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REPRODUCING KERNEL HILBERT SPACES GENERATED
BY THE BINOMIAL COEFFICIENTS

DANIEL ALPAY AND PALLE JORGENSEN

Abstract. We study a reproducing kernel Hilbert space of func-
tions defined on the positive integers and associated to the bino-
mial coefficients. We introduce two transforms, which allow us

to develop a related harmonic analysis in this Hilbert space. Fi-
nally, we mention connections with the theory of discrete analytic
functions, statistics, and with the quantum case.

1. Introduction

We show that the binomial coefficients form an orthonormal basis (ONB)
in a naturally formed reproducing kernel Hilbert space H(K). We find explicit
properties and formulas for the kernel, and we identify two pairs of transforms,
again with explicit formulas. With the binomial functions forming an ONB in
H(K), one naturally then gets transforms as isometric isomorphisms between
H(K) and �2(Z+). We write down two such transforms, and for each we
compute its inverse. Our work is motivated by applications to discrete analytic
functions [2]. This is followed up here, and we outline additional applications
to combinatorial probability theory. In [2], we introduce a product (in the
sense of hypergroups [12]) in spaces of discrete analytic functions. We use
our present transforms for computing this product. In the last section, as a
corollary to Theorem 7.3, we establish a significant statistical property for
our one-parameter family of kernels Kλ, as well as for the corresponding
spectral transforms: we show for each kernel within our family of kernels Kλ

there is a probability space; hence, an associated indexed family of probability
spaces (Ω,F , Pλ). We prove that as the value of the parameter λ vary, the
corresponding measures Pλ are mutually singular. For readers not familiar
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with reproducing kernels, we suggest [1], [3], [15], [16], [17]. For a sample of
references to combinatorial probability, see, for example, [13], [14], [19].

Motivated by our previous work on discrete analytic functions [2], we study
a reproducing kernel space of functions from Z+ = {0,1,2, . . .} into R associ-
ated to the binomial coefficients.

We study the reproducing kernel Hilbert space (RKHS) H(K) generated by
the kernel K(x, y) consisting of the numbers in the Pascal triangle, that is, for
every (x, y) in Z+ × Z+, set K(x, y) = ( x+y

x ). Using the Chu–Vandermonde
formula, one sees that K(x, y) is positive definite in the sense of kernel theory,
hence the RKHS. We study a number of analytic features of H(K): We find
families of orthonormal bases in H(K), and we prove associated transform
theorems. Moreover, we compute these transforms explicitly, making use of
infinite square matrices of upper and lower triangular form. We further show
that our transforms facilitate analysis on H(K). We further sketch a one-
parameter deformation family with application.

In the remaining part of this section, we give results characterizing vectors
in their respective reproducing kernel Hilbert spaces; see Theorem 1.1.

Definitions. Let for x,n ∈ Z+ such that n≤ x

(1.1)

(
x
n

)
=

x(x− 1) · · · (x− n+ 1)

n!

the binomial coefficient. We set

(1.2) en(x) =

{
0, if x < n,

( xn ) =
x(x−1)···(x−n+1)

n! , if x≥ n,

and

(1.3) K(x, y) =
∞∑

n=0

en(x)en(y) =

(
x+ y
x

)
, x, y ∈ Z+.

The sum (1.3) is always finite and well defined, and defines a positive definite
function on Z+.

Using the Chu–Vandermonde formula (see, for instance, [18, formula (10),
p. 217])

(1.4)

(
x+ y
t

)
=

t∑
k=0

(
x
k

)(
y

t− k

)
(with t, x, y ∈N0 and t≤ y) one can rewrite K(x, y) as

(1.5) K(x, y) =

x∧y∑
n=0

(
x
n

)(
y
n

)
,
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or, equivalently,

(1.6) K(x, y) =

x∧y∑
n=0

x[n]y[n]

(n!)2
,

where we have set

(1.7) x[n] = x(x− 1) · · · (x− n+ 1).

Writing the kernel K(x, y) as an infinite matrix K, we note that we have

(1.8) K = LL∗,

where L denote the following infinite lower triangular matrix consisting of the
binomial coefficients

(1.9) L=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 · · · · 0 · · ·
1 1 0 0 0 0 0 · · · · 0 · · ·
1 2 1 0 0 0 0 · · · · 0 · · ·
1 3 3 1 0 0 0 · · · · 0 · · ·
1 4 6 4 1 0 0 · · · · 0 · · ·
...

...
1 n (n2 ) · · · (n2 ) n 1 0 0 · · · 0 · · ·
1 n+ 1 (n+1

2 ) · · · (n+1
2 ) n+ 1 1 0 · · · 0 · · ·

...
...

...
...

...
... 1

...
...

...
...

...
...

...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

We denote by H(K) the reproducing kernel of real valued functions with
domain Z+ and with reproducing kernel K(x, y). This latter space consists
of all functions of the form

(1.10) g(x) =

∞∑
n=0

anen(x),

where the an ∈R, and with norm

(1.11) ‖g‖2H(K) =

∞∑
n=0

a2n.

See [17, Corollary 4, p. 169].
It follows from (1.8) that we have:

Theorem 1.1. Let f ∈R
Z+ . Then,

(1.12)
∑
x∈Z+

K(·, x)f(x) ∈H(K) ⇐⇒ L∗f ∈ �2(Z+).
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Organization. The paper consists of seven sections besides the Introduction,
and its outline is as follows: In Section 2, we review some results on bino-
mial coefficients. Sections 3–4 contain the main results of the paper, on the
above mentioned transforms. The first transform, which we call the binomial
Fourier transform, and its inverse, are studied in Section 3. A natural isomor-
phism between H(K) and the Hardy space H2(D) is defined in that section.
The following two sections, Section 4 is devoted to the second transform. In
Section 5, we study some links with the theory of discrete analytic functions.
In Section 6, we considered the case of q-binomial coefficients. We present
some applications in the last section.

2. Some formulas for binomial coefficients

In this section, we establish some duality relations for the binomial func-
tions in (1.2), beginning with Lemma 2.1. This lemma in turn will be used in
our results from Sections 3 through 4 dealing with the two transforms. The
transforms throw light on the RKHS of the binomial functions, but they also
imply new formulas for these functions, linear relations (Theorem 3.3), and
their use in the study of discrete analytic functions (Section 5).

We make the following summation convention. In computations below,
we will be using summations over index-values in finite or infinite subsets of
Z+ = {0,1,2, . . .}; in some cases, multiple summations inside a single com-
putation. These summations will then always entail ranges over summation
indices x, y, k,n, . . . which are limited by choice of segments in Z+; and the
respective summations will be specified by the segment-endpoints.

Lemma 2.1. Let m,n ∈ Z+ be such that m≤ n. Then,

(2.1)

n∑
j=m

(−1)m+j

(
n
j

)(
j
m

)
= δm,n.

Proof. The result is clear when m= n. Let us assume now m<n. We first
note that (

n
j

)(
j
m

)
=

n!

(n− j)!j!

j!

(j −m)!m!
(2.2)

=
n!

(n− j)!(j −m)!m!

=
n!

(n−m)!m!

(n−m)!

(n− j)!(j −m)!

=

(
n
m

)(
n−m
j −m

)
.
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Hence,

n∑
j=m

(−1)m+j

(
n
j

)(
j
m

)
=

n∑
j=m

(−1)m+j

(
n
m

)(
n−m
j −m

)
(2.3)

=

(
n
m

) n∑
j=m

(−1)m+j

(
n−m
j −m

)
and setting �= j −m,

=

(
n
m

)n−m∑
�=0

(−1)�
(
n−m

�

)
=

(
n
m

)
(1− 1)n−m

= 0. �

The following result is a corollary of Lemma 2.1, and plays an important
role in the study of the �-transform. See Theorem 3.6 below.

Theorem 2.2. Let K(�,m) be defined by (1.5). Then it holds that:

(2.4)
n∑

�=0

(−1)n+�

(
n
�

)
K(�,m) =

{
(mn ), if m≥ n,

0, if m<n.

Proof. By the definition of K, we have

n∑
�=0

(−1)n+�

(
n
�

)
K(�,m) =

n∑
�=0

m∧�∑
j=0

(−1)n+�

(
n
�

)(
m
j

)(
�
j

)

=

n∧m∑
j=0

(
m
j

)(
n∑

�=j

(−1)n+�

(
n
�

)(
�
j

))

and, applying Lemma 2.1

=
n∧m∑
j=0

(
m
j

)
δj,n

=

{
(mn ), if m≥ n,

0, if m<n. �

Lemma 2.3. Let K(x, y) be defined by (1.5). Then it holds that:

K(x,x) =
x∑

n=0

(
x
n

)2

=

(
2x
x

)
= ex(2x),(2.5)
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∣∣K(x, y)
∣∣ ≤K(x,x)1/2K(y, y)1/2 =

((
2x
x

)(
2y
y

))1/2

.(2.6)

Proof. The first claim follows from setting x= y in (1.5). The second claim
follows from the Cauchy–Schwarz inequality, since K is positive definite. �

3. The binomial Fourier transform

In this section, we introduce the first family of transforms. We then use
them in order to characterize functions on Z+ belonging to H(K), their prop-
erties, both analytic and algebraic. For example in Theorem 3.3, we give
a natural isomorphism between H(K) and the Hardy space of the disk. In
Theorem 3.14, we show that the orthonornal vectors en in H(K) from (1.2)
generate an algebra, or rather a hypergroup. See [12].

The definition of the �-transform does not need the hypothesis that the
sequence is in �2(Z+), and is as follows:

Definition 3.1. Let f be a function from Z+ into R. The binomial Fourier
transform of f is defined by

(3.1) f�(x) =
x∑

j=0

(
x
j

)
f(j), x= 0,1,2, . . . .

Thus,

f�(x) = f(0) + xf(1) +
x(x− 1)

2
f(2) +

x(x− 1)(x− 2)

6
f(3) + · · ·(3.2)

=
∞∑

n=0

f(n)en(x).

The sums in (3.1) are finite, and f� exists for every function from Z+

into R. We note that (3.1) can be written as

(3.3) f� = Lf = L(1)f,

where L(λ) is defined in Section 7 below by (7.3).
The image of the function f(j) ≡ 0 is the zero function. The image of

f(j) = (−1)j is the function

(3.4) f�(x) = δ0,x

while the image of f(j) = 1 is f�(x) = 2x.
Another example of interest is:

Example 3.2. Let fa(j) = a∗j , where a ∈C. Then,

(3.5) f�(x) =
∞∑

n=0

a∗nen(x)
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is given by

(3.6) f�
a (x) =

x∑
j=0

(
x
j

)
a∗j =

(
1 + a∗

)x
, x= 0,1,2, . . . .

Let now H2(D) denote the Hardy space of complex-valued functions f(z) =∑∞
n=0 anz

n analytic in the open unit disk and such that

(3.7) ‖f‖22 :=
∞∑

n=0

|an|2 <∞.

We define a map ψ from the complexified of H(K) into H2(D) by

(3.8) ψ(en) = zn.

Theorem 3.3. The map ψ is unitary from the complexified of H(K) onto
the Hardy space H2(D). Moreover, it associates to the function fa : x 
→ (1 +
a∗)x, x ∈ Z+ the function z 
→ 1

1−za∗ , z ∈D. In particular, for a, b in the open
unit disk D

(3.9)
〈
f�
a , f

�
b

〉
H(K)

=
1

1− a∗b
.

Proof. The map is unitary since it maps an orthonormal basis onto an
orthonormal basis. The claim on the image of the sequence fa follows from
(3.6) and (3.5). Finally, (3.9) follows from the unitarity of ψ, the formula

(3.10)
1

1− za∗
=

∞∑
n=0

zna∗n

and the definition of the inner product of H2(D). �
The next proposition is used to prove that the map � is unitary from �2(Z+)

onto H(K). See Theorem 3.6.

Proposition 3.4. Let en defined by (1.2), and let

(3.11) ẽn(m) = (−1)n+men(m), and δn(m) = δn,m.

Then

(3.12) δ�
n = en and (ẽn)

� = δn.

Proof. The first claim follows from the definition of en. As for the second
claim, we have:

(ẽn)
�(m) =

m∑
j=0

(
m
j

)
(−1)n+jen(j)

=

{
0, if m<n (since en(j) = 0 for j < n)∑m

j=n(
m
j )( j

n )(−1)n+j , if m≥ n.

We conclude by using Lemma 2.1 to compute this last sum. �
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It follows from (3.9) that most, if not all, the problems considered in H2(D)
can be transposed in a natural way in the space H(K).

We now define the function εn(j) = ej(n). Thus, (εn(j)) can be identified
with the finitely nonzero sequence of �2(Z+) whose nonzero terms are the first
n+ 1 terms given by (nj ), j = 0, . . . , n.

Lemma 3.5. Let n,m ∈ Z+. Then,(
ε�
n

)
(x) =K(x,n),(3.13)

〈εn, εm〉�2(Z+) =
〈
K(·, n),K(·,m)

〉
H(K)

.(3.14)

Proof. By definition of the transform,

(3.15)
(
ε�
n

)
(x) =

x∑
j=0

(
x
j

)
εn(j) =

x∧n∑
j=0

(
x
j

)(
n
j

)
=K(x,n),

and so (3.13) holds. To prove (3.14), it suffices to notice that

〈εn, εm〉�2(Z+) =

n∧m∑
j=0

(
n
j

)(
m
j

)
=K(n,m).(3.16)

�

Theorem 3.6. The map f 
→ f� defines a unitary mapping from �2(Z+)
onto H(K), and its inverse is given by either formulas

(3.17) g� =

∞∑
n=0

an(−1)nδn for g =

∞∑
n=0

anen ∈H(K),

or

(3.18) g�(n) =
n∑

�=0

(
n
�

)
g(�)(−1)�−n.

We note that (3.18) can be rewritten as

(3.19) g� = L(−1)g,

where L(λ) is defined by (7.3) below.

Proof of Theorem 3.6. We present two proofs. The first is based on Propo-
sition 3.4. Let

(3.20) f =
N∑

n=0

anδn

be a real valued function on Z+ with finite support. Then,

(3.21) f� =
N∑

n=0

anen ∈H(K),
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and

(3.22)
∥∥f�∥∥2

H(K)
= ‖f‖2�2(Z+) =

N∑
n=0

a2n.

The result follows by taking limits.
The second proof uses Lemma 3.5. The functions ε0, ε1, . . . span a dense

set of �2(Z+), and therefore (3.14) extends to an isometry. The isometry is
onto since the kernels span a dense set of H(K). Therefore the transform f�

is unitary. To prove its inverse is given by (3.18), we note that (2.4) can be
rewritten as

(3.23)
(
K�

m

)
(n) = εm(n), n ∈ Z+. �

As a corollary of the above, the next results offer an answer to the following
question: Given a function f on Z+, when does f belong to the reproducing
kernel Hilbert space H(K) with reproducing kernel (1.5)?

Corollary 3.7. Let f : Z+ −→R be a function, and set

(3.24) f�(x) =
x∑

�=0

(
x
�

)
f(�)(−1)�−x.

Then, f ∈H(K) if and only if the transform x 
→ f�(x) is in �2(Z+).

Proof. In Theorem 3.6, we proved that if f ∈H(K) then its transform f�

belongs to �2(Z+). In fact the transform is an isometric isomorphism of H(K)
onto �2(Z+).

We turn to the converse: Let f be a fixed function such that f� ∈ �2(Z+).
Recall (see Theorem 2.2) that

(3.25) en(x) =

n∑
j=0

(−1)j+n

(
n
j

)
Kj(x).

Since the functions en form an orthonormal basis of H(K), we conclude that

(3.26) F :=
∞∑

n=0

f�(n)en ∈H(K),

and moreover,

(3.27) 〈F, en〉H(K) = f�(n), ∀n ∈ Z+.

Using (3.25) again, together with the reproducing kernel property for F we
conclude that

f(x) = F (x), ∀x ∈ Z+,

and so f ∈H(K) as claimed. �
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Definition 3.8. For f : Z+ −→ R we define the following Hurwitz trans-
formation:

(3.28) f 
→H(f)(z) =

∞∑
x=0

f(x)

x!
zx = ez

∞∑
n=0

f�(n)
n!

zn,

where z ∈C is a generating function variable.

That the two expressions for H(f) coincide can be checked as follows. For
n= 0,1, . . . we have the convolution expression:

(3.29)
f�(n)zn

n!
=

n∑
x=0

f(x)zx

x!
· (−1)n−xzn−x

(n− x)!
.

The result follows from the theorem on the coefficients of a product of power
series.

We have the following corollary to Corollary 3.7.

Corollary 3.9. Let f ∈ H(K), and consider f� ∈ �2(Z+), see (3.24).
Then the following hold for the respective Hurwitz-transforms:

(3.30) H(f)(z) = ezH
(
f�)(z).

In particular, H(f) is an entire function.

The following proposition will be used in Corollary 3.9.

Proposition 3.10. Assume (f(x))x∈Z+ ∈ �2(Z+). Then the Hurwitz trans-
form H(f) is an entire function of z.

Proof. Indeed, for any z ∈C, the sequence(
zx

x!

)
x∈Z+

∈ �2(Z+).

By the Cauchy–Schwarz inequality, we see that the series (3.28) converges
then absolutely for all complex numbers z. �

Proof of Corollary 3.9. By Corollary 3.7, f ∈ H(K) if and only if there
exists (an)n∈Z+ ∈ �2(Z+) such that

(3.31) f =

∞∑
n=0

anen,

with

(3.32) an = f�(n) =
n∑

x=0

(−1)n+x

(
n
x

)
f(x).

In a way similar to (3.29), we have:

(3.33)
f�(n)
n!

=
n∑

x=0

f(x)

x!

(−1)n−x

(n− x)!
.
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By Proposition 3.10, the function H(f�) is entire. Since

(3.34)
f(n)

n!
=

n∑
x=0

f�(x)
x!

1

(n− x)!
,

classical results on power series and convolution implies that

(3.35) H(f)(z) =
(
H
(
f�)(z))ez,

and H(f) is in particular an entire function. �

Proposition 3.11. Let f : Z+ −→ R, and assume that f ∈ H(K). Then,
for every ε > 0 there exists M > 0 such that

(3.36)
∣∣f(n)∣∣≤Mn!εn, n ∈ Z+.

Proof. From the preceding proposition, we know that H(f) is an entire
function. Thus for every r > 0 there exists an M > 0 such that

rn
|f(n)|
n!

≤M, n ∈ Z+.

The result follows with r = 1/ε. �

We note that (3.36) is not sufficient to guarantee that f ∈H(K). Indeed,
the series

∞∑
n=0

f�(n)
n!

zn

may define an entire function even when (f�(n))n∈Z+ /∈ �2(Z+). For example,
consider the function ga given by:

(3.37) ga(y) =
ay

y!
, y ∈ Z+.

Then

g�
a (n) = (−1)n

n∑
x=0

(
n
x

)
(−a)x

x!

= (−1)n
n∑

x=0

(−a)x
n(n− 1) · · · (n− x+ 1)

(x!)2
,

and so (g�
a (n))n∈Z+ /∈ �2(Z+). On the other hand,

H
(
g�
a

)
(z) = e−z

(
H(ga)(z)

)
= e−z

∞∑
n=0

(az)n

(n!)2

is entire. But ga /∈H(K) since (g�
a (n))n∈Z+ /∈ �2(Z+).
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Corollary 3.12. Let f : Z+ −→ R be a function, and assume that f ∈
H(K). Then there exists M <∞ such that

(3.38)
∣∣f(x)∣∣2 ≤M

(
2x
x

)
, ∀x ∈ Z+.

(In other words, condition (3.38) is necessary for f to be in H(K).)

Proof. Using the Cauchy–Schwarz inequality we get∣∣f(x)∣∣2 ≤ ‖f‖2H(K) ·K(x,x)

= ‖f‖2H(K) ·
(
2x
x

)
.

See (2.5) for the latter. �

Remark 3.13. Let a ∈R \ {0}, and let ga be given by (3.37), that is

(3.39) ga(x) =
ax

x!
, x ∈ Z+,

with as usual 0! = 1. The condition (3.38) is satisfied, but g�
a is not in �2(Z+).

We conclude that condition (3.38) is not sufficient and ga /∈H(K).

We now define an isometric isomorphism between the reproducing kernel
Hilbert space H(K) and the reproducing kernel Hilbert space H(K2) of entire
functions associated to the positive definite function

(3.40) K2(ζ, z) =

∞∑
n=0

ζnz∗n

(n!)2
, ζ, z ∈C.

An orthonormal basis of the space H(K2) is given by the functions

(3.41) ζ 
→ ζn

n!
, n= 0,1, . . . .

For f a real- or complex-valued function defined on Z+ we define the map

(3.42)
(
H (f)

)
(ζ) = e−ζ

(
H(f)

)
(ζ).

Theorem 3.14. The map H is unitary from H(K) onto H(K2), i.e., is
isometric and onto.

Proof. Corollary 3.7 implies that H maps H(K) into H(K2). Indeed f
belongs to H(K) if and only if the transform f� belongs to �2(Z+). But the
function

(3.43)
(
H (f)

)
(ζ) = e−ζ

∞∑
n=0

f(x)
ζx

x!
=

∞∑
n=0

f�(n)
ζn

n!

belongs to H(K2) since the functions (3.41) form an orthonormal basis of
H(K2) and f� ∈ �2(Z+).
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To finish the proof, we show that the map H sends an orthonormal basis
of H(K) onto an orthonormal basis of H(K2). We claim that

(3.44)
(
H (en)

)
(ζ) =

ζn

n!
, n= 0,1, . . . .

Indeed (
H (en)

)
(ζ) = e−ζ

∞∑
x=n

en(x)
ζx

x!
(3.45)

= e−ζ ζ
n

n!

∞∑
x=n

ζx−n

(x− n)!

=
ζn

n!

concluding the proof. �

The following theorem establishes a co-product for the binomial functions
en in (1.2). It follows from our analysis that the functions {en|n ∈ N0} gen-
erate a hypergroup HG; in the sense of Lasser et al., see [12]. Here we refer
to our formula (3.47) below for the co-product in HG. And in (3.48) we give
an explicit formula for the coefficients defining the co-product.

Theorem 3.15.

(1) It holds that

(3.46) e�
n(x) = δn,x.

(2) We have

(3.47) en · em =

m+n∑
k=m∨n

(em · en)�(k)ek,

where

(3.48) (em · en)�(k) = (−1)n+k

(
k
n

)(
k−n∑
�=0

(
k− n
�

)(
�+ n
m

))
.

For example, we have

(3.49) e1 · en = nen + (n+ 1)en+1.

Proof of Theorem 3.15. The first claim is a mere rewriting of the second
equality in (3.12). To prove (3.48), we assume m≤ n (so that m∨n= n) and
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write

(em · en)�(k) =
k∑

y=n

(−1)y+k

(
k
y

)(
y
n

)(
y
m

)

=

k∑
y=n

(
k
n

)(
k− n
y− n

)(
y
m

)

=

(
k
n

)
(−1)n+k

(
k−n∑
�=0

(−1)�
(
k− n
�

)(
�+ n
m

))
.

�

4. The second transform

We show that the two classes of transforms in our study are two sides
of a harmonic analysis for the reproducing kernel Hilbert space H(K), see
Theorem 1.1 and Theorem 4.5 below. In the sense of computations, a main
distinction between the two is that the first class of transforms involves only
finite summations, while the second infinite; see, for example, Definition 4.3,
and Proposition 4.6. In the terminology of the infinite square matrices in Sec-
tions 1 and 7, the distinction reflects the difference in the algebra of infinite
lower triangular matrices, vs upper triangular ones. In Theorem 4.8, we es-
tablish explicit inversion formulas. Caution, while the range of the respective
isometric transforms are Hilbert spaces, they differ from one to the other.

We note that the function

(4.1) (−1)y+zK(y, z) = (−1)y(−1)zK(y, z)

is still positive on Z+, and recall that we denote by �0(Z+) the vector space
of sequences from Z+ into R, with compact support. We endow �0(Z+) with
the bilinear form

(4.2) 〈f, g〉K =

∞∑
x=0

∞∑
y=0

(−1)y+zf(x)g(y)K(x, y).

Proposition 4.1. The space �0(Z+) endowed with the bilinear form (4.2)
is a pre-Hilbert space.

Proof. Bilinearity of 〈·, ·〉K is clear from the definition, while the positivity
property

(4.3) 〈f, f〉K ≥ 0, ∀f ∈ �0(Z+)

follows from the fact that the function (4.1) is positive definite on Z+. We
now show that the form 〈·, ·〉K is nondegenerate. Let g ∈ �0(Z+) be such that

(4.4) 〈f, g〉K = 0, ∀f ∈ �0(Z+).

In particular,

(4.5) 〈g, g〉K = 0.
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This cannot be since all the submatrices built from the kernel K from different
points are strictly positive (see Theorem 1.5). �

We denote by �2K(Z+) the closure of �0(Z+) with respect to 〈·, ·〉K .

Proposition 4.2. The map

(4.6) f 
→
∞∑
y=0

K(x, y)(−1)yf(y),

first defined for f ∈ �0(Z+), extends to a unitary map from �2K(Z+) onto
H(K).

Proof. Let f ∈ �0(Z+). We have (recall that all the sums are finite since f
has finite support)

〈f, f〉K =

∞∑
n,m=0

(−1)n(−1)mf(n)f(m)K(n,m)(4.7)

=

〈 ∞∑
n=0

Kn(−1)nf(n),

∞∑
m=0

Km(−1)mf(m)

〉
H(K)

.

The claim then follows from density and from the continuity of the inner
product. �

Definition 4.3. Let f ∈ �0(Z+). We set

(4.8) f�(x) =
∞∑

y=x

(−1)x+y

(
y
x

)
f(y).

We note that (4.8) can be rewritten as

(4.9) f� =M(−1)f,

where M(λ) is defined by (7.12).
Explicitly, the series is written as

f�(x) = (−1)x
(
f(x)− (x+ 1)f(x+ 1) +

(x+ 2)(x+ 1)

2
f(x+ 2)(4.10)

− (x+ 3)(x+ 2)(x+ 1)

6
f(x+ 3) + · · ·

)
.

Note that f� ∈ �0(Z+), and more precisely, if f(x) = 0 for x≥N then f�(x) =
0 for x≥N .

Example 4.4. Let ga be defined by (3.37): ga(y) =
ay

y! , where a ∈R. Then,

(4.11) g�
a = e−aga.
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Indeed,

g�
a (x) =

∞∑
y=x

(−1)x+y

(
y
x

)
ay

y!

=
∞∑

y=x

(−1)x+y ay

x!(y− x)!

=
1

x!

∞∑
y=x

(−1)x+y ay

(y− x)!

=
ax

x!

∞∑
u=0

(−1)u
au

u!

= e−a a
x

x!
,

where we have used the change of index y− x= u to go from the third to the
fourth line.

We note the following: though ga does not belong to H(K) unless a= 0,
the Δ transform of ga exists for all real a.

In preparation of Theorem 4.5, we introduce the notation s(f) as:

(4.12) f 
→ s(f) :=
∑
x∈Z+

Kxf(x).

Theorem 4.5. The map f 
→ s(f�) extends to a unitary map from H(K)
onto �2(Z+).

Proof. Let f ∈ �0(Z+). We have (recall that all the sums are finite since f
has finite support):

〈
s
(
f�), s(f�)〉

H(K)
=

∞∑
x1=0

∞∑
x2=0

s
(
f�)(x1)s

(
f�)(x2)K(x1, x2)

=

∞∑
x1=0

∞∑
x2=0

( ∞∑
y=x1

(−1)x1+y

(
y
x1

)
f(y)

)

×K(x1, x2)

( ∞∑
z=x2

(−1)x2+z

(
z
x2

)
f(z)

)

=

∞∑
x1=0

∞∑
x2=0

∞∑
y=x1

∞∑
z=x2

x1∧x2∑
j=0

(−1)x1+x2+y+zf(y)f(z)

×
(
y
x1

)(
z
x2

)(
x1

j

)(
x2

j

)
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=

∞∑
y=0

∞∑
z=0

f(y)f(z)

( ∞∑
j=0

(
y∑

x1=j

(−1)x1+y

(
y
x1

)(
x1

j

))

×
(

z∑
x2=j

(−1)x2+z

(
z
x2

)(
x2

j

)))

and using Lemma 2.1

=

∞∑
j=0

∞∑
y=0

∞∑
z=0

f(y)f(z)δj,yδj,z

=

∞∑
j=0

f(j)2.
�

We set A (f) = s(f�). It turns out (see the next proposition), that although
s(f) is difficult to compute for general value of f , the operator A and its
adjoint are easier to handle.

Proposition 4.6. The adjoint A ∗ of the operator A is given by:

(4.13)
(
A ∗(ϕ)

)
(x) =

∞∑
y=x

(−1)x+y

(
y
x

)
ϕ(y), ϕ ∈H(K),

and with values in �2(Z+).

Proof. We check the result for ϕKy0
. The general case follows then by

continuity. Let f ∈ �2(Z+). We have:

〈A f,ϕ〉H(K) = (A f)(y0)(4.14)

=
∞∑
t=0

f�(t)K(y0, t)

=

∞∑
t=0

∞∑
s=t

(−1)t+sf(s)

(
s
t

)
K(y0, t)

=

∞∑
s=0

f(s)(−1)s
s∑

t=0

(
s
t

)
K(y0, t),

and hence the result. �

Definition 4.7. Let g ∈ �0(Z+). We set

(4.15) g�(n) =
∞∑

x=n

(
x
n

)
g(x).
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Theorem 4.8. The map g 
→ g� extends to a unitary map from �2K(Z+)
onto �2(Z+), and its adjoint is the map f 
→ f�. In particular:(

g�)�
= g, ∀g ∈ �2K(Z+),(

f�)�
= f, ∀f ∈ �2(Z+).

(4.16)

Proof. We divide the proof in two steps.
Step 1 : We first prove that the two transforms are inverse of each other.

Then we show that they are adjoint of each other.
Let g ∈ �0(Z+). We have:

(
g�)�

(y) =
∞∑

n=0

(−1)n+y

(
n
y

)(
g�(n)

)
=

∞∑
n=y

(−1)n+y

(
n
y

)( ∞∑
x=n

(
x
n

)
g(x)

)

=

∞∑
x=y

(
x∑

n=y

(−1)n+y

(
n
y

)(
x
n

))
= g(y)

since (see Lemma 2.1)

(4.17)

x∑
n=y

(−1)n+y

(
n
y

)(
x
n

)
= δx,y.

Similarly, we have for f ∈ �2(Z+) and n≥ 0:

((
f�)�)

(n) =

∞∑
x=n

(
x
n

)
f�(x)

=
∞∑

x=n

(
x
n

)( ∞∑
m=x

(
m
x

)
f(m)

)

=
∞∑

m=n

f(n)

(
m∑

x=n

(−1)x+m

(
m
x

)(
x
n

))
= f(m)

since (see Lemma 2.1)

(4.18)

m∑
x=n

(−1)x+m

(
m
x

)(
x
n

)
= δm,n.

Step 2 : We now prove that the two transforms are adjoint of each other.
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Let f ∈ �2(Z+) and g ∈ �2K(Z+). We have:〈
g, f�〉

�2K(Z+)
=

∞∑
x,y=0

g(x)f�(y)K(x, y)(4.19)

=

∞∑
x,y=0

g(x)

( ∞∑
t=y

(−1)t+yf(t)

(
t
y

))
K(x, y)

=

∞∑
t=0

f(t)

( ∞∑
x=0

g(x)

t∑
y=0

(−1)t+y

(
t
y

))
K(x, y)

=

∞∑
t=0

f(t)

( ∞∑
x=t

g(x)

(
x
t

))
,

where we use (2.4)

=
〈
g�f

〉
�2(Z+)

.

To conclude, we now prove that the � transform is an isometry. We first
prove this on the space H0 of functions from Z+ into R with finite support.
For g ∈ �0 we have:

∥∥g�∥∥2
H(K)

=

∞∑
n=0

( ∞∑
x=n

(
x
n

)
g(x)

)2

(4.20)

=

∞∑
x,y=0

g(x)g(y)

(
x∧y∑
n=0

(
x
n

)(
y
n

))

=
∞∑

x,y=0

g(x)g(y)K(x, y)

= ‖g‖2�2(K). �

5. Motivation from discrete analytic functions

Here we offer a brief outline of the significance of our binomial functions
in the study of discrete analytic functions. While our binomial functions
are functions of a single discrete variable (here Z+), we show in [2] that
the binomial functions extend uniquely to discrete analytic functions on the
2D lattice, so formulas obtained in the earlier part of our paper have direct
implications for Hilbert spaces of discrete analytic functions.

Recall first that a function f : Z2 −→C is said to be discrete analytic if

(5.1) ∀(x, y) ∈ Z
2,

f(x+ 1, y+ 1)− f(x, y)

1 + i
=

f(x+ 1, y)− f(x, y+ 1)

1− i
.

See [7], [6].
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Given a function f0 : Z−→C there are infinitely discrete analytic functions
f on Z

2 such that f(x,0) = f0(x). However, when f0 is a polynomial, only
one of these discrete analytic extensions will be a polynomial in x, y. See
[6] (we gave a new proof of this fact in [2]). Thus, there exists a unique
discrete analytic polynomial ζn(x, y) determined by ζn(x,0)≡ x[n], where x[n]

has been defined in (1.7).

6. The quantum case

In a number of questions from mathematical physics (see [9], [8], [10] and
the papers cited there), it is of interest to consider the questions from Sec-
tions 2 through 3 for a deformation family of the binomial functions (1.2).
Traditionally the complex deformation parameter is denoted q, and the q-
versions of the binomial formulas were first studied in [4]. The purpose of
this section is to prove an analogue of the orthonormal basis theorems but
adapted to the q-binomials.

The q-deformed binomial coefficients were defined by Carlitz; see [5], [4].
We fix q ∈R \ {1}, and set

[x] :=
qx − 1

q− 1
,

[x]n := [x][x− 1] · · · [x− n+ 1],

[n]! := [n]n, and [0]! = [0] = 1,[
x
n

]
:=

[x]n
[n]!

,

(6.1)

where all the expressions depend on the value of q. To lighten the notation,
we do not stress the q-dependence. We introduce

(6.2) en(x) =

{
0, if x < n,

[ xn ] =
[x]n
[n]! , if x≥ n,

and

(6.3) K(x, y) =

∞∑
n=0

en(x)en(y), x, y ∈ Z+.

The sum (6.3) is always finite and well defined, and defines a positive definite
function on Z+. It can also be rewritten as:

(6.4) K(x, y) =

x∧y∑
n=0

[
x
n

][
y
n

]
.

The functions e0, e1, . . . are easily seen to be linearly independent, and so
we have:
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Theorem 6.1. The functions e0, e1, . . . form an orthonormal basis of
H(K).

7. A one parameter group of transforms

Let λ ∈ (0,∞). The function

(7.1) Kλ(x, y) =

x∧y∑
n=0

λx+y−2n

(
x
n

)(
y
n

)
is positive definite in Z+, and we denote by H(Kλ) the associated reproducing
kernel Hilbert space. The functions

(7.2) e(λ)n (x) = λx−nen(x), n= 0,1, . . .

form an orthonormal basis of the associated reproducing kernel Hilbert space
H(Kλ). Note that the case λ = 1 corresponds to formulas (1.5) and (1.2).
Let L(λ) denote the Zadeh-transform of the lower triangular infinite matrix L
given by (1.9), that is the lower triangular infinite matrix M(λ) as follows: For
a point (x, y) ∈ Z+ ×Z+, let x denote row-index and y denote column-index.
The matrix L(λ) is defined by:

(7.3)
(
L(λ)

)
(x,y)

=

{
λx−y( xy ), if 0≤ y ≤ x,

0, otherwise.

Thus, L(λ) is given by

(7.4)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 · · · · · · ·
λ 1 0 0 0 0 0 · · · · · · ·
λ2 2λ 1 0 0 0 0 · · · · · · ·
λ3 3λ2 3λ 1 0 0 0 · · · · · · ·
λ4 4λ3 6λ2 4λ 1 0 0 · · · · · · ·
...

...
λn nλn−1 λn−2(n2 ) · · · nλ 1 0 0 · · · · · ·

λn+1 (n+ 1)λn λn−1(n+1
2 ) · · · (n+ 1)λ 1 0 · · · · · ·

...
...

...
...

...
... 1

...
...

...
...

...
...

...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Then the matrix product L(λ)L(μ) makes sense for all λ,μ ∈C, with

(7.5)
(
L(λ)L(μ)

)
(x,y)

=

x∑
k=y

L(λ)(x,k)L(μ)(k,y), λ,μ ∈C.

Lemma 7.1. With the notation above, it holds that

(7.6) L(λ+ μ) = L(λ)L(μ), λ,μ ∈C,

that is, the matrices in (7.3) define a one-parameter semi-group of infinite
matrices.
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Proof. We give the details, but note that the computation of (7.5), is es-
sential the same as that given in the proof of Lemma 2.1 above. In other
words, when the product in (7.5) is computed, the group law (7.6) follows.
More precisely,

L(λ)L(μ) =D(λ)L(1)D(λ)−1D(μ)L(1)D(μ)−1(7.7)

=D(λ)L(1)D

(
μ

λ

)
L(1)D(μ)−1.

But for y ≤ x we have:(
L(1)D

(
μ

λ

)
L(1)

)
(x,y)

=

x∑
k=y

(
x
k

)(
μ

λ

)k(
k
y

)
and using ( xk )(

k
y ) = ( xy )(

x−y
k−y ), this equality is equal to

=

(
x
y

)(
x∑

k=y

(
μ

λ

)k(
x− y
k− y

))

=

(
1 +

μ

λ

)x−y(
μ

λ

)y (
x
y

)
.

Thus

(7.8) L(1)D

(
μ

λ

)
L(1) =D

(
1 +

μ

λ

)
L(1)D

(
μ

μ+ λ

)
,

and this, together with (7.7) leads to the result. �

Corollary 7.2. The one-parameter group λ 
→ L(λ) of infinite matrices
in (7.4) has the form

(7.9) L(λ) = exp(λA),

where A is the following sub-diagonal banded matrix

(7.10) A(x,y) = xδ0(x− y− 1),

see (7.11).

(7.11)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 · · · · · · ·
1 0 0 0 0 0 0 · · · · · · ·
0 2 0 0 0 0 0 · · · · · · ·
0 0 3 0 0 0 0 · · · · · · ·
...

...
0 0 · · · · · · n− 1 0 0 0 · · · · · ·
0 0 0 · · · n 0 0 · · · · · ·
0 0 · · · · · · 0 0 n+ 1 0 · · · · · ·
...

...
...

...
...

...
...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.
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We denote

(7.12) M(λ) = L(λ)∗.

We define

(7.13)
(
T−λ

(
e(λ)n

))
(x) = δn,x.

The proof of the following theorem is easy and will be omitted.

Theorem 7.3. The map

(7.14) T−λ : f 
→ L(λ)∗f

is an isometry from H(Kλ) into �2(Z+).

As a corollary, we have:

(7.15)
(
L(λ)L(λ)∗

)
(x,y)

=Kλ(x, y) =

x∧y∑
n=0

e(λ)n (x)e(λ)n (y)∗,

where e
(λ)
n (x) = λx−nen(x).

Before stating another corollary to this theorem, we mention the following
lemma, whose proof is left to the reader.

Lemma 7.4. Let (Xx(·)) be a Gaussian process with index x, with mean
zero and probability space (Ω,F , P ). Let f be a nonvanishing function on the
index set. Then, the Gaussian process (Yx(·)) = (f(x)Xx(·)) has the same
probability space but with covariance E(YxYy) = f(x)E(XxXy)f(y).

Corollary 7.5. Let (Ω,F , Pλ) be probability spaces and associated sto-
chastic processes X(λ) such that

(7.16) Eλ

(
X(λ)

x X(λ)
y

)
=Kλ(x, y).

Then the probability measures Pλ are mutually singular, as we vary λ ∈ (0,∞).

Proof. By the above lemma, the process Y
(λ)
x = 1

λxX
(λ)
x has the same prob-

ability space but covariance function

(7.17) Eλ

(
Y (λ)
x Y (λ)

y

)
=

1

λxλy
Kλ(x, y).

We write for λ1 and λ2 ∈ (0,∞)

1

λx
1λ

y
1

Kλ1(x, y) =

∞∑
n=0

λ−2n
1 en(x)en(y),

1

λx
2λ

y
2

Kλ2(x, y) =
∞∑

n=0

λ−2n
2 en(x)en(y)

=
∞∑

n=0

μnλ
−2n
1 en(x)en(y),

(7.18)
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where we have set μn =
λ2n
2

λ2n
1
. By [11, Theorems 4.3 and 4.4, p. 27], we see

that Pλ1 and Pλ2 are equivalent if and only if

(7.19)
∞∑

n=0

(1− μn)
2 <∞,

which holds if and only if λ1 = λ2. �
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