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A GEOMETRIC PROOF OF THE EXISTENCE OF
DEFINABLE WHITNEY STRATIFICATIONS

NHAN NGUYEN, SAURABH TRIVEDI AND DAVID TROTMAN

Abstract. We give a geometric proof of existence of Whitney
stratifications of definable sets in o-minimal structures.

1. Introduction

It has been known for a long time that semi-varieties (semi-analytic or
semi-algebraic for example) can be stratified into smooth manifolds satisfying
Whitney conditions (a) and (b). Methods of doing this can be found in Whit-
ney [12], Wall [11], Bochnak, Coste and Roy [1], �Lojasiewicz [8], �Lojasiewicz,
Stasica and Wachta [9], etc. All of the proofs given in the above mentioned
literature of the existence of such stratifications use analytical techniques.

Kaloshin [3] has claimed a geometric proof of the existence of stratifications
of semivarieties satisfying the Whitney conditions. We show by giving a very
simple counterexample that there is a gap in this proof of Kaloshin. In this
article, motivated by the idea of Kaloshin, we give a geometric proof of the
existence of these stratifications in the more general o-minimal setting. Our
method fills the gap in Kaloshin’s proof and moreover it works for the case of
definable sets in o-minimal structures. Loi [6] also proved this result with a
different proof using a wing lemma.

Let us first describe the overview of the idea of Kaloshin.
The following terminology is due to Kaloshin. Let V ⊂ Rn be a closed

semivariety and let Σ be a stratification of V . Given strata X and Y of Σ
and a point y ∈X ∩ Y , by a local connected component of X at y is meant
a connected subset of X obtained from intersecting X by a sufficiently small
open ball centered at y. By a result of �Lojasiewicz [8], there exist finitely
many such connected components for any point y ∈ Y .

A local connected component Xα is said to be an essential component of
X at y if y lies in the interior of Y ∩Xα (considered as a subset of Y ). Now
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Singa(X,Y ) is defined as the set of points y ∈ Y such that the union of the
essential components of X at y is not (a)-regular over Y at y. Kaloshin
proves that the set Singa(X,Y ) is a semivariety and has dimension less than
the dimension of Y , so showing that Whitney’s condition (a) is generic, and
the result follows.

We will show pictorially that the set of (a)-faults (points where the condi-
tion (a) fails) of a pair of strata (X,Y ) is in general bigger than Singa(X,Y ),
and that considering only the essential components leaves several (a)-faults
unaccounted for.

Consider the closed subset V of R3 as in Figure 1. It is like Santa’s hat
except that the conical tip is attached to the round edge of the hat.

Applying the procedure of stratifying V due to Wall [11],1 we find that R3

will have three strata compatible with V . The three dimensional stratum will
be the complement of V in R3. The two dimensional stratum will be X and
the one dimensional stratum will be Y .

Now, take y ∈ Y as in the Figure 1 (the tip of the hat) and intersect V with
a small ball around y. We find that X has two local connected components
at y, denoted Xα and Xβ . Notice that Xα is an essential component of X
near Y while Xβ is not. Thus, the set Singa(X,Y ) is empty. Notice also that

Figure 1. A non-essential (a)-fault.

1 We must mention here that Wall’s method works only for closed semi-varieties.
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X is not (a)-regular over Y at y. We call such points y the non-essential
points. Thus the set of (a)-faults in this stratification of V is strictly bigger
than the set Singa(X,Y ).

We will now summarize the contents of the article:
In Section 2, we give definitions of o-minimal structures, definable stratifi-

cations, stratifying conditions, Whitney conditions and state the main result
(Theorem 2.2). The idea of the proof is to show that Whitney conditions are
stratifying conditions (Lemmas 2.3 and 2.4).

In Section 3, we define Kuo functions. These functions give criteria to test
Whitney conditions (a) and (b) in a stratification.

In Section 4 after defining essential and non-essential components and
points, we show that the set of non-essential points in Y for a pair X,Y
of definable sets such that X ∩ Y = ∅ has dimension less than the dimension
of Y . This fills the gap in Kaloshin’s proof. We then prove that the Whitney
conditions (a) and (b) are stratifying conditions. The key to the proof is the
existence of a sequence of points in a stratum converging to a point in another
stratum in its boundary such that the limit of the sequence of values of the
Kuo functions on these points vanish (Lemmas 4.2 and 4.3). This allows us
to avoid the use of Rolle’s lemma as opposed to the proof of Kaloshin and
makes our proof much simpler.

2. Preliminaries and statement of results

2.1. o-minimal structures. A structure on the ordered field (R,+, ·) is a
family D = (Dn)n∈N satisfying the following properties:

1. Dn is a boolean algebra of subsets of Rn;
2. If A ∈Dn, then R×A ∈Dn+1 and A×R ∈Dn+1;
3. Dn contains the zero sets of all polynomials in n variables;
4. If A ∈Dn, then its projection onto the first n− 1 coordinates in Rn−1

is in Dn−1.

Such a D is said to be o-minimal if in addition:

5. Any set A ∈D1 is a finite union of open intervals and points.

Elements of Dn for any n are called definable sets of D. A map between
two definable sets is said to be a definable map if its graph is a definable set.

Let D be an o-minimal structure on R. In what follows by definable, we
mean in this D.

2.2. Definable stratifications and stratifying conditions. A definable
Cp-stratification Σ of Rn is a partition of Rn into finitely many definable Cp

submanifolds2 of Rn, called strata, such that the boundary of every stratum
is either empty or a union of some other strata.

2 A definable Cp submanifold of Rn meaning a definable subset and also a Cp submanifold

of Rn.
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LetA= {A1, . . . ,Ak} be a family of definable subsets of Rn. A stratification
Σ of Rn is said to be compatible with A if each Ai is the union of some strata
of Σ. In the rest of the paper, by definable we mean of class Cp.

Let (X,Y ) be a pair of definable submanifolds of Rn such that Y ⊂X \X .
Let γ be a condition on the pair (X,Y ) at points in Y . A point y ∈ Y is said
to be a (γ)-fault if the condition γ fails to be satisfied for the pair (X,Y )
at y. We denote by Fγ(X,Y ) the set of all (γ)-faults for the pair (X,Y ). If
Fγ(X,Y ) is empty then we say that the pair (X,Y ) is (γ)-regular. Moreover,
a stratification is said to be (γ)-regular if every pair of its strata is (γ)-regular.

A condition (γ) is said to be a stratifying condition if for any pair (X,Y )
as above the set Fγ(X,Y ) is definable and dimFγ(X,Y )< dimY . Using cell
decomposition theorem [10] and arguments as in the proof of Proposition 2 in
[9], we have the following result (see also [7]).

Theorem 2.1. Let A= {A1, . . . ,Ak} be a family of definable subsets of Rn.
If (γ) is a stratifying condition then there exists a (γ)-regular definable strat-
ification of Rn compatible with A.

2.3. Whitney conditions. Let X be a definable submanifold of Rn and
y ∈ X . A sequence of points {xn} in X converging to y is said to be a
good sequence if the corresponding sequences {TxnX} of tangent spaces in the
Grassmannian converges. The limit limn→∞ TxnX will be called the Grass-
mannian limit of the sequence {xn}. Since the Grassmannian is a compact
metric space, for every sequence in X there exists a subsequence which is a
good sequence.

Let (X,Y ) be a pair of definable submanifolds of Rn such that Y ⊂X \X .
Consider the following conditions on (X,Y ) at a point y ∈ Y .

(a) The Grassmannian limit of every good sequence {xn} in X converging to
y contains the tangent space TyY .

(b) For every sequence {yn} in Y converging to y, the Grassmannian
limit of every good sequence {xn} in X converging to y contains v :=
limn→∞

xn−yn

‖xn−yn‖ if v exists.

The reader must have realized that the conditions (a) and (b) are the usual
Whitney conditions (a) and (b) written differently.

Theorem 2.2. Let A= {A1, . . .Ak} be a family of definable subsets of Rn.
Then there exists an (a)-regular (resp. (b)-regular) definable stratification of
Rn compatible with A.

By Theorem 2.1, to prove Theorem 2.2, it suffices to show that conditions
(a) and (b) are stratifying conditions. For any definable submanifolds X,Y ⊂
Rn such that Y ⊂X \X , it is easy to see that the set of (a)-faults Fa(X,Y )
(resp. (b)-faults Fb(X,Y )) is definable once we write it using quantifiers, see
for example [7]. Thus, we need to prove the following lemmas:
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Lemma 2.3. For any definable submanifolds X,Y ⊂ Rn such that Y ⊂
X \X , we have dimFa(X,Y )< dimY .

Lemma 2.4. For any definable submanifolds X,Y ⊂ Rn such that Y ⊂
X \X , we have dimFb(X,Y )< dimY .

We will prove Lemmas 2.3 and 2.4 in Section 4.

3. Kuo functions

Let X,Y be definable submanifolds of Rn such that Y ⊂X \X . Suppose
that dimY = k. Since (a) (resp. (b)) regularity is a local property we can
assume that locally Y is a k-plane with a basis of unit vectors {e1, . . . , ek}.

Given a linear subspace L of Rn we denote by πL : Rn → L the canonical
orthogonal projection of Rn onto L. Let x ∈X and consider TxX as a linear
subspace of Rn. Using the idea of Kuo [4] (see also [3]) we define functions,
which we call Kuo functions, that give criteria to test (a) and (b)-regularity.

Let pa : X →R be the function defined by

pa(x) :=

k∑
i=1

∥∥πNxX(ei)
∥∥2

,

where NxX is the orthogonal complement of TxX .
Let pb′ : X →R be the function defined by

pb′(x) :=
∥∥πNxX

(
p(x)

)∥∥2
,

where p(x) := x−πY (x)
‖x−πY (x)‖ .

Let pb : X →R be the function defined by

pb(x) := pa(x) + pb′(x).

Kuo [4] (see also [3]) proved that a pair (X,Y ) satisfies the condition (a)
(resp. (b)) at y ∈ Y if and only if for every good sequence {xn} inX converging
to y, limn→∞ pa(xn) = 0 (resp. limn→∞ pb(xn) = 0).

4. Existence of Whitney stratifications for definable sets

Let P and Q be linear subspaces of Rn. The angle between P and Q is
defined by

δ(P,Q) := sup
λ∈P,‖λ‖=1

{∥∥λ− πQ(λ)
∥∥}

.

The function δ takes values in [0,1]. In general δ is not symmetric, for in-
stance, if P ⊂Q and P �=Q then δ(P,Q) = 0 while δ(Q,P ) = 1. The following
properties are easy to verify.

1. If dimP = dimQ then δ(P,Q) = δ(Q,P ).
2. If P ⊂Q then δ(P,Q) = 0.
3. If dimT ≤ dimP ≤ dimQ then δ(T,Q)≤ δ(T,P ) + δ(P,Q).
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For a real number ε > 0, a definable submanifold X is said to be ε-flat if
for every x,x′ in X , δ(TxX,Tx′X)< ε. If dimX = 0 then we assume that X
is ε-flat for every ε > 0.

Lemma 4.1. Let X ⊂Rn be a definable set of dimension k < n and let ε > 0
be a real number. Then there is a definable stratification of X such that every
stratum is ε-flat.

Proof. This is proved for subanalytic sets in Proposition 5 in Kurdyka [5],
but the idea also works for definable sets. �

Lemma 4.2. Let X,Y be definable submanifolds of Rn such that Y ⊂X \X
and let y be a point in Y . Then there exists a good sequence {xn} in X
converging to y such that pa(xn) converges to 0.

Proof. Suppose on the contrary that there is an ε > 0 such that for every
good sequence {xn} in X converging to y, the limit of the sequence pa(xn)
is greater than ε. In other words, we can choose ε sufficient small such that
for any given good sequence {xn} with the Grassmannian limit τ , we have
δ(TyY, τ)> ε.

Take a stratification of Rn compatible with X such that its strata are ε
4 -flat

(this is possible by Lemma 4.1). We can write X =
⊔m

i=1Xi where the Xi’s

are the strata. Set Y ′ :=
⋃m

i=1 IntY (Xi∩Y ). Notice that Y ′ is open and dense
in Y . The proof now breaks into the two following cases.

Case 1 : y ∈ Y ′.
There is an Xi, 1≤ i≤m, such that y ∈ IntY (Xi∩Y ). Fix a good sequence

{xn} in Xi and denote by τ its Grassmannian limit.
Since δ(TyY, τ)> ε, we can choose a line l⊂ TyY satisfying δ(l, τ)> ε

2 . We
define the ε

4 -cone around l centered at y as follows:

Cy :=

{
x ∈Rn : δ

(
μ(x− y), l

)
<

ε

4

}
,

where μ(x− y) denotes the line spanned by the unit vector x−y
‖x−y‖ .

Since y ∈ IntY (Xi ∩ Y ), the intersection Xi(y) :=Xi ∩ Cy is a non-empty

definable set and y ∈Xi(y). The curve selection lemma (see van den Dries
[10]) says that there is a C1 curve γ : (0,1)→Xi(y) such that limt→0 γ(t) = y.
Choose a good sequence {x′

n} along the curve γ converging to y and denote
by τ ′ its Grassmannian limit. Put l′ := limn→∞ Tx′

n
γ, then l′ ⊂ τ ′ and

δ
(
l, τ ′

)
≤ δ

(
l, l′

)
≤ ε

4
.

Since Xi is
ε
4 -flat, δ(τ, τ

′)< ε
4 . Thus,

δ(l, τ)≤ δ
(
l, τ ′

)
+ δ

(
τ ′, τ

)
<

ε

4
+

ε

4
=

ε

2
,

a contradiction.
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Case 2 : y /∈ Y ′.
Because Y ′ is dense in Y we can find a sequence {yn} in Y ′ tending to y.

By case 1, for each yn there is a good sequence {xn,m} in X converging to yn
such that pa(xn,m) converges to 0. It is possible to choose a good sequence
{x′

n} in X converging to y such that x′
n ∈ {xn,m} and pa(x

′
n)< ε. The limit of

the sequence pa(x
′
n) is clearly less than ε. This provides a contradiction. �

To prove Lemma 2.3, we need the following definitions. For y ∈ Y , denote
by Br(y) the open ball in Rn of radius r centered at y. By Hardt’s theorem
about topological triviality for definable sets (Theorem 5.19, p. 60 in [2]), the
topological type of the intersection Br(y) ∩X is stable, that is, there is an
r > 0 sufficiently small such that for every 0< r′ < r the sets Br(y) ∩X and
Br′(y) ∩X are topologically equivalent. Denote by Ny the number of con-
nected components of the intersection Br(y) ∩X . This number is uniformly
bounded on Y . More precisely, there exists an integer κ such that Ny ≤ κ for
all y ∈ Y . A connected component Xi(y) (i = 1, . . . ,Ny) of the intersection

Br(y) ∩X is said to be essential if y is in the interior of Xi(y) ∩ Y in Y ,

denoted by IntY (Xi(y) ∩ Y ) (i = 1, . . . ,Ny). We say that y is an essential
point if Xi(y) is essential for all i.

Observe that every point in
⋂Ny

i IntY (Xi(y) ∩ Y ) is essential. Set
Tj(X,Y ) := {y ∈ Y : Ny = j}. Then the set of essential points can be written
as follows

Ω(X,Y ) :=

κ⋃
j=1

{
y ∈ Tj(X,Y ) : y ∈

⋂
i≤j

IntY
(
Xi(y)∩ Y

)}
.

This implies that Ω(X,Y ) is an open definable set in Y . In addition, we can
cover Y by countably many balls Brα(yα) where yα ∈ Y ∩ ({0}n−k ×Qk) and
rα ∈Q such that the intersection Brα(yα) ∩X is stable. It is clear that the
set of non-essential points has dimension less than the dimension of Y since
it is contained in the countable union of boundaries of Xi(yα)∩Y in Y for all
yα and all i = 1, . . . ,Nyα . The set Ω(X,Y ) thus is a definable set open and
dense in Y .

Proof of Lemma 2.3. Since the set of essential points in Y is definable,
dense and open in Y , we can assume without loss of generality that every
point in Y is essential.

Take a point y in Fa(X,Y ). By Lemma 4.2, there is an essential component
Xi(y) with two sequences of points {x′

n} and {x′′
n} converging to y such that

pa(x
′
n)→ ε′ and pa(x

′′
n)→ ε′′ for some non-negative numbers ε′ < ε′′. Notice

that the function pa(x) takes values in [0, k] where k is the dimension of Y .
By Sard’s lemma there exists a regular value ε ∈ (ε′, ε′′) of the function pa,
so the set Xε := (pa)

−1(ε) is a definable submanifold of X of codimension 1
in X . Since Xi(y) is locally connected at y, x′

n and x′′
n can be connected by
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a curve γn. Choosing points xn ∈ γn such that pa(xn) = ε, we get a sequence
{xn} ⊂Xε converging to y, and hence y ∈Xε \Xε.

Now choose countably many regular values {εν}ν∈Z of the function pa
whose union is dense in [0, k] and define Xεν := (pa)

−1(εν). Then the union⋃
ν∈Z

Xεν \Xεν contains all (a)-faults of the pair (X,Y ).

Put I =: {ν ∈ Z : dimXεν ∩ Y = dimY }. For ν ∈ I , denote by Y εν =
IntY (Xεν ∩Y ), then (Xεν , Y εν ) is again a pair of definable submanifolds with
Y εν ⊂Xεν \Xεν . Let pενa be the Kuo function on (Xεν , Y εν ) constructed as
in Section 3. Observe that pενa (x)≥ pa(x) for every x ∈Xεν . This shows

Fa(X,Y )⊂
⋃
ν∈I

Fa

(
Xεν , Y εν

)
∪Z,

where Z :=
⋃

ν∈Z\I(X
εν ∩ Y ) ∪

⋃
ν∈I((X

εν ∩ Y ) \ Y εν ) a subset of positive

codimension in Y .
Because a countable union of subsets of positive codimensions in Y is a sub-

set of positive codimension in Y , it remains to show that dimFa(X
εν , Y εν )<

dimY εν for ν ∈ I . This follows from the inductive application of the above
arguments for (Xεν , Y εν ). The induction stops when dimXεν ≤ dimY . �

In order to prove Lemma 2.4, we will use the following Lemma 4.3 which
plays the same role for (b)-regularity as Lemma 4.2 does for (a)-regularity.

Lemma 4.3. Let X,Y be definable submanifolds of Rn such that Y ⊂X \X
and let y be a point in Y . There is a good sequence {xn} in X converging to
y such that pb(xn) converges to 0.

Proof. Suppose that there is an ε > 0 such that pb(xn)> ε for every good
sequence {xn} in X converging to y. We will show a contradiction by giving
a sequence {xn} in X converging to y such that pb(xn) converges to a value
less than ε.

For y ∈ Y , we define Z(y) :=X ∩ (Y ⊥ + {y}) and
ω(y) := inf

{
d(x, y) : x ∈ Z(y)

}
,

where d(x, y) is the usual distance from x to y. Put ω(y) = 1 if Z(y) = ∅.
Clearly ω(y) is a definable function on Y .

We claim that the set Δ := {y ∈ Y : y ∈ Z(y)} is open and dense in Y .
In other words, its complement Δc := {y ∈ Y : ω(y)> 0} is of dimension less
than the dimension of Y . Thus, suppose to the contrary that dimΔc = dimY .
By the cell decomposition theorem and local compactness of Y , there is an
open set U in Y and a constant c > 0 such that ω(y)> c for every y ∈ U . This
means U �⊂X \X , a contradiction.

Denote by Y ′ the set of points in Δ which are not (a)-faults. Take
y ∈ Y ′. The curve selection lemma says that there exists a C1 definable
curve γ : (0,1) → Z(y) such that limt→0 γ(t) = y. Choose {zm} a good se-
quence in the curve γ converging to y and denote by τ its Grassmannian limit.
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From the construction we have πY (zm) = y, hence p(zm) = zm−y
‖zm−y‖ . Obviously

limm→∞ p(zm) ∈ limm→∞ Tzmγ ⊂ τ . This implies that limm→∞ pb′(zm) = 0.
Moreover, since y is not an (a)-fault, limm→∞ pb(zm) = 0.

Since Y ′ is dense in Y , for y ∈ Y there is a sequence {yn} ⊂ Y ′ converging
to y. Let {γn} be the corresponding sequence of curves as above. Choose a
sequence xn converging to y with xn ∈ γn and pb(xn)< ε, then limn→∞ pb(xn)
is obviously less than ε. This gives a contradiction. �

Lemma 4.3 together with the arguments of the proof of Lemma 2.3 provide
a proof for Lemma 2.4.
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