THE a-POINTS OF THE SELBERG ZETA-FUNCTION ARE UNIFORMLY DISTRIBUTED MODULO ONE

RAMŪNAS GARUNKŠTIS, JÖRN STEUDING AND RAIVYDAS ŠIMĖNAS

ABSTRACT. Let Z(s) be the Selberg zeta-function associated with a compact Riemann surface. We prove that the imaginary parts of the nontrivial a-points of Z(s) are uniformly distributed modulo one. We also consider the question whether the eigenvalues of the corresponding Laplacian are uniformly distributed modulo one.

1. Introduction

Let $s = \sigma + it$ be a complex variable and X a compact Riemann surface of genus $g \geq 2$. The surface X can be regarded as a quotient $\Gamma \backslash H$, where $\Gamma \subset \mathrm{PSL}(2,\mathbb{R})$ is a strictly hyperbolic Fuchsian group and H is the upper half-plane of \mathbb{C} . Then the Selberg zeta-function associated with $X = \Gamma \backslash H$ is defined by (see Hejhal [9, Section 2.4, Definition 4.1])

(1)
$$Z(s) = \prod_{\{P_0\}} \prod_{k=0}^{\infty} (1 - N(P_0)^{-s-k}).$$

Here $\{P_0\}$ is the primitive element of Γ and $N(P_0) = \alpha^2$ if the eigenvalues of P_0 are α and α^{-1} with $|\alpha| > 1$. Equation (1) defines the Selberg zeta-function in the half-plane $\sigma > 1$. The function Z(s) can be extended to an entire function of order 2 (Hejhal [9, Section 2.4, Theorem 4.25]), with so-called trivial zeros at $1, 0, -1, -2, \ldots$ and nontrivial zeros on the critical line $\sigma = 1/2$ with at most finitely many exceptions of zeros on the real segment 0 < s < 1 (Hejhal [9, Section 2.4, Theorem 4.11] and Randol [13]). All the nontrivial zeros $s_j = 1/2 \pm it_j$ correspond to eigenvalues

(2)
$$0 < \lambda_j = s_j(1 - s_j) = 1/4 + t_j^2$$

Received January 30, 2014; received in final form February 28, 2014. 2010 $Mathematics\ Subject\ Classification.\ 11M36.$

of the hyperbolic Laplacian Δ on $X = \Gamma \backslash H$ (Hejhal [9, Section 2.4, Theorem 4.11]. Moreover, the Selberg zeta-function satisfies the following functional equation (Hejhal [9, Section 2.4, Theorem 4.12])

$$(3) Z(s) = X(s)Z(1-s),$$

where

$$X(s) = \exp\left(4\pi(g-1)\int_{0}^{s-1/2} v \tan(\pi v) \, dv\right).$$

Let a be a complex number. Solutions of Z(s)=a are called a-points of Z(s). From definition (1) and the functional equation (3), it follows that there are positive constants A=A(a) and $\tau=\tau(a)$ such that $Z(s)\neq a$ for $\sigma\geq A$ and

$$Z(s) \neq a$$
 for $\sigma \leq 1 - A$ and $|t| \geq \tau$

(see [7]). An a-point is called nontrivial if it lies in the strip $1-A < \sigma < A$; nontrivial a-points are denoted by $\rho_a = \beta_a + i\gamma_a$. Any a-point inside in the region $\sigma < 1-A$ and $|t| < \tau$ is called a trivial. Denote by $N_a(T)$ the number of nontrivial a-points (counted with multiplicities) of Z(s) in the region $\tau < t \le T$. In [7] it was proved that, for $a \ne 1$,

(4)
$$N_a(T) = (g-1)T^2 + o(T)$$

and, for a = 1,

$$N_1(T) = (g-1)T^2 - \frac{T}{2\pi}\log N(P_{00}) + o(T),$$

where $N(P_{00}) = \min_{P_0} \{N(P_0)\}$. If a = 0, then formula (4) is known to hold with a better error term $O(T/\log T)$ (Hejhal [9, Section 2.8, Theorem 8.19]).

It is known that almost all nontrivial a-points are arbitrary close to the critical line $\sigma = 1/2$. More precisely, let $N_a^-(\delta, T)$ and $N_a^+(\delta, T)$ denote the number of nontrivial a-points of Z(s) lying in the corresponding regions $\sigma < 1/2 - \delta$, $1 < t \le T$, respectively $\sigma > 1/2 + \delta$, $1 < t \le T$. Furthermore, define

$$N_a^0(\delta,T) = N_a(T) - \left(N_a^-(\delta,T) + N_a^+(\delta,T)\right).$$

Then, for $\delta = (\log \log T)^2 / \log T$ we have ([7, Theorem 3])

(5)
$$N_a^-(\delta, T) + N_a^+(\delta, T) \ll \frac{T^2}{\log \log T}$$

and

(6)
$$N_a^0(\delta, T) = (g-1)T^2 + O\left(\frac{T^2}{\log\log T}\right).$$

In [6] the connection between the distribution of a-points and the growth of Z(s) was considered. The value distribution of the Selberg zeta-function associated to the modular group in light of the universality theorem was investigated in [2].

Here we shall prove:

THEOREM 1. Let $a \in \mathbb{C}$. The imaginary parts of nontrivial a-points of the Selberg zeta-function Z(s) are uniformly distributed modulo one.

For the Riemann zeta-function, it was Rademacher [12] who proved under the assumption of the truth of the Riemann hypothesis that the imaginary parts of the nontrivial zeros are uniformly distributed modulo one; Elliott [3] and (independently) Hlawka [10] gave unconditional proofs of this result. Further extensions and generalizations can be found in the articles [1], [4], and [5]; the analogue of Theorem 1 has been proved in [16].

The proof of Theorem 1 relies on the following proposition.

PROPOSITION 2. Let x be a fixed positive real number not equal to 1. Then, as $T \to \infty$,

$$\sum_{0 < \gamma \le T} x^{\rho} = O(T).$$

Furthermore, we consider the eigenvalues λ_j of the hyperbolic Laplacian Δ on X.

Theorem 3. Let $x = e^{2\pi n}$, $n \in \mathbb{Z}$. The following two statements are equivalent:

- (1) the eigenvalues λ_i are uniformly distributed modulo one;
- (2) the following bounds are valid

$$\int_{1}^{T} x^{2t/T + it^{2}} \frac{Z'}{Z} \left(\frac{1}{2} + \frac{1}{T} - it \right) dt = o(T^{2}) \quad \text{for } n > 0$$

and

$$\int_{1}^{T} x^{-2t/T - it^{2}} \frac{Z'}{Z} \left(\frac{1}{2} + \frac{1}{T} + it \right) dt = o(T^{2}) \quad \text{for } n < 0.$$

In the next section, we state lemmas. Theorems 1, 3, and Proposition 2 are proved in Section 3.

2. Preliminaries

In the proof of Theorem 1, we will use Weyl's criterion.

LEMMA 4 (Weyl's criterion). A sequence of real numbers y_n is uniformly distributed modulo one if, and only if, for each integer $\ell \neq 0$,

$$\lim_{n \to \infty} \frac{1}{n} \sum_{j=0}^{n} e^{2\pi i \ell y_j} = 0.$$

For the proof, see Weyl [18], [19].

LEMMA 5. If f(s) is analytic and $f(s_0) \neq 0$ with

$$\left| \frac{f(s)}{f(s_0)} \right| < e^M$$

in $\{s: |s-s_0| \le r\}$ with M > 1, then

$$\left| \frac{f'(s)}{f(s)} - \sum_{\rho} \frac{1}{s - \rho} \right| < C \frac{M}{r}$$

for $|s - s_0| \le \frac{r}{4}$, where C is some constant and ρ runs through the zeros of f(s) such that $|\rho - s_0| \le \frac{r}{2}$.

For the proof, see Titchmarsh [17, Section 3.9].

Lemma 5 is applied in the proof of the next lemma.

LEMMA 6. Let $a \in \mathbb{C}$. Let $B, b \ge 1/2$ be such that $Z(s) \ne a$ for $\sigma < -b$ and $\sigma > B - 1$. If T is such that $Z(\sigma + iT) \ne a$ for $1 - b \le \sigma \le B$, then

$$\int_{1-b}^{B} \left| \frac{Z'(\sigma + iT)}{Z(\sigma + iT) - a} \right| d\sigma \ll T.$$

Proof. In Lemma 5, we choose $s_0 = B + iT$ and r = 4(B - (1 - b)). We can take M = cT with some c > 0 (see Randol [15, Lemma 2] or Garunkštis [7, comment above Theorem 5]). Then Lemma 5 gives

(7)
$$\frac{Z'(s)}{Z(s) - a} = \sum_{|\rho_{\alpha} - s_{0}| < \frac{r}{2}} \frac{1}{s - \rho_{a}} + O(T),$$

for $|s - s_0| \le \frac{r}{4}$. Thus,

$$\begin{split} & \int_{1-b}^{B} \left| \frac{Z'(\sigma + iT)}{Z(\sigma + iT) - a} \right| d\sigma \\ & \leq \int_{1-b}^{B} \sum_{|\rho_a - s_0| \leq \frac{r}{2}} \left| \frac{1}{\sigma + iT - \rho_a} \right| d\sigma + O(T) \\ & = \sum_{|\rho_a - s_0| \leq \frac{r}{2}} \int_{1-b}^{B} \frac{1}{\sqrt{(\sigma - \beta_a)^2 + (T - \gamma_a)^2}} d\sigma + O(T) \\ & = \sum_{|\rho_a - s_0| \leq \frac{r}{2}} \left(\log \left(B - \beta_a + \sqrt{(T - \gamma_a)^2 + (B - \beta_a)^2} \right) \right) \\ & - \log \left(1 - b - \beta_a + \sqrt{(T - \gamma_a)^2 + (1 - b - \beta_a)^2} \right) \right) + O(T) \end{split}$$

since the disc $|\rho_a - s_0| \leq \frac{r}{2}$ contains O(T) many a-points.

In the following lemma, we express the Selberg zeta-function by a general Dirichlet series.

LEMMA 7. There is an unbounded sequence $1 < x_2 < x_3 \cdots$ of real numbers and real numbers a_n , $n = 2, 3, \ldots$, such that

(8)
$$Z(s) = 1 + \sum_{n=2}^{\infty} \frac{a_n}{x_n^s},$$

where the Dirichlet series converges absolutely for $\sigma > 1$.

Proof. Multiplying the Euler product, we obtain a formal Dirichlet series

$$Z(s) = \prod_{\{P_0\}} \prod_{k=0}^{\infty} \left(1 - N(P_0)^{-s-k}\right) = 1 + \sum_{n=2}^{\infty} \frac{a_n}{x_n^s}.$$

In view of the properties of Dirichlet series (Hardy and Riesz [8, Section 2.2, Theorem 1]), it is enough to prove that the series (8) converges absolutely at $s = \sigma > 1$. For any positive x, we have that

$$1 + \sum_{x_n \le x} \frac{|a_n|}{x_n^{\sigma}} \le \prod_{\{P_0\}} \prod_{k=0}^{\infty} (1 + N(P_0)^{-\sigma - k}).$$

In the last formula, the product converges for $\sigma > 1$ since (Hejhal [9, Section 1.2, Proposition 2.5])

$$\sum_{\substack{\{P_0\}\\N(P_0)\leq x}} 1 = O(x).$$

This proves the lemma.

The next lemma is essentially due to Landau [11] and deals with general Dirichlet series. Let $1 = x_1 < x_2 < \cdots$ be an unbounded sequence X of real numbers and define

$$S = \{x_{k_1} x_{k_2}, \dots, x_{k_m} : m \in \mathbb{N}, k_1 \in \mathbb{N}, \dots, k_m \in \mathbb{N}\}$$

as the set of all possible products of elements of the sequence X. Let $1 = y_1 < y_2 < \cdots$ be an ordered sequence of all different numbers of S.

LEMMA 8. For $n \in \mathbb{N}$ let a_n and b_n be complex numbers such that the general Dirichlet series $A(s) = \sum_n a_n x_n^{-s}$ and $B(s) = \sum_n b_n x_n^{-s}$ converge absolutely in the right half-plane $\sigma > \sigma_0$. If $b_1 \neq 0$, then there exist a real number $\sigma_1 \geq \sigma_0$ and complex numbers c_n , $n = 1, 2, \ldots$, such that

$$\frac{A(s)}{B(s)} = \sum_{n=1}^{\infty} \frac{c_n}{y_n^s}$$

and the series converges absolutely for $\sigma > \sigma_1$.

Proof. Without loss of generality, we assume that $b_1 = 1$. Then there exists $\sigma_1 \geq \sigma_0$ such that |B(s) - 1| < 1, for $\sigma > \sigma_1$, and the series of B(s) - 1 converges absolutely. Thus, there exist complex numbers d_n such that

$$\frac{1}{B(s)} = \sum_{n=0}^{\infty} (-1)^n (B(s) - 1)^n = \sum_{n=1}^{\infty} \frac{d_n}{y_n^s},$$

where the last series converges absolutely for $\sigma > \sigma_1$. Now the lemma follows in view of the absolute convergence of the series for A(s) and $B(s)^{-1}$.

The following lemma describes the asymptotic behavior of the factor X(s) from the functional equation (3).

LEMMA 9. For $t \geq 1$,

$$X(s) = \exp\left(2\pi i (g-1)\left(s - \frac{1}{2}\right)^2 + \frac{\pi i (g-1)}{6} + O\left(\frac{t}{e^{2\pi t}}\right) + O\left(\frac{(\sigma - 1/2)^2}{e^{2\pi t}}\right) + O\left(\frac{(\sigma - 1/2)t}{e^{2\pi t}}\right)\right) \quad (t \to \infty)$$

uniformly in σ .

Proof. This is Lemma 1 in [7].

3. Proofs

Proof of Proposition 2. First, we may assume $a \neq 1$. Let B be a sufficiently large fixed number, such that $B \geq A$, where A is defined in Introduction. Then the strip $1 - B \leq \sigma \leq B$ contains all the nontrivial a-points and a finite number of trivial a-points.

Next, let T be such that there are no a-points on the line t = T. Using the residue theorem and the fact that the logarithmic derivative of Z(s) - a has simple poles at each a-point ρ_a with residue equal to the order of ρ_a , we get

$$\sum_{0 \le x \le T} x^{\rho_a} = \frac{1}{2\pi i} \int_{\square} x^s \frac{Z'(s)}{Z(s) - a} \, ds + O(1);$$

here \square denotes the counterclockwise oriented rectangular contour with vertices B+i, B+iT, 1-B+iT, 1-B+i. If the line t=1 contains a-points, we slightly alter the lower edge of the rectangular contour \square .

In order to evaluate the integral, we write

$$\int_{\square} x^{s} \frac{Z'(s)}{Z(s) - a} ds = \left\{ \int_{B+i}^{B+iT} + \int_{B+iT}^{1-B+iT} + \int_{1-B+iT}^{1-B+i} + \int_{1-B+i}^{B+i} \right\} x^{s} \frac{Z'(s)}{Z(s) - a} ds$$
$$= \sum_{i=1}^{4} I_{j}.$$

We shall evaluate each I_j individually.

In view of Lemmas 7 and 8, we may suppose that the logarithmic derivative of Z(s) - a has an absolutely convergent Dirichlet series expansion for $\sigma > B$, namely

$$\frac{Z'(s)}{Z(s) - a} = \sum_{n=2}^{\infty} \frac{c_n}{y_n^s}.$$

Now we interchange summation and integration on the right-hand side of the rectangle, which gives

$$I_1 = \sum_{n=2}^{\infty} c_n \int_{B+i}^{B+iT} \left(\frac{x}{y_n}\right)^s ds = \sum_{n=2}^{\infty} c_n i \int_1^T \exp((B+it)\log(x/y_n)) dt$$
$$= \sum_{n=2}^{\infty} c_n i \exp(B\log(x/y_n)) \int_1^T \exp(it\log(x/y_n)) dt.$$

By

$$\begin{split} & \int_{1}^{T} \exp\left(it \log(x/y_n)\right) dt \\ & = \begin{cases} T - 1 & \text{if } x = y_n, \\ (\exp(iT \log(x/y_n)) - \exp(i \log(x/y_n)))/(i \log(x/y_n)) & \text{otherwise,} \end{cases} \end{split}$$

we obtain

$$I_1 = ic(x)T + O(1).$$

Here c(x) equals the Dirichlet coefficient c_n if $x = y_n$ and 0 otherwise.

Next, we estimate the integrals along the horizontal segments. Clearly, $I_4 = O(1)$. In view of Lemma 6, the contribution of the upper horizontal segment gives

$$I_2 = \int_{1-B}^{B} x^{\sigma+it'} \frac{Z'(\sigma+iT)}{Z(\sigma+iT) - a} d\sigma \ll x^{\sigma} \int_{1-B}^{B} \left| \frac{Z'(\sigma+iT)}{Z(\sigma+iT) - a} \right| d\sigma \ll T.$$

It remains to estimate the integral along the left-hand side:

(9)
$$I_3 = O(1) - \int_{1-B+it_0}^{1-B+iT} x^s \frac{Z'(s)}{Z(s)-a} ds.$$

In view of the expression of Z(s) by a Dirichlet series (Lemma 7), we may assume $|Z(1-\sigma-it)| \ge 1/2$ for $\sigma \le 1-B$ and all t; it follows from Lemma 9 above that

$$Z(1 - B + it) \gg \exp(t),$$

as $t \to \infty$. Hence there exists t_0 such that the absolute value of Z(1 - B + it) is greater than 2|a| for $t > t_0$ and we obtain the following expansion into a geometric series:

$$\frac{Z(s)}{Z(s) - a} = \frac{Z'}{Z}(s) \frac{1}{1 - a/Z(s)} = \frac{Z'}{Z}(s) \left(1 + \sum_{k=1}^{\infty} \left(\frac{a}{Z(s)}\right)^k\right).$$

Then, in view of the bound $Z'/Z(1-B+it) \ll t$, for $t \to \infty$ (see Randol [14, Lemma 2]), we get

$$\int_{1-B+it_0}^{1-B+iT} x^s \frac{Z'}{Z}(s) \sum_{k=1}^{\infty} \left(\frac{a}{Z(s)}\right)^k ds \ll x^{1-B} T^2 \sum_{k=1}^{\infty} \left(\frac{1}{\exp(T)}\right)^k \ll 1.$$

By Hejhal [9, Chapter 2, Proposition 4.2] we have

(10)
$$\frac{Z'}{Z}(s) = \sum_{\{P_0\}} \sum_{k=1}^{\infty} \frac{\log(N(P_0))(1 - N(P_0)^{-k})^{-1}}{N(P_0)^{ks}},$$

where the series converges absolutely in the half-plane $\sigma > 1$.

Recall that $x \neq 1$. By the functional equation (Lemma 9) and (10), for the second part of the integral in (9) we get

$$-\int_{1-B+it_0}^{1-B+iT} x^s \frac{Z'(s)}{Z(s)} ds$$

$$= \int_{1-B+it_0}^{1-B+iT} x^s \left(\frac{Z'}{Z}(1-s) - \frac{X'}{X}(s)\right) ds$$

$$= -ix^{1-B} \sum_{P_0} \sum_{k=1}^{\infty} \frac{\log(N(P_0))(1-N(P_0)^{-k})^{-1}}{N(P_0)^{kB}} \int_{t_0}^{T} \left(xN(P_0)^k\right)^{it} dt$$

$$+ ix^{1-B} \int_{t_0}^{T} x^{it} \left(-4\pi(g-1)t + O(1)\right) dt.$$

$$\ll T$$

Thus, $I_3 \ll T$.

So far we have been considering the case $a \neq 1$. Now we consider the case a = 1. In the expression of Z(s) by a Dirichlet series (Lemma 7), we can suppose that $a_2 \neq 0$. Let us define the function:

$$\ell(s) = x_2^s (Z(s) - 1) = 1 + \sum_{n=3}^{\infty} \frac{a_n}{a_2} \left(\frac{x_2}{x_n}\right)^s.$$

Then the logarithmic derivative of ℓ is given by

$$\frac{\ell'}{\ell}(s) = \log x_2 + \frac{Z'(s)}{Z(s) - 1}.$$

Applying contour integration and the above reasoning to this function proves Proposition 2. \Box

Proof of Theorem 1. Our argument goes along the lines of the proof of Theorem 1 in [16]. We use the property that non-trivial a-values are clustered

around the critical line. By formulas (5) and (6), we have

$$\sum_{1 < \gamma_a \le T} \left| \beta_a - \frac{1}{2} \right| = \left\{ \sum_{1 < \gamma_a \le T, |\beta_a - 1/2| > \delta} + \sum_{1 < \gamma_a \le T, |\beta_a - 1/2| \le \delta} \right\} \left| \beta_a - \frac{1}{2} \right|$$

$$\ll \frac{T^2}{\log \log T} + \frac{T^2 (\log \log T)^2}{\log T}.$$

Since the function Z(s) has only a bounded number of nontrivial a-points satisfying $0 < t \le 1$, we get

$$\sum_{0 < \gamma_a < T} \left| \beta_a - \frac{1}{2} \right| \ll \frac{T^2}{\log \log T}.$$

Since, for any real number y,

$$\left|\exp(y) - 1\right| = \left| \int_0^y \exp(t) \, dt \right| \le |y| \max\{1, \exp(y)\},$$

we find

$$|x^{1/2+i\gamma_a} - x^{\beta_a + i\gamma_a}| = x^{\beta_a} \left| \exp\left(\left(\frac{1}{2} - \beta_a\right) \log x\right) - 1 \right|$$

$$\leq \left| \beta_a - \frac{1}{2} \right| |\log x| \max\{x^{\beta_a}, x^{1/2}\}.$$

Furthermore,

$$\frac{1}{N_a(T)} \sum_{0 \leq \gamma_a \leq T} \left| x^{1/2 + i\gamma_a} - x^{\beta_a + i\gamma_a} \right| \leq \frac{X}{N_a(T)} \sum_{0 \leq \gamma_a \leq T} \left| \beta_a - \frac{1}{2} \right|,$$

where $X = \max\{x^B, 1\} |\log x|$. Hence,

$$\frac{1}{N_a(T)} \sum_{0 \le \gamma_a \le T} \left(x^{1/2 + i\gamma_a} - x^{\beta_a + i\gamma_a} \right) \ll \frac{X}{\log \log T}.$$

By Theorem 2,

$$\sum_{0 < \gamma_a < T} x^{\beta_a + i\gamma_a} \ll T.$$

Therefore, as $T \to \infty$,

$$\frac{1}{N_a(T)} \sum_{0 < \gamma \le T} x^{1/2 + i\gamma_a} \ll \frac{1}{\log \log T}.$$

Now let $x=z^m$ with some positive $z\neq 1$ and $m\in\mathbb{N}.$ It follows from the latter formula that

$$\lim_{T \to \infty} \frac{1}{N_a(T)} \sum_{0 < \gamma_a < T} \exp(im\gamma_a \log z) = 0.$$

By Weyl's criterion (Lemma 4), the sequence of numbers $\gamma_a \log z/2\pi$ is uniformly distributed modulo 1. This proves Theorem 1.

Proof of Theorem 3. In view of Weyl's criterion (Lemma 4), the eigenvalues λ_j are uniformly distributed modulo one if, and only if, for any fixed $n \in \mathbb{Z} \setminus \{0\}$,

$$\sum_{0<\lambda_j\leq T^2} x^{i\lambda_j} = o\bigg(\sum_{0<\lambda_j\leq T^2} 1\bigg),$$

where $x = e^{2\pi n}$. By the relation between eigenvalues and nontrivial zeros (2) and by the formula for the number of nontrivial zeros (4), it follows that

$$\sum_{0 < \lambda_j \le T^2 + \frac{1}{4}} 1 = \sum_{0 < t_j \le T} 1 = (g - 1)T^2 + O\left(\frac{T}{\log T}\right).$$

First, we consider the case x > 1. If T is not an ordinate of a zero, then

(11)
$$\sum_{0<\lambda_{j}< T^{2}+\frac{1}{4}} x^{i\lambda_{j}} = \sum_{0< t_{j}< T} x^{\frac{i}{4}+it_{j}^{2}} = \sum_{-T<-t_{j}<0} x^{\frac{i}{4}+it_{j}^{2}}$$
$$= \frac{1}{2\pi i} \int_{\square} x^{\frac{i}{4}+is^{2}} \frac{Z'(s+\frac{1}{2})}{Z(s+\frac{1}{2})} ds + O(1)$$
$$=: I_{1} + I_{2} + I_{3} + I_{4} + O(1),$$

where the integration is over the counterclockwise oriented rectangular contour \Box in the lower half-plane with vertices 1/T - i, -1 - i, -1 - iT, 1/T - iT.

Clearly, for the integral on the upper horizontal line segment of \square we have $I_1 \ll 1$.

For the integral I_2 over the left vertical line we use the bound $Z'/Z(-1+iT) \ll T$, $T \to \infty$ (Randol [14, Lemma 2]). Then, in view of $x^{is^2} = x^{-2\sigma t + i(\sigma^2 - t^2)}$, we deduce $I_2 \ll 1$.

For the integral I_3 over the lower horizontal line, we use once more formula (7) and derive

$$I_{3} = \int_{-1-iT}^{1/T-iT} x^{\frac{i}{4}+is^{2}} \frac{Z'(s+\frac{1}{2})}{Z(s+\frac{1}{2})} ds \ll \int_{-1-iT}^{1/T-iT} \left| \frac{Z'(s+\frac{1}{2})}{Z(s+\frac{1}{2})} \right| ds$$

$$= \sum_{|\rho-s_{0}| \leq \frac{r}{2}} \int_{-1}^{1/T} \frac{1}{\sqrt{\sigma^{2}+(T-\gamma)^{2}}} d\sigma + O(T)$$

$$= \sum_{|\rho-s_{0}| \leq \frac{r}{2}} \left(\log \left(\frac{1}{T} + \sqrt{(T-\gamma)^{2} + \frac{1}{T^{2}}} \right) - \log \left(1 + \sqrt{(T-\gamma)^{2} + 1} \right) \right) + O(T)$$

$$\ll T \log T.$$

Further, the integral I_4 can be estimated by

$$I_4 = ix^{i\sigma^2} \int_{-T}^{-1} x^{-2\sigma t - it^2} \frac{Z'}{Z} \left(\frac{1}{2} + \frac{1}{T} + it\right) dt.$$

This proves the assertion of the theorem in the case n > 0.

In order to prove the assertion in the case $n \le 0$, we choose the rectangular contour in the upper half-plane with vertices -1+i, 1/T+i, 1/T+iT, -1+iT in formula (11) and proceed as in the previous case. This proves Theorem 3.

Acknowledgment. The first author is supported by grant No. MIP-049/2014 from the Research Council of Lithuania.

References

- A. Akbary and M. R. Murty, Uniform distribution of zeros of Dirichlet series, Anatomy of integers (J.-M. De Koninck et al., eds.), CRM workshop, Montreal, Canada, March 13–17, 2006, CRM Proceedings and Lecture Notes, vol. 46, Amer. Math. Soc., Providence, RI, 2008, pp. 143–158. MR 2437971
- [2] P. Drungilas, R. Garunkštis and A. Kačėnas, Universality of the Selberg zeta-function for the modular group, Forum Math. 25 (2013), no. 3, 533–564. MR 3062863
- [3] P. D. T. A. Elliott, The Riemann zeta function and coin tossing, J. Reine Angew. Math. 254 (1972), 100–109. MR 0313206
- [4] K. Ford, K. Soundararajan and A. Zaharescu, On the distribution of imaginary parts of zeros of the Riemann zeta function. II, Math. Ann. 343 (2009), no. 3, 487–505. MR 2480701
- [5] A. Fujii, On the uniformity of the distribution of the zeros of the Riemann zetafunction, J. Reine Angew. Math. 302 (1978), 167–205. MR 0511699
- [6] R. Garunkštis, On the Backlund equivalent for the Lindelöf hypothesis, Adv. Stud. Pure Math. 49 (2007), 91–104. MR 2405600
- [7] R. Garunkštis and R. Šimėnas, The a-values of the Selberg zeta-function, Lith. Math. J. 52 (2012), no. 2, 145–154. MR 2915767
- [8] G. H. Hardy and M. Riesz, The general theory of Dirichlet's series, Cambridge University Press, Cambridge, MA, 1915. MR 0185094
- [9] D. A. Hejhal, The Selberg trace formula for PSL(2, ℝ), vol. 1, Lecture Notes in Mathematics, vol. 548, Springer, Berlin, 1976. MR 0439755
- [10] E. Hlawka, Uber die Gleichverteilung gewisser Folgen, welche mit den Nullstellen der Zetafuncktionen zusammenhängen, Österreich. Akad. Wiss. Math.-Natur. Kl. Sitzungsber. II 184 (1975), 459–471. MR 0453661
- [11] E. Landau, Über den Wertevorrat von $\zeta(s)$ in der Halbebene $\sigma>1$, Nachr. Ges. Wiss. Göttingen Math.-Phys. Kl. (1933), 81–91.
- [12] H. Rademacher, Fourier analysis in number theory, Cornell Univ., Ithica, NY, 1956, 25 pages. Also in: Collected papers of Hans Rademacher, vol. II, Mathematicians of Our Time, vol. 4, MIT Press, Cambridge, MA, 1974, pp. 434–458. MR 0505096
- [13] B. Randol, Small eigenvalues of the Laplace operator on compact Riemann surfaces, Bull. Amer. Math. Soc. (N.S.) 80 (1974), 996–1000. MR 0400316
- [14] B. Randol, On the asymptotic distribution of closed geodesics on compact Riemann surfaces, Trans. Amer. Math. Soc. 233 (1977), 241–247. MR 0482582
- [15] B. Randol, The Riemann hypothesis for Selberg's zeta-function and the asymptotic behavior of eigenvalues of the Laplace operator, Trans. Amer. Math. Soc. 236 (1978), 209–223. MR 0472728

- [16] J. Steuding, The roots of the equation $\zeta(s) = a$ are uniformly distributed modulo one, Anal. probab. methods number theory (E. Manstavičius et al., eds.), TEV, Vilnius, 2012, pp. 243–249. MR 3025474
- [17] E. C. Titchmarsh, The theory of the Riemann zeta-function, Clarendon Press, Oxford, 1988. MR 0882550
- [18] H. Weyl, Sur une application de la théorie des nombres à la mécaniques statistique et la théorie des pertubations, Enseign. Math. (2) 16 (1914), 455–467.
- [19] H. Weyl, Über die Gleichverteilung von Zahlen mod. Eins, Math. Ann. 77 (1916), 313–352. MR 1511862

RAMŪNAS GARUNKŠTIS, DEPARTMENT OF MATHEMATICS AND INFORMATICS, VILNIUS UNIVERSITY, NAUGARDUKO 24, LT-03225 VILNIUS, LITHUANIA

E-mail address: ramunas.garunkstis@mif.vu.lt

JÖRN STEUDING, DEPARTMENT OF MATHEMATICS, WÜRZBURG UNIVERSITY, AM HUBLAND, 97074 WÜRZBURG, GERMANY

 $E ext{-}mail\ address: steuding@mathematik.uni-wuerzburg.de}$

RAIVYDAS ŠIMĖNAS, DEPARTMENT OF MATHEMATICS AND INFORMATICS, VILNIUS UNIVERSITY, NAUGARDUKO 24, LT-03225 VILNIUS, LITHUANIA, AND INSTITUTE OF MATHEMATICS AND INFORMATICS, VILNIUS UNIVERSITY, AKADEMIJOS 4, LT-08663 VILNIUS, LITHUANIA

 $E\text{-}mail\ address{:}\ \texttt{raivydas.simenas@mif.stud.vu.lt}$