{1}=\varphi_{2}$. This completes the proof.

The next corollary gives a description of the extreme points of $\mathcal{B}_{0}(\triangle, E)_{1}^{*}$.
Corollary 2.2. A functional $\tau \in \mathcal{B}_{0}(\triangle, E)_{1}^{*}$ is an extreme point if and only if $\tau(f)=e^{*}(\Phi(f)(z))$, with $z \in \triangle$ and $e^{*} \in \operatorname{ext}\left(E_{1}^{*}\right)$.

Proof. The isometry Φ induces the isometry $\Phi^{*}: \mathcal{Y}^{*} \rightarrow \mathcal{B}_{0}(\triangle, E)^{*}$, which defines a bijection between the corresponding sets of extreme points, consequently we have that $\Phi^{*}\left(e^{*} \delta_{z}\right) \in \operatorname{ext}\left(\mathcal{B}_{0}(\triangle, E)_{1}^{*}\right)$, with $e^{*} \delta_{z} \in \operatorname{ext}\left(\mathcal{Y}_{1}^{*}\right)$. Therefore,

$$
\Phi^{*}\left(e^{*} \delta_{z}\right)(f)=e^{*}(\Phi(f)(z))
$$

This completes the proof.
REmark 2.3. We observe that the function $f \rightarrow(f(0), f-f(0))$ defines a surjective isometry from $\mathcal{B}_{*}(\triangle, E)$ onto $E \oplus_{1} \mathcal{B}_{0}(\triangle, E)$.

It is well known $\left(\right.$ cf. [19]) that $\operatorname{ext}\left(\mathcal{B}_{*}(\triangle, E)_{1}^{*}\right)=\operatorname{ext}\left(E_{1}^{*} \oplus_{\infty}\left(\mathcal{B}_{0}(\triangle, E)_{1}^{*}\right)\right)$. Therefore, $\operatorname{ext}\left(\mathcal{B}_{*}(\triangle, E)_{1}^{*}\right)=\left\{\left(v^{*}, \tau\right): v^{*} \in \operatorname{ext}\left(E_{1}^{*}\right), \tau \in \operatorname{ext}\left(\mathcal{B}_{0}(\triangle, E)_{1}^{*}\right)\right.$ with $\left.\left(v^{*}, \tau\right)(f)=v^{*}(f(0))+\tau(f-f(0))\right\}$.

We recall that the assumptions on E imply that every norm one functional in E^{*} is an extreme point of E_{1}^{*}.

3. A characterization of the surjective isometries on $\mathcal{B}_{0}(\triangle, E)$

In this section, we show that surjective linear isometries on $\mathcal{B}_{0}(\triangle, E)$ are translations of weighted composition operators.

We consider a surjective linear isometry $T: \mathcal{B}_{0}(\triangle, E) \rightarrow \mathcal{B}_{0}(\triangle, E)$ and define $S: \mathcal{Y} \rightarrow \mathcal{Y}$ such that $S \circ \Phi=\Phi \circ T$. Hence, $S^{*}: \mathcal{Y}^{*} \rightarrow \mathcal{Y}^{*}$ induces a permutation of $\operatorname{ext}\left(\mathcal{Y}_{1}^{*}\right)$. Therefore, for every $u^{*} \in \operatorname{ext}\left(E_{1}^{*}\right)$ and $z \in \triangle$, there exist $v^{*} \in \operatorname{ext}\left(E_{1}^{*}\right)$ and $w \in \triangle$ such that

$$
S^{*}\left(u^{*} \delta_{z}\right)=v^{*} \delta_{w},
$$

equivalently we write

$$
\begin{equation*}
\left(1-|z|^{2}\right) u^{*}\left((T f)^{\prime}(z)\right)=\left(1-|w|^{2}\right) v^{*}\left(f^{\prime}(w)\right), \quad \text { for every } f \in \mathcal{B}_{0}(\triangle, E) \tag{2}
\end{equation*}
$$

Conceivably v^{*} and w depend on the choice of u^{*} and z, this determines the following two maps:

$$
\begin{aligned}
& \sigma: \triangle \times E_{1}^{*} \rightarrow \triangle, \quad \text { and } \quad \Gamma: \triangle \times E_{1}^{*} \rightarrow E_{1}^{*} \\
&\left(z, u^{*}\right) \rightarrow w, \\
&\left(z, u^{*}\right) \rightarrow v^{*} .
\end{aligned}
$$

In the next two lemmas, we show that σ is independent of the second coordinate and Γ is independent of the first.

Lemma 3.1. Let $z_{0} \in \triangle$ and $u_{0}^{*} \in E_{1}^{*}$. Then σ restricted to the set $\left\{\left(z_{0}, u^{*}\right): u^{*} \in E_{1}^{*}\right\}$ is constant and it induces a disc automorphism, also denoted by σ, defined by $\sigma(z)=\sigma\left(z, u_{0}^{*}\right)$.

Proof. We consider two distinct functionals in E_{1}^{*}, u^{*} and u_{1}^{*}, then we write

$$
\begin{equation*}
\left(1-\left|z_{0}\right|^{2}\right) u^{*}\left((T f)^{\prime}\left(z_{0}\right)\right)=\left(1-|w|^{2}\right) v^{*}\left(f^{\prime}(w)\right) \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(1-\left|z_{0}\right|^{2}\right) u_{1}^{*}\left((T f)^{\prime}\left(z_{0}\right)\right)=\left(1-\left|w_{1}\right|^{2}\right) v_{1}^{*}\left(f^{\prime}\left(w_{1}\right)\right) \tag{4}
\end{equation*}
$$

We consider $f_{0} \in \mathcal{B}_{0}(\triangle, E)$, given by $f_{0}(z)=z \cdot v$, with $v \in E$ such that $v^{*}(v)=1$. Applying equation (3) to f_{0} we obtain $u^{*}\left(\left(T f_{0}\right)^{\prime}\left(z_{0}\right)\right)=\frac{1-|w|^{2}}{1-\left|z_{0}\right|^{2}} \leq 1$ and $|w| \geq\left|z_{0}\right|$. Since T is surjective there exists $f \in \mathcal{B}_{0}(\triangle, E)$ such that $(T f)(z)=z \cdot u$, then equation (3) applied to this function f yields $\left(1-\left|z_{0}\right|^{2}\right)=$ $\left(1-|w|^{2}\right) v^{*}\left(f^{\prime}(w)\right)$. Hence, $\left(1-\left|z_{0}\right|^{2}\right) \leq\left(1-|w|^{2}\right)$ or $|w| \leq\left|z_{0}\right|$. Therefore, $|w|=\left|z_{0}\right|$. A similar argument using (4) implies that $\left|w_{1}\right|=\left|z_{0}\right|$ and $|w|=\left|w_{1}\right|$. If $w \neq w_{1}$, then we select a norm 1 function f_{1} such that $f_{1}^{\prime}(w)=v$ and $f_{1}^{\prime}\left(w_{1}\right)=v_{1}$. The equations in (3) and (4) applied to f_{1} yield

$$
u^{*}\left[\left(T f_{1}\right)^{\prime}\left(z_{0}\right)\right]=u_{1}^{*}\left[\left(T f_{1}\right)^{\prime}\left(z_{0}\right)\right]=1
$$

It follows from the smoothness of E_{1}^{*} that $u^{*}=u_{1}^{*}$. Therefore,

$$
\begin{equation*}
v^{*}\left(f^{\prime}(w)\right)=v_{1}^{*}\left(f^{\prime}\left(w_{1}\right)\right), \quad \text { for every } f \in \mathcal{B}_{0}(\triangle, E) \tag{5}
\end{equation*}
$$

This implies that $v^{*}=v_{1}^{*}$ and $f^{\prime}(w)=f^{\prime}\left(w_{1}\right)$, for every $f \in \mathcal{B}_{0}(\triangle, E)$. This contradiction implies that σ only depends on the value of the first coordinate.

Thus it induces a map (also denoted by σ) on the open disc. Since T is a surjective isometry the same reasoning applied to the inverse implies that σ is bijective.

We now show that σ is analytic. We apply the equation (2) to the functions $f_{0}(z)=\frac{z^{2}}{2} v$ and $f_{1}(z)=z v$ to obtain the following:

$$
\left(1-|z|^{2}\right) u^{*}\left[\left(T f_{0}\right)^{\prime}(z)\right]=\left(1-|\sigma(z)|^{2}\right) v^{*}\left(f_{0}^{\prime}(\sigma(z))\right)
$$

and

$$
\left(1-|z|^{2}\right) u^{*}\left[\left(T f_{1}\right)^{\prime}(z)\right]=\left(1-|\sigma(z)|^{2}\right) .
$$

For every $z \in \triangle$, we have $u^{*}\left[\left(T f_{1}\right)^{\prime}(z)\right] \neq 0$. Therefore

$$
\sigma(z)=\frac{u^{*}\left[\left(T f_{0}\right)^{\prime}(z)\right]}{u^{*}\left[\left(T f_{1}\right)^{\prime}(z)\right]}
$$

This shows that σ is analytic and then a disc automorphism.
A disc automorphism σ is a bijective and analytic map on the open disc. It is of the form $\sigma(z)=\lambda \frac{z-z_{0}}{1-\overline{z_{0}} z}$, with λ a modulus one complex number and $z_{0} \in \triangle$. The derivative $\sigma^{\prime}(z)=\lambda \frac{1-\left|z_{0}\right|^{2}}{\left(1-z_{0} z\right)^{2}}$. It is a straightforward calculation to check that $\left|\sigma^{\prime}(z)\right|=\frac{1-|\sigma(z)|^{2}}{1-|z|^{2}}$.

Lemma 3.2. If $u^{*} \in E_{1}^{*}$, then Γ restricted to the set $\left\{\left(z, u^{*}\right): z \in \triangle\right\}$ is constant.

Proof. The equation displayed in (2) is rewritten as

$$
\begin{aligned}
& \left(1-|z|^{2}\right) u^{*}\left[(T f)^{\prime}(z)\right] \\
& \quad=\left(1-|\sigma(z)|^{2}\right) \Gamma\left(u^{*}, z\right)\left[f^{\prime}(\sigma(z))\right], \quad \forall f \in \mathcal{B}_{0}(\triangle, E) \text { and } z \in \triangle
\end{aligned}
$$

Therefore, we get

$$
u^{*}\left[(T f)^{\prime}(z)\right]=\frac{\left|\sigma^{\prime}(z)\right|}{\sigma^{\prime}(z)} \Gamma\left(u^{*}, z\right)\left[(f \circ \sigma)^{\prime}(z)\right], \quad \forall f \in \mathcal{B}_{0}(\triangle, E)
$$

since $\frac{1-|\sigma(z)|^{2}}{1-|z|^{2}} \sigma^{\prime}(z)=\left|\sigma^{\prime}(z)\right|$.
Equivalently, we write

$$
\frac{u^{*}\left[(T f)^{\prime}(z)\right]}{\Gamma\left(u^{*}, z\right)\left[(f \circ \sigma)^{\prime}(z)\right]}=\frac{\left|\sigma^{\prime}(z)\right|}{\sigma^{\prime}(z)} .
$$

Thus the left-hand side is independent of the choice of u^{*} and f. Further, $\frac{\left|\sigma^{\prime}(z)\right|}{\sigma^{\prime}(z)}$ is analytic on the open disc because $z \rightarrow \frac{u^{*}\left[(T f)^{\prime}(z)\right]}{\Gamma\left(u^{*}, z\right)\left[(f \circ \sigma)^{\prime}(z)\right]}$ is analytic. An application of the Maximum Modulus Principle asserts that $\frac{\left|\sigma^{\prime}(z)\right|}{\sigma^{\prime}(z)}$ is constant, i.e. $\frac{\left|\sigma^{\prime}(z)\right|}{\sigma^{\prime}(z)}=e^{i \alpha}$, for every z in the disc.

Then

$$
\begin{equation*}
u^{*}\left[(T f)^{\prime}(z)\right]=e^{i \alpha} \Gamma\left(u^{*}, z\right)\left[(f \circ \sigma)^{\prime}(z)\right], \quad \forall z \in \triangle . \tag{6}
\end{equation*}
$$

We set $v_{z}^{*}=\Gamma\left(u^{*}, z\right)$, for every $z \in \triangle$. Since T is surjective, let f be such that $(T f)(z)=e^{i \alpha} z u$, then $(f \circ \sigma)^{\prime}(z)=v_{z}$. The map $z \rightarrow(f \circ \sigma)^{\prime}(z)$ is analytic, this means for every bounded functional, τ in $E^{*}, z \rightarrow \tau\left((f \circ \sigma)^{\prime}(z)\right)$ is analytic. In particular, given $z_{0} \in \triangle, z \rightarrow v_{z_{0}}^{*}\left((f \circ \sigma)^{\prime}(z)\right)$ is analytic and attains a maximum value at z_{0}. This implies that $\Gamma\left(u^{*}, z\right)$ is constant.

Thus, Γ restricted to $\left\{\left(z, u^{*}\right): z \in \triangle\right\}$ is constant.
Remark 3.3. The previous lemma implies that Γ induces a mapping from E_{1}^{*} onto E_{1}^{*}, which for simplicity it will also be denoted by Γ.

We collect some useful properties of Γ. First $\Gamma\left(\lambda u^{*}\right)=\lambda \Gamma\left(u^{*}\right)$, with λ a modulus 1 complex number. Then, for every scalar λ, we set $\Gamma\left(\lambda u^{*}\right)=$ $\lambda \Gamma\left(u^{*}\right)$. If we set $v_{1}^{*}=\Gamma\left(u_{1}^{*}\right), v_{2}^{*}=\Gamma\left(u_{2}^{*}\right)$ and $v^{*}=\Gamma\left(\frac{u_{1}^{*}+u_{2}^{*}}{\left\|u_{1}^{*}+u_{2}^{*}\right\|}\right)$, then for every $f \in \mathcal{B}_{0}(\triangle, E)$ and $z \in \triangle$,

$$
\begin{aligned}
\left(1-|z|^{2}\right) \frac{u_{1}^{*}+u_{2}^{*}}{\left\|u_{1}^{*}+u_{2}^{*}\right\|}\left[(T f)^{\prime}(z)\right] & =\left(1-|\sigma(z)|^{2}\right) v^{*}\left[f^{\prime}(\sigma(z))\right] \\
& =\frac{1}{\left\|u_{1}^{*}+u_{2}^{*}\right\|}\left(1-|\sigma(z)|^{2}\right)\left[v_{1}^{*}+v_{2}^{*}\right]\left[f^{\prime}(\sigma(z))\right] .
\end{aligned}
$$

This implies that $v^{*}=\frac{v_{1}^{*}+v_{2}^{*}}{\left\|u_{1}^{*}+u_{2}^{*}\right\|}$, or equivalently

$$
\Gamma\left(\frac{u_{1}^{*}+u_{2}^{*}}{\left\|u_{1}^{*}+u_{2}^{*}\right\|}\right)=\frac{1}{\left\|u_{1}^{*}+u_{2}^{*}\right\|}\left(\Gamma\left(u_{1}^{*}\right)+\Gamma\left(u_{2}^{*}\right)\right) .
$$

Hence, we extend Γ to a linear map $\Gamma: E^{*} \rightarrow E^{*}$. We notice that given two distinct functionals u_{1}^{*} and u_{2}^{*} we set $\Gamma\left(\frac{u_{1}^{*}-u_{2}^{*}}{\left\|u_{1}^{*}-u_{2}^{*}\right\|}\right)=w^{*}$. Therefore, $\Gamma\left(u_{1}^{*}\right)-$ $\Gamma\left(u_{2}^{*}\right)=\left\|u_{1}^{*}-u_{2}^{*}\right\| w^{*}$ and

$$
\left\|\Gamma\left(u_{1}^{*}\right)-\Gamma\left(u_{2}^{*}\right)\right\| \leq\left\|u_{1}^{*}-u_{2}^{*}\right\| .
$$

As in [12] (see p. 60) we employ the following result due to G. Ding from [16], see also [15].

Theorem 3.4. Let E and F be two real Banach spaces. Suppose V_{0} is a Lipschitz mapping from E_{1} into F_{1} (the respective unit spheres) with Lipschitz constant equal to 1 , that is $\left\|V_{0}(x)-V_{0}(y)\right\| \leq\|x-y\|$, for every x, y in E_{1}. Assume also that V_{0} is a surjective mapping such that for any $x, y \in E_{1}$ and $r>0$, we have

$$
\left\|V_{0}(x)-r V_{0}(y)\right\| \wedge\left\|V_{0}(x)+r V_{0}(-y)\right\| \leq\|x-r y\|
$$

and $\left\|V_{0}(x)-V_{0}(-x)\right\|=2$. Then V_{0} can be extended to be a real linear isometry from E onto F.

Since Γ satisfies the conditions set in the Theorem 3.4, this assures the existence of a surjective real linear isometry from $E^{*} \rightarrow E^{*}$ that extends Γ. For simplicity of notation, we denote this extension also by Γ. We observe that the complex linearity of the isometry T implies that of Γ. Since E is
reflexive then the adjoint of Γ induces a surjective linear isometry on E, we call this isometry V, therefore we have

$$
u^{*}\left((T f)^{\prime}(z)\right)=u^{*}\left(V(f \circ \sigma)^{\prime}(z)\right)
$$

for every $u^{*} \in E^{*}, f \in \mathcal{B}_{0}(\triangle, E)$ and $z \in \triangle$. This implies that $(T f)^{\prime}(z)=$ $V(f \circ \sigma)^{\prime}(z)$. A straightforward integration yields

$$
T f(z)=V[(f \circ \sigma)(z)-(f \circ \sigma)(0)], \quad \forall f \in \mathcal{B}_{0}(\triangle, E), \text { and } z \in \triangle
$$

We summarize these considerations in the following theorem.
Theorem 3.5. Let E be a smooth, strictly convex and reflexive complex Banach space. Then $T: \mathcal{B}_{0}(\triangle, E) \rightarrow \mathcal{B}_{0}(\triangle, E)$ is a surjective linear isometry if and only if there exist a surjective linear isometry $V: E \rightarrow E$ and a disc automorphism σ such that for every $f \in \mathcal{B}_{0}(\triangle, E)$ and $z \in \triangle$,

$$
T f(z)=V[(f \circ \sigma)(z)-(f \circ \sigma)(0)]
$$

Proof. The necessity follows from previous considerations. We now show the sufficiency, that is, any mapping of the form described in the theorem is indeed a surjective isometry. Such an operator is bijective, with inverse $T^{-1} f(z)=V^{-1}\left[f\left(\sigma^{-1}(z)\right)-f\left(\sigma^{-1}(0)\right)\right]$. We now show that $T f(x)=V[(f \circ$ $\sigma)(x)-(f \circ \sigma)(0)$], with σ a disc automorphism and V a surjective isometry on E, is an isometry. We have

$$
\begin{aligned}
\|T f\|_{\mathcal{B}_{0}(\triangle, E)} & =\sup _{z \in \triangle}\left(1-|z|^{2}\right)\left\|\sigma^{\prime}(z) V\left(f^{\prime}(\sigma(z))\right)\right\| \\
& =\sup _{z \in \triangle}\left(1-|z|^{2}\right)\left|\sigma^{\prime}(z)\right|\left\|f^{\prime}(\sigma(z))\right\|
\end{aligned}
$$

We set $w=\sigma(z)$, then if $\sigma(z)=\lambda \frac{z-a}{1-\bar{a} z}$ we have $\sigma^{-1}(w)=\frac{\lambda a+w}{\lambda+\bar{a} w}$. Therefore

$$
\begin{aligned}
\left(1-|z|^{2}\right)\left|\sigma^{\prime}(z)\right| & =\frac{\left(1-|a|^{2}\right)}{\left|1-\bar{a} \frac{w+\lambda a}{\lambda+\bar{a} w}\right|^{2}}\left(1-\left|\frac{w+\lambda a}{\lambda+\bar{a} w}\right|^{2}\right) \\
& =\left(1-|w|^{2}\right)
\end{aligned}
$$

This implies that $\|T f\|_{\mathcal{B}_{0}(\Delta, E)}=\|f\|_{\mathcal{B}_{0}(\Delta, E)}$ and completes the proof.

4. Hermitian operators

In this section, we use the form of the surjective isometries to derive information about the hermitian operators on $\mathcal{B}_{0}(\triangle, E)$, see [2] and [3]. An operator A is hermitian if and only if $i A$ is the generator of a strongly continuous one-parameter group of surjective isometries, see [17]. We recall that bounded hermitian operators give rise to uniformly continuous one-parameter groups of surjective isometries.

We consider one-parameter group of surjective isometries on $\mathcal{B}_{0}(\triangle, E)$, Theorem 3.5 implies that each isometry determines both a disc automorphism and a surjective isometry on E. The next proposition states that the
group properties of the underlying group of isometries transfer to the defining families.

Proposition 4.1. Let E be a smooth, strictly convex and reflexive complex Banach space, then $\left\{T_{t}\right\}_{t \in \mathbb{R}}$ is a one parameter group of surjective isometries on $\mathcal{B}_{0}(\triangle, E)$ if and only if there exist a one parameter group of disc automorphisms $\left\{\sigma_{t}\right\}_{t \in \mathbb{R}}$ and one parameter group of surjective isometries on E, $\left\{V_{t}\right\}_{t \in \mathbb{R}}$ such that

$$
T_{t}(f)(z)=V_{t}\left[f\left(\sigma_{t}(z)\right)-f\left(\sigma_{t}(0)\right)\right], \quad \forall f \in \mathcal{B}_{0}(\triangle, E)
$$

Proof. Let $\left\{T_{t}\right\}_{t \in \mathbb{R}}$ be a one parameter group of surjective isometries on $\mathcal{B}_{0}(\triangle, E)$. If $T_{0}=I$ we have

$$
V_{0}\left[f \circ \sigma_{0}-f\left(\sigma_{0}(0)\right)\right]=f, \quad \forall f \in \mathcal{B}_{0}(\triangle, E)
$$

For $f_{1}(z)=z v$ and $f_{2}(z)=z^{2} v$, with v a unit vector in E, we obtain

$$
\begin{aligned}
{\left[\sigma_{0}(z)-\sigma_{0}(0)\right] V_{0}(v) } & =z v \\
{\left[\sigma_{0}(z)^{2}-\sigma_{0}(0)^{2}\right] V_{0}(v) } & =z^{2} v
\end{aligned}
$$

This implies that $\left[\sigma_{0}(z)+\sigma_{0}(0)\right] z v=z^{2} v$ and $\sigma_{0}(z)+\sigma_{0}(0)=z$, for every $z \in \triangle \backslash\{0\}$. The continuity of σ_{0} implies that $\sigma_{0}(z)+\sigma_{0}(0)=z$, for every $z \in \triangle$. If $z=0$ then $\sigma_{0}(0)=0$ and $\sigma_{0}(z)=z$. Given t and s in \mathbb{R}, we have $T_{t+s}(f)=T_{t}\left[T_{s}(f)\right]$, then

$$
\begin{aligned}
T_{t}\left[T_{s}(f)\right] & =V_{t}\left[T_{s}(f) \circ \sigma_{t}-T_{s}(f)\left(\sigma_{t}(0)\right)\right] \\
& =V_{t}\left\{V_{s}\left[f\left(\sigma_{s} \circ \sigma_{t}\right)-f\left(\sigma_{s}(0)\right)\right]-V_{s}\left[f\left(\sigma_{s} \circ \sigma_{t}\right)(0)-f\left(\sigma_{s}(0)\right)\right]\right\} \\
& =V_{t} V_{s}\left(f\left(\sigma_{s} \circ \sigma_{t}\right)-f\left(\sigma_{s}\left(\sigma_{t}(0)\right)\right)\right)
\end{aligned}
$$

On the other hand, $T_{t+s}(f)=V_{t+s}\left[f \circ \sigma_{t+s}-f\left(\sigma_{t+s}(0)\right)\right]$. Hence,

$$
\begin{align*}
& V_{t+s}\left[f \circ \sigma_{t+s}-f\left(\sigma_{t+s}(0)\right)\right] \tag{*}\\
& \quad=V_{t} V_{s}\left(f\left(\sigma_{s} \circ \sigma_{t}\right)-f\left(\sigma_{s}\left(\sigma_{t}(0)\right)\right)\right), \quad \forall f \in \mathcal{B}_{0}(\triangle, E)
\end{align*}
$$

In particular, for f_{1} and f_{2} defined above, we have

$$
\begin{aligned}
{\left[V_{t} V_{s} v\right]\left[\left(\sigma_{s} \circ \sigma_{t}\right)(z)-\left(\sigma_{s} \circ \sigma_{t}\right)(0)\right] } & =V_{t+s} v\left[\sigma_{s+t}(z)-\sigma_{t+s}(0)\right] \\
{\left[V_{t} V_{s} v\right]\left[\left(\sigma_{s} \circ \sigma_{t}\right)(z)^{2}-\left(\sigma_{s} \circ \sigma_{t}\right)(0)^{2}\right] } & =V_{t+s} v\left[\sigma_{s+t}(z)^{2}-\sigma_{t+s}(0)^{2}\right] .
\end{aligned}
$$

Therefore,

$$
\left[\left(\sigma_{s} \circ \sigma_{t}\right)(z)+\left(\sigma_{s} \circ \sigma_{t}\right)(0)\right]\left[\sigma_{s+t}(z)-\sigma_{t+s}(0)\right]=\sigma_{s+t}(z)^{2}-\sigma_{t+s}(0)^{2}
$$

For $z \neq 0$, we have that

$$
\left(\sigma_{s} \circ \sigma_{t}\right)(z)+\left(\sigma_{s} \circ \sigma_{t}\right)(0)=\sigma_{s+t}(z)+\sigma_{t+s}(0)
$$

Since all functions are continuous

$$
\left(\sigma_{s} \circ \sigma_{t}\right)(z)+\left(\sigma_{s} \circ \sigma_{t}\right)(0)=\sigma_{s+t}(z)+\sigma_{t+s}(0), \quad \forall z \in \triangle
$$

For $z=0$, we have $\left(\sigma_{s} \circ \sigma_{t}\right)(0)=\sigma_{t+s}(0)$. Then $\sigma_{s} \circ \sigma_{t}=\sigma_{s+t}$ and from $(*)$ we conclude that $V_{t} V_{s}=V_{t+s}$. The converse implication follows from straightforward calculations. This concludes the proof.

The next result addresses the question of whether the strong continuity of a one-parameter group of surjective isometries $\left\{T_{t}\right\}_{t \in \mathbb{R}}$ also transfers to the defining symbols.

Proposition 4.2. Let E be a smooth, strictly convex and reflexive complex Banach space. If $\left\{T_{t}\right\}_{t \in \mathbb{R}}$ is a strongly continuous one parameter group of surjective isometries on $\mathcal{B}_{0}(\triangle, E)$, then there exist a strongly continuous one parameter group of surjective isometries on $E,\left\{V_{t}\right\}_{t \in \mathbb{R}}$ and a continuous one parameter group of disc automorphisms $\left\{\sigma_{t}\right\}_{t \in \mathbb{R}}$ such that

$$
T_{t}(f)(z)=V_{t}\left(f\left(\sigma_{t}(z)\right)-f\left(\sigma_{t}(0)\right)\right), \quad \forall f \in \mathcal{B}_{0}(\triangle, E) \forall z \in \triangle .
$$

Proof. Proposition 4.1 implies the existence of one parameter groups of surjective isometries on E and disc automorphisms, $\left\{S_{t}\right\}$ and $\left\{\sigma_{t}\right\}$ respectively, such that

$$
T_{t}(f)(z)=V_{t}\left(f\left(\sigma_{t}(z)\right)-f\left(\sigma_{t}(0)\right)\right), \quad \forall f \in \mathcal{B}_{0}(\triangle, E) \forall z \in \triangle
$$

Since $\left\{T_{t}\right\}_{t \in \mathbb{R}}$ is strongly continuous, in particular for $f_{1}(z)=z \mathbf{v}, f_{2}(z)=z^{2} \mathbf{v}$ and $f_{3}(z)=z^{3} \mathbf{v}\left(\mathbf{v} \in E_{1}, z \in \triangle\right.$ and $i=1,2$, or 3) we have

$$
\left\|\left[\sigma_{t}(z)^{i}-\sigma_{t}(0)^{i}\right] V_{t}(\mathbf{v})-z^{i} \mathbf{v}\right\| \rightarrow 0 \quad \text { as } t \rightarrow 0
$$

Given $z_{0} \neq 0$, and $\varphi \in E_{1}^{*}$ such that $\varphi(\mathbf{v})=1$,

$$
\begin{aligned}
\lim _{t \rightarrow 0}\left[\sigma_{t}\left(z_{0}\right)-\sigma_{t}(0)\right] \varphi\left(V_{t}(\mathbf{v})\right) & =z_{0} \quad \text { and } \\
\lim _{t \rightarrow 0}\left[\sigma_{t}\left(z_{0}\right)^{2}-\sigma_{t}(0)^{2}\right] \varphi\left(V_{t}(\mathbf{v})\right) & =z_{0}^{2}
\end{aligned}
$$

implies that

$$
\begin{equation*}
\lim _{t \rightarrow 0}\left(\sigma_{t}\left(z_{0}\right)+\sigma_{t}(0)\right)=z_{0} \tag{7}
\end{equation*}
$$

Also

$$
\begin{aligned}
\lim _{t \rightarrow 0}\left[\sigma_{t}\left(z_{0}\right)-\sigma_{t}(0)\right] \varphi\left(V_{t}(\mathbf{v})\right) & =z_{0} \quad \text { and } \\
\lim _{t \rightarrow 0}\left[\sigma_{t}\left(z_{0}\right)^{3}-\sigma_{t}(0)^{3}\right] \varphi\left(V_{t}(\mathbf{v})\right) & =z_{0}^{3}
\end{aligned}
$$

implies

$$
\begin{equation*}
\lim _{t \rightarrow 0}\left(\sigma_{t}\left(z_{0}\right)^{2}+\sigma_{t}\left(z_{0}\right) \sigma_{t}(0)+\sigma_{t}(0)^{2}\right)=z_{0}^{2} \tag{8}
\end{equation*}
$$

It follows from (7) and (8) that $\lim _{t \rightarrow 0} \sigma_{t}\left(z_{0}\right) \sigma_{t}(0)=0$. This implies that $\lim _{t \rightarrow 0} \sigma_{t}(0)=0$, otherwise there exists a sequence $\left\{t_{n}\right\}$ such that $\sigma_{t_{n}}(0)$ would converges to some complex number $w(\neq 0)$ in the closed disc. Hence, for every $z_{0} \neq 0\left\{\sigma_{t_{n}}\left(z_{0}\right)\right\}_{n}$ converges to zero and $w=z_{0}$. This leads to an absurdity
and proves that $\lim _{t \rightarrow 0} \sigma_{t}(0)=0$ and $\lim _{t \rightarrow 0} \sigma_{t}\left(z_{0}\right)=z_{0}$. This establishes the continuity of $\left\{\sigma_{t}\right\}$. For $z_{0} \neq 0$,

$$
\lim _{t \rightarrow 0} \frac{\left[\sigma_{t}\left(z_{0}\right)-\sigma_{t}(0)\right] V_{t}(\mathbf{v})}{\sigma_{t}\left(z_{0}\right)-\sigma_{t}(0)}=\frac{z_{0} \mathbf{v}}{z_{0}}=\mathbf{v}
$$

which completes the proof.
Corollary 4.3. Let E be a smooth, strictly convex and reflexive complex Banach space. If A is a (not necessarily bounded) hermitian operator on $\mathcal{B}_{0}(\triangle, E)$, then there exist a hermitian operator (not necessarily bounded) V on E and a continuous group of disc automorphisms $\left\{\sigma_{t}\right\}_{t \in \mathbb{R}}$ such that

$$
A(f)(z)=V[f(z)]+\left[\partial_{t} \sigma_{t}(z)\right]_{t=0} f^{\prime}(z)
$$

If A is bounded then $\left\{\sigma_{t}\right\}_{t \in \mathbb{R}}$ is the trivial group and $A(f)(z)=V[f(z)]$, with V bounded.

Nontrivial disc automorphisms can be extended to conformal maps on the plane and as such, they are characterized according to their fixed points. More precisely, they fall into three types: an elliptic automorphism has a single fixed point in the disc and another one in the interior of its complement; a hyperbolic automorphism has two distinct fixed points on the boundary of the disc and a parabolic has a single fixed point on the boundary of the disc, cf. [27] and [29].

It has been shown that all disc automorphisms of a nontrivial oneparameter group family of disc automorphisms share the same fixed points, cf. [5] and also [6]. Thus, we consider the following three cases:
(i) Elliptic.

$$
\varphi_{t}(z)=\frac{\left(e^{i c t}-|\tau|^{2}\right) z-\tau\left(e^{i c t}-1\right)}{1-|\tau|^{2} e^{i c t}-\bar{\tau}\left(1-e^{i c t}\right) z}
$$

with $c \in \mathbb{R} \backslash\{0\}, \tau \in \mathbb{C}$ such that $|\tau|<1$.
(ii) Hyperbolic.

$$
\varphi_{t}(z)=\frac{\left(\beta e^{c t}-\alpha\right) z+\alpha \beta\left(1-e^{c t}\right)}{\left(e^{c t}-1\right) z+\left(\beta-\alpha e^{c t}\right)}
$$

with c a positive real number, $|\alpha|=|\beta|=1$ and $\alpha \neq \beta$.
(iii) Parabolic.

$$
\varphi_{t}(z)=\frac{(1-i c t) z+i c t \alpha}{-i c \bar{\alpha} t z+1+i c t}
$$

with $c \in R \backslash\{0\}$ and $|\alpha|=1$.
In [4], Berkson, Kaufman and Porta show the existence of an invariant polynomial associated with one parameter group of disc automorphisms

$$
\varphi_{t}(z)=a(t) \frac{z-b(t)}{1-\overline{b(t)} z}
$$

with $|a(t)|=1$ and $|b(t)|<1$. This polynomial is given by

$$
P(z)=\overline{b^{\prime}(0)} z^{2}+a^{\prime}(0) z-b^{\prime}(0)
$$

It is a straightforward computation to check that

$$
\left.\partial_{t} \varphi_{t}(z)\right|_{t=0}=P(z) \quad \text { and }\left.\quad \partial_{t} \varphi_{t}^{\prime}(z)\right|_{t=0}=P^{\prime}(z)
$$

The invariant polynomial for each of the three types of nontrivial disc automorphisms is given by:
(i) Elliptic. $P(z)=-\frac{i c}{1-|\tau|^{2}}\{(\bar{\tau} z-1)(z-\tau)\}(|\tau|<1)$.
(ii) Hyperbolic. $P(z)=-\frac{c}{\beta-\alpha}\left\{z^{2}-(\alpha+\beta) z+\alpha \beta\right\}(|\alpha|=|\beta|=1$ and $\alpha \neq \beta)$.
(iii) Parabolic. $P(z)=i \bar{\alpha} c(z-\alpha)^{2}(c \in R \backslash\{0\}$ and $|\alpha|=1)$.

Since hermitian operators are generators of strongly continuous one-parameter groups of surjective isometries we derive a representation for the $\mathcal{B}_{0}(\triangle, E)$ setting.

Proposition 4.4. Let E be a smooth, strictly convex and reflexive complex Banach space. If a closed operator A with domain $\mathcal{D}(A)$, a dense subset of $\mathcal{B}_{0}(\triangle, E)$ is hermitian then there exists a closed and densely defined hermitian operator V on E and a nonzero real number c, and complex numbers τ, α and β such that $|\tau|<1$ and $|\alpha|=|\beta|=1$ and one of the following holds:
(1) $A(f)(z)=V(f(z)), f \in \mathcal{B}_{0}(\triangle, E)$ and $z \in \triangle$.
(2) $A(f)(z)=V(f(z))+\frac{c}{1-|\tau|^{2}}\{(\bar{\tau} z-1)(z-\tau)\} f^{\prime}(z), f \in \mathcal{D}(A)$ and $z \in \triangle$.
(3) $A(f)(z)=V(f(z))-i \frac{|c|}{\beta-\alpha}\left\{z^{2}-(\alpha+\beta) z+\alpha \beta\right\} f^{\prime}(z), f \in \mathcal{D}(A)$ and $z \in \triangle$.
(4) $A(f)(z)=V(f(z))-\bar{\alpha} c(z-\alpha)^{2} f^{\prime}(z), f \in \mathcal{D}(A)$ and $z \in \triangle$.

Proof. Given a hermitian operator A satisfying the conditions stated, then $\left\{e^{-i t A}\right\}_{t \in \mathbb{R}}$ is a strongly continuous one-parameter group of surjective isometries on $\mathcal{B}_{0}(\triangle, E)$. Theorem 3.5 applies to assert the existence of a strongly continuous one-parameter group of surjective isometries on $E,\left\{V_{t}\right\}_{t \in \mathbb{R}}$ and a continuous group of disc automorphisms $\left\{\sigma_{t}\right\}_{t \in \mathbb{R}}$ such that

$$
e^{-i t A}(f)(z)=V_{t}\left(f\left(\sigma_{t}(z)\right)-f\left(\sigma_{t}(0)\right)\right), \quad \forall f \in \mathcal{D}(A)
$$

We denote by V the generator of $\left\{V_{t}\right\}_{t \in \mathbb{R}}$ then

$$
A(f)(z)=V(f(z))-\left.i \partial_{t}\left(\sigma_{t}^{\prime}(z)\right)\right|_{t=0} f^{\prime}(z), \quad \forall f \in \mathcal{D}(A)
$$

The considerations in the preamble to the proposition justify the three last cases listed. If $\sigma_{t}(z)=z$ for all t, then $\partial_{t}\left(\sigma_{t}^{\prime}(z)\right)=0$ and $A(f)(z)=$ $V(f(z)), f \in \mathcal{B}_{0}(\triangle, E)$ and $z \in \triangle$. This completes the proof.

Remark 4.5. In the scalar case, $\mathcal{B}(\triangle)$ is known be a Grothendieck space with the Dunford-Pettis property (see [28]). As a consequence of this fact Blasco et. al. in [7] (see also [8]) showed that all strongly continuous groups on $\mathcal{B}(\triangle)$ are uniformly continuous. Therefore only the trivial group of disc automorphisms is permissible (i.e., $\left\{\sigma_{t}\right\}=\{i d\}$) and the hermitian operators
are just real multiples of the identity. This is in contrast with our case because of the following example. Suppose $E=\ell_{2}, \sigma_{t}(z)=z$ and set

$$
T_{t}(f)(z)=\left(e^{i t} f_{1}(z), e^{2 i t} f_{2}(z), \ldots\right)
$$

This is a family of strongly continuous surjective isometries but not uniformly continuous. The generator of this group is given by

$$
A f(z)=\left(f_{1}(z), 2 f_{2}(z), 3 f_{3}(z), \ldots\right)
$$

which is clearly an unbounded operator.
We also have the following characterization for bounded hermitian operators on $\mathcal{B}_{0}(\triangle, E)$.

Corollary 4.6. Let E be a smooth, strictly convex and reflexive complex Banach space. If A is a bounded hermitian operator on $\mathcal{B}_{0}(\triangle, E)$ then there exists a bounded hermitian operator V on E such that

$$
A(f)(z)=V(f(z)), \quad \forall f \in \mathcal{B}_{0}(\triangle, E) \text { and } z \in \triangle
$$

Proof. The operator A is of one of the forms listed in the Proposition 4.4, the sequence of functions $f_{n}(z)=z^{n} \mathbf{v}$, with \mathbf{v} a unit vector in E, are in $\mathcal{B}_{0}(\triangle, E)$. Thus, the respective sequence of norms is uniformly bounded and $\|A f\|$ is unbounded. This implies that $\left.\sigma_{t}^{\prime}(z)\right|_{t=0}=0$ and $\sigma_{t}(z)=z$. This completes the proof.

Remark 4.7. It is a known fact that Banach spaces with the Grothendieck property and the Dunford-Pettits property only support bounded hermitian operators, see [7], [28]. The little Bloch scalar valued space, $\mathcal{B}_{0}(\triangle)$ has these two properties (cf. [28]) and thus every hermitian operator on $\mathcal{B}(\triangle)$ is bounded. This implies that if a hermitian operator A on $\mathcal{B}_{0}(\triangle, E)$ with an eigenspace containing one dimensional subspace $\left\{h(z) v: h \in \mathcal{B}(\triangle), v \in E_{1}\right\}$ then A is of the form $A(f)(z)=V f(z)$.

Corollary 4.6 allows us to extend our characterization to surjective isometries of $\mathcal{B}_{*}(\triangle, E)$. As pointed out in Remark $2.3, \mathcal{B}_{*}(\triangle, E)$ is isometrically isomorphic to the ℓ_{1}-sum of E with $\mathcal{B}_{0}(\triangle, E)$. Moreover, if E does not admit L_{1}-projections (i.e. a bounded hermitian operator P on E such that $P^{2}=P$ and for every $\left.v \in E,\|v\|_{E}=\|P v\|_{E}+\|(I-P) v\|_{E}\right)$ then also $\mathcal{B}_{0}(\triangle, E)$ does not admit L_{1}-projections. In fact, assuming P represents a L_{1}-projection on $\mathcal{B}_{0}(\triangle, E)$, Corollary 4.6 implies that $P(f)(z)=V(f(z))$, with V a bounded hermitian projection on E. Therefore $P(h \mathbf{v})(z)=h(z) V \mathbf{v}$, for $h \in \mathcal{B}_{0}(\triangle)$. In particular for $h(z)=z,\|\mathbf{v}\|=\|V \mathbf{v}\|+\|(I-V) \mathbf{v}\|$ which implies that E supports L_{1}-projections.

We employ Proposition 4.3 in [24], a surjective isometry on $\mathcal{B}_{*}(\triangle, E)$ can be written as a direct sum of a surjective isometry on E and a surjective isometry on $\mathcal{B}_{0}(\triangle, E)$. Therefore, a surjective isometry T on $\mathcal{B}_{*}(\triangle, E)$ is given by

$$
T(f)(z)=U f(0)+V[(f \circ \sigma)(x)-(f \circ \sigma)(0)]
$$

with σ a disc automorphism, U and V surjective isometries on E. We summarize these considerations in the next result.

Theorem 4.8. Let E be a smooth, strictly convex and reflexive complex Banach space. Then $T: \mathcal{B}_{*}(\triangle, E) \rightarrow \mathcal{B}_{*}(\triangle, E)$ is a surjective linear isometry if and only if there exist surjective linear isometries on E, U and V, and a disc automorphism σ such that, for every $f \in \mathcal{B}_{*}(\triangle, E)$ and $z \in \triangle$,

$$
T f(z)=U[f(0)]+V[f(\sigma(z))-f(\sigma(0))]
$$

The next corollary extends the results stated in Propositions 4.1 and 4.2 to $\mathcal{B}_{*}(\triangle, E)$.

Corollary 4.9. Let E be a smooth, strictly convex and reflexive complex Banach space. Then $\left\{T_{t}\right\}_{t \in \mathbb{R}}$ is a strongly continuous one parameter group of surjective isometries on $\mathcal{B}_{*}(\triangle, E)$ if and only if there exist a continuous one parameter group of disc automorphisms $\left\{\sigma_{t}\right\}_{t \in \mathbb{R}}$ and strongly continuous one parameter groups of surjective isometries on $E,\left\{U_{t}\right\}_{t \in \mathbb{R}}$ and $\left\{V_{t}\right\}_{t \in \mathbb{R}}$ such that

$$
T_{t}(f)(z)=U_{t}(f(0))+V_{t}\left(f\left(\sigma_{t}(z)\right)-f\left(\sigma_{t}(0)\right)\right), \quad \forall f \in \mathcal{B}_{0}(\triangle, E) \forall z \in \triangle
$$

Proof. Since E is a smooth and strictly convex complex Banach space, it does not support L_{1}-projections, Theorem 4.8 applies and for each $t \in \mathbb{R}$,

$$
T_{t}(f)(z)=U_{t}(f(0))+V_{t}\left(f\left(\sigma_{t}(z)\right)-f\left(\sigma_{t}(0)\right)\right), \quad \forall f \in \mathcal{B}_{0}(\triangle, E) \forall z \in \triangle .
$$

The proof given for Proposition 4.2 shows that $\left\{\sigma_{t}\right\}_{t \in \mathbb{R}}$ is a one parameter group of disc automorphisms and $\left\{S_{t}\right\}_{t \in \mathbb{R}}$ is a strongly continuous one parameter group of surjective isometries on E. Then by considering constant functions we also derive that $\left\{U_{t}\right\}_{t \in \mathbb{R}}$ is a strongly continuous one parameter group of surjective isometries on E. The converse implies follows from straightforward computations.

Corollary 4.10. Let E be a Hilbert space. If A is a not necessarily bounded) hermitian operator on $\mathcal{B}_{*}(\triangle, E)$, then there exist hermitian operators (not necessarily bounded) U and V on E and a continuous group of disc automorphisms $\left\{\sigma_{t}\right\}_{t \in \mathbb{R}}$ such that

$$
A(f)(z)=U[f(0)]+V[f(z)]+\left[\partial_{t} \sigma_{t}(z)\right]_{t=0} f^{\prime}(z)
$$

If A is bounded then $A(f)(z)=U[f(0)]+V[f(z)]$, with U and V bounded.

5. Generalized bi-circular projections

In this section, we characterize the generalized bi-circular projections on $\mathcal{B}_{0}(\triangle, E)$. We recall that a generalized bi-circular projection P satisfies $P^{2}=$ P and $P+\lambda(I-P)=T$ with T a surjective isometry and λ a modulus 1 complex number different from 1, [20]. We refer the reader to the following
papers for additional information about this type of projections, [10], [11], [20] and [26].

A straightforward computation yields the following algebraic equation $T^{2}-$ $(\lambda+1) T+\lambda I=0$.

THEOREM 5.1. Let E be a smooth and strictly convex complex Banach space. Then P is a generalized bi-circular projection on $\mathcal{B}_{0}(\triangle, E)$ if and only if there exists an isometric reflection T (i.e. $T^{2}=I$) such that

$$
P=\frac{I+T}{2} .
$$

Proof. If P is a generalized bi-circular projection, then $P+\lambda(I-P)=T$ with $\lambda \in \mathbb{T} \backslash\{1\}$ and T a surjective isometry. An application of Theorem 3.5 implies that there exist a surjective linear isometry $V: E \rightarrow E$ and a disc automorphism σ such that for every $f \in \mathcal{B}_{0}(\triangle, E)$ and $z \in \triangle$

$$
T f(z)=V[(f \circ \sigma)(z)-(f \circ \sigma)(0)]
$$

The automorphism σ is of the form $\sigma(z)=\mu \frac{z-\alpha}{1-\bar{\alpha} z}$ with $\mu \in \mathbb{T}$ and $|\alpha|<1$. The condition $P^{2}=P$ implies that $T^{2}-(\lambda+1) T+\lambda I=0$. Therefore, we have

$$
\begin{align*}
& V^{2}[f((\sigma \circ \sigma)(z))-f((\sigma \circ \sigma)(0))] \tag{9}\\
& \quad-(\lambda+1) V[f((\sigma)(z))-f((\sigma)(0))]+\lambda f(z)=0
\end{align*}
$$

for every $f \in \mathcal{B}_{0}(\triangle, E)$ and $z \in \triangle$. By differentiating (9), we obtain

$$
\begin{align*}
& V^{2}\left[f^{\prime}((\sigma \circ \sigma)(z)) \sigma^{\prime}(\sigma(z)) \sigma^{\prime}(z)\right] \tag{10}\\
& \quad-(\lambda+1) V\left[f^{\prime}((\sigma)(z)) \sigma^{\prime}(z)\right]+\lambda f^{\prime}(z)=0
\end{align*}
$$

The equation displayed in (10) applied to $f(z)=\frac{z^{2}}{2} \mathbf{v}$ (with \mathbf{v} a vector in E of norm 1) and with $z=\alpha$ yields

$$
V^{2} \mathbf{v}=\frac{\lambda}{\mu^{3}} \mathbf{v}
$$

Applying (10) to $f(z)=\frac{z^{2}}{2} \mathbf{v}$ and setting $z=0$, we obtain
$\left(V^{2} \mathbf{v}\right) \mu^{3} \frac{-\mu \alpha-\alpha}{1+\mu|\alpha|^{2}} \frac{1-|\alpha|^{2}}{\left(1+\mu|\alpha|^{2}\right)^{2}}\left(1-|\alpha|^{2}\right)-(V \mathbf{v})(\lambda+1)(-\mu \alpha) \mu\left(1-|\alpha|^{2}\right)=0$.
We assume that $\lambda \neq-1$, then straightforward calculations show that

$$
\begin{equation*}
V=\frac{\lambda(\mu+1)\left(1-|\alpha|^{2}\right)}{(\lambda+1) \mu^{2}\left(1+\mu|\alpha|^{2}\right)^{3}} I \tag{11}
\end{equation*}
$$

This last equation implies that $\mu \neq-1$. Once more, applying equation (10) to $f(z)=z \mathbf{v}$ and setting $z=\alpha$ we obtain

$$
\begin{equation*}
V=\frac{\lambda(\mu+1)\left(1-|\alpha|^{2}\right)}{\mu^{2}(\lambda+1)} I \tag{12}
\end{equation*}
$$

From (11) and (12), we derive $\left(1+\mu|\alpha|^{2}\right)^{3}=1$. This leads to $1+\mu|\alpha|^{2}=1$, $1+\mu|\alpha|^{2}=\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}$ or $1+\mu|\alpha|^{2}=\cos \frac{2 \pi}{3}+i \sin \frac{2 \pi}{3}$. It is easy to show that only the first equation leads to the solution $\alpha=0$. Therefore, $V=\frac{\lambda(\mu+1)}{(\lambda+1) \mu^{2}} I$ and $\sigma(z)=\mu z$. Since V is an isometry the $|\mu+1|=|\lambda+1|$, and thus $\mu=\lambda$ or $\lambda=\bar{\mu}$.

We consider two cases.

1. If $\lambda=\mu$, then $V=\bar{\lambda} I$ and equation (9) applied to $f(z)=z \mathbf{v}$ implies

$$
\lambda^{4}-\lambda(\lambda+1)+\lambda=0
$$

and thus $\lambda=1$. This is impossible.
2. If $\lambda=\bar{\mu}$, then $V=\bar{\mu}^{2} I$. We differentiate equation (9) and applied to $f(z)=z^{3} \mathbf{v}$ to obtain

$$
\mu^{4}-(\mu+1) \mu^{2}+\mu=0
$$

This equation has solutions ± 1. Either case leads to a contradiction since we have assumed that $\lambda \neq-1$.

This contradiction shows that $\lambda=-1$ and (10) reduces to

$$
\begin{equation*}
V^{2}\left[f^{\prime}((\sigma \circ \sigma)(z)) \sigma^{\prime}(\sigma(z)) \sigma^{\prime}(z)\right]=f^{\prime}(z) \tag{13}
\end{equation*}
$$

which applied to $f(z)=\frac{z^{2}}{2} \mathbf{v}$ with $z=\alpha$ yields

$$
\left(V^{2} \mathbf{v}\right)\left(-\mu^{3} \alpha\right)=\alpha \mathbf{v}
$$

Therefore, $V^{2}=-\bar{\mu}^{3} I$.
The equation (13) applied to $f(z)=z \mathbf{v}$ and $z=\alpha$ gives

$$
-\bar{\mu}^{3} \sigma^{\prime}(0) \sigma^{\prime}(\alpha)=1
$$

Therefore, $\mu=-1$ and $V^{2}=I$. We also have $\sigma \circ \sigma(z)=z$. Therefore, $T^{2}=I$ and proves that P is the average of the identity operator with a reflection. The reverse implication is clear.

A generalized bi-circular projection P on $\mathcal{B}_{*}(\triangle, E)$ is given

$$
P=\frac{1}{1-\lambda}(T-\lambda I)
$$

with T a surjective isometry on $\mathcal{B}_{*}(\triangle, E)$ and λ a modulus 1 scalar different from 1. Theorem 4.8 implies the existence of surjective isometries on E, U and V, also a disc automorphism σ such that $T(f)(z)=U(f(0))+V[f(\sigma(z))-$ $f(\sigma(0))]$.

The form for the surjective isometries on $\mathcal{B}_{*}(\triangle, E)$ implies that P leaves invariant the subspace of all constant functions and also $\mathcal{B}_{0}(\triangle, E)$. Applying Theorem 5.1, we conclude that the restriction of P to $\mathcal{B}_{0}(\triangle, E)$ is the average of I with an isometric reflection on $\mathcal{B}_{0}(\triangle, E)$, thus $V^{2}=I$ and $\sigma^{2}=\mathrm{id}_{\triangle}$. Therefore, P is the average of the identity on $\mathcal{B}_{*}(\triangle, E)$ with a surjective isometry T. Since $T=2 P-I$ is such that $T^{2}=I$, then generalized bi-circular
projections on $\mathcal{B}_{*}(\triangle, E)$ are the average of the identity operator with an isometric reflection.

Acknowledgment. We would like to express our great appreciation to the referee for a careful reading and very helpful suggestions for the improvement of the manuscript.

References

[1] E. Behrends and P. Greim, A note on the paper "Hermitian operators on $C(X, E)$ and the Banach-Stone theorem" by R. Fleming and J. Jamison, Math. Z. 175 (1980), 299. MR 0602642
[2] E. Berkson and H. Porta, Hermitian operators and one parameter groups in Hardy spaces, Trans. Amer. Math. Soc. 185 (1973), 373-391. MR 0338833
[3] E. Berkson and A. Sourour, The Hermitian operators on some Banach spaces, Studia Math. 52 (1974), 33-41. MR 0355668
[4] E. Berkson, R. Kaufman and H. Porta, Möbius transformations of the disc and oneparameter groups of isometries of H^{p}, Trans. Amer. Math. Soc. 199 (1974), 223-239. MR 0361923
[5] E. Berkson and H. Porta, One-parameter groups of isometries on Hardy spaces of the torus, Trans. Amer. Math. Soc. 220 (1976), 373-391. MR 0417855
[6] E. Berkson and H. Porta, One-parameter groups of isometries on Hardy spaces of the torus: Spectral theory, Trans. Amer. Math. Soc. 227 (1977), 357-370. MR 0451035
[7] O. Blasco, M. Contreras, S. Diaz-Madrigal, J. Martinez and A. Siskakis, Semigroups of composition operators in BMOA and the extension of a theorem of Sarason, Integral Equations and Operator Theory 61 (2008), 45-62. MR 2414439
[8] O. Blasco, M. Contreras, S. Diaz-Madrigal, J. Martinez, M. Papadimitrakis and A. Siskakis, Semigroups of composition operators and integral operators in spaces of analytic functions, Ann. Acad. Sci. Fenn. Math. 38 (2013), no. 1, 67-89. MR 3076799
[9] F. Botelho, R. Fleming and J. Jamison, Extreme points and isometries on vectorvalued Lipschitz spaces, J. Math. Anal. Appl. 381 (2011), 821-832. MR 2802117
[10] F. Botelho and J. Jamison, Generalized bi-circular projections on spaces of analytic functions, Acta Sci. Math. (Szeged) 75 (2009), no. 3-4, 527-546. MR 2590348
[11] F. Botelho and J. Jamison, Generalized bi-circular projections on $\mathcal{C}(\Omega, X)$, Rocky Mountain J. Math. 40 (2010), no. 1, 77-83. MR 2607109
[12] F. Botelho, J. Jamison and B. Zheng, Isometries on spaces of vector-valued Lipschitz functions, Positivity 17 (2013), no. 1, 47-65. MR 3027645
[13] B. Brosowski and F. Deustch, Geometric properties of sums, J. Approx. Theory 10 (1974), 245-267. MR 0358180
[14] J. Cima and W. Wogen, On isometries of the Bloch space, Illinois J. Math. 24 (1980), no. 2, 313-316. MR 0575069
[15] G. Ding, The 1-Lipschitz mappings between the unit spheres of two Hilbert spaces can be extended to a real linear isometry of the whole space, Sci. China Ser. A 45 (2001), no. 4, 479-483. MR 1912120
[16] L. Li and R. Liu, On the isometric extension problem: A survey, Tamsui Oxf. J. Inf. Math. Sci. 24 (2008), no. 4, 339-354. MR 2503701
[17] K.-J. Engel and R. Nagel, A short course on operator semigroups, Universitext, Springer, New York, 2006. MR 2229872
[18] R. Fleming and J. Jamison, Hermitian operators on $C(X, E)$ and the Banach-Stone theorem, Math. Z. 170 (1980), no. 1, 77-84. MR 0558889
[19] R. Fleming and J. Jamison, Isometries on Banach spaces: Function spaces, Chapman \& Hall/CRC, Boca Raton, FL, 2003. MR 1957004
[20] M. Fosner, D. Ilisevic and C. Li, G-invariant norms and bicircular projections, Linear Algebra Appl. 420 (2007), no. 2-3, 596-608. MR 2278235
[21] K. Hoffman, Banach spaces of analytic functions, Dover Publ, Inc., New York, 1962. MR 0133008
[22] W. Hornor and J. E. Jamison, Isometries of some Banach spaces of analytic functions, Integral Equations Operator Theory 41 (2001), 410-425. MR 1857800
[23] J. E. Jamison, Bicircular projections on some Banach spaces, Linear Algebra Appl. 420 (2007), 29-33. MR 2277626
[24] J. E. Jamison, Isometric equivalence of certain operators on Banach spaces, Integral Equations Operator Theory 56 (2006), 469-482. MR 2284711
[25] K. Jarosz, Isometries in semisimple, commutative Banach algebras, Proc. Amer. Math. Soc. 94 (1985), 65-71. MR 0781058
[26] R. King, Generalized bi-circular projections on certain Hardy spaces, J. Math. Anal. Appl. 408 (2013), no. 1, 35-39. MR 3079944
[27] S. Krantz, Complex analysis: The geometric viewpoint, The Carus Mathematical Monographs, vol. 23, Math. Assoc. Amer., Washington, DC, 1990. MR 1074176
[28] H. P. Lotz, Uniform convergence of operators on L^{∞} and similar spaces, Math. Z. 190 (1985), 207-220. MR 0797538
[29] J. E. Marsden, Basic complex analysis, W. H. Freeman and Company, San Francisco, CA, 1973. MR 0352419
[30] L. L. Stachó and B. Zalar, Bicircular projections on some matrix and operator spaces, Linear Algebra Appl. 384 (2004), 21-42. MR 2055340
[31] I. Vidav, Eine metrische Kennzeichnung der selb-adjungierten operatoren, Math. Z. 66 (1956), 121-128. MR 0084733
[32] I. Vidav, Spectra of perturbed semigroups with applications to transport theory, J. Math. Anal. Appl. 30 (1970), 264-279. MR 0259662

Fernanda Botelho, Department of Mathematical Sciences, The University of Memphis, Memphis, TN 38152, USA

E-mail address: mbotelho@memphis.edu
James Jamison, Department of Mathematical Sciences, The University of Memphis, Memphis, TN 38152, USA

E-mail address: jjamison@memphis.edu

