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THE «-POINTS OF THE SELBERG ZETA-FUNCTION ARE
UNIFORMLY DISTRIBUTED MODULO ONE

RAMUNAS GARUNKSTIS, JORN STEUDING AND RAIVYDAS SIMENAS

ABSTRACT. Let Z(s) be the Selberg zeta-function associated with
a compact Riemann surface. We prove that the imaginary parts
of the nontrivial a-points of Z(s) are uniformly distributed mod-
ulo one. We also consider the question whether the eigenvalues
of the corresponding Laplacian are uniformly distributed modulo
one.

1. Introduction

Let s =0 + it be a complex variable and X a compact Riemann surface
of genus g > 2. The surface X can be regarded as a quotient I'\H, where
I' C PSL(2,R) is a strictly hyperbolic Fuchsian group and H is the upper
half-plane of C. Then the Selberg zeta-function associated with X =T\ H is
defined by (see Hejhal [9, Section 2.4, Definition 4.1])

(1) Z(s)= [T IT(1 = N(Po)~7").

{Py} k=0

Here {Py} is the primitive element of I' and N(FPy) = a? if the eigenvalues
of Py are a and a1 with |a| > 1. Equation (1) defines the Selberg zeta-
function in the half-plane ¢ > 1. The function Z(s) can be extended to an
entire function of order 2 (Hejhal [9, Section 2.4, Theorem 4.25]), with so-
called trivial zeros at 1,0,—1,—2,... and nontrivial zeros on the critical line
o =1/2 with at most finitely many exceptions of zeros on the real segment
0 < s <1 (Hejhal [9, Section 2.4, Theorem 4.11] and Randol [13]). All the
nontrivial zeros s; =1/2 £ it; correspond to eigenvalues

(2) 0<\j=s;(1—s;)=1/4+1
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of the hyperbolic Laplacian A on X =T\H (Hejhal [9, Section 2.4, Theo-
rem 4.11]. Moreover, the Selberg zeta-function satisfies the following func-
tional equation (Hejhal [9, Section 2.4, Theorem 4.12])

(3) Z(s) = X(5)2(1 - 5),

where
s—1/2
X(s) =exp <47r(g -1) / vtan(mv) dv) .
0

Let a be a complex number. Solutions of Z(s) = a are called a-points of
Z(s). From definition (1) and the functional equation (3), it follows that there
are positive constants A = A(a) and 7 = 7(a) such that Z(s) #a for o > A
and

Z(s)#a forc<1—A and |[t|>7T

(see [7]). An a-point is called nontrivial if it lies in the strip 1 — A < o < 4;
nontrivial a-points are denoted by p, = 84 + iY,. Any a-point inside in the
region 0 <1 — A and [t| <7 is called a ¢rivial. Denote by N,(T') the number
of nontrivial a-points (counted with multiplicities) of Z(s) in the region 7 <
t <T. In [7] it was proved that, for a # 1,

(4) No(T) = (9= )T +o(T)

and, for a =1,
T
Ni(T)=(g—1)T? — Gy log N (Foo) +o(T),

where N(Ppo) =minp,{N(Fp)}. If a=0, then formula (4) is known to hold
with a better error term O(T/logT') (Hejhal [9, Section 2.8, Theorem 8.19]).
It is known that almost all nontrivial a-points are arbitrary close to the
critical line o = 1/2. More precisely, let N, (6,T) and N (8,T) denote the
number of nontrivial a-points of Z(s) lying in the corresponding regions o <
1/2—46,1<t<T,respectively 0 >1/2+ 4§, 1 <t <T. Furthermore, define

NG(8,T) = Na(T) = (Ng (0,T) + N (8,7)).
Then, for § = (loglogT)?/logT we have ([7, Theorem 3])

T2
N (6,T)+ N (6,T) < ——
(5) a (6’ )+ a (6) )<< IOgIOgT
and
0 2 T2
NO(8,T) = (g — 1)T ).
) 200 = -1+ 0 (i)

In [6] the connection between the distribution of a-points and the growth
of Z(s) was considered. The value distribution of the Selberg zeta-function
associated to the modular group in light of the universality theorem was in-
vestigated in [2].
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Here we shall prove:

THEOREM 1. Let a € C. The imaginary parts of nontrivial a-points of the
Selberg zeta-function Z(s) are uniformly distributed modulo one.

For the Riemann zeta-function, it was Rademacher [12] who proved under
the assumption of the truth of the Riemann hypothesis that the imaginary
parts of the nontrivial zeros are uniformly distributed modulo one; Elliott
[3] and (independently) Hlawka [10] gave unconditional proofs of this result.
Further extensions and generalizations can be found in the articles [1], [4],
and [5]; the analogue of Theorem 1 has been proved in [16].

The proof of Theorem 1 relies on the following proposition.

PROPOSITION 2. Let x be a fixed positive real number not equal to 1. Then,
as T — oo,

> 2 =0(T).

0<~y<T
Furthermore, we consider the eigenvalues A; of the hyperbolic Laplacian A
on X.
THEOREM 3. Let x = e?™, n € Z. The following two statements are equiv-
alent:

(1) the eigenvalues A; are uniformly distributed modulo one;
(2) the following bounds are valid

T /
27" (1 1
/1 x2t/T+zt27 (5 + T it> dt = O(TQ) forn>0

and

T 27" (1 1
/1 2t/ T—it 7(§+T+it) dt:o(Tg) for n <.

In the next section, we state lemmas. Theorems 1, 3, and Proposition 2
are proved in Section 3.

2. Preliminaries
In the proof of Theorem 1, we will use Weyl’s criterion.

LEMMA 4 (Weyl’s criterion). A sequence of real numbers y, is uniformly
distributed modulo one if, and only if, for each integer ¢ # 0,

n

lim l E 2Ty = (),
n—oo n
j=0

For the proof, see Weyl [18], [19].
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LEMMA 5. If f(s) is analytic and f(so) #0 with
f(s)
fls0)| =
in {s:|s—so| <r} with M > 1, then
f(s) 1 M
RNt

, 2P

M

r

for |s —so| < §, where C' is some constant and p runs through the zeros of
f(s) such that |p— so| < 5.

For the proof, see Titchmarsh [17, Section 3.9].
Lemma 5 is applied in the proof of the next lemma.

LEMMA 6. Let a € C. Let B,b>1/2 be such that Z(s) # a for o < —b and
o>B—1. If T is such that Z(oc +iT)#a for 1 —b< o < B, then

/B Z' (o +iT)
1—b Z(U + ZT) —a
Proof. In Lemma 5, we choose so = B+4T and r =4(B — (1 —10)). We can

take M = ¢T' with some ¢ > 0 (see Randol [15, Lemma 2] or Garunkstis [7,
comment above Theorem 5]). Then Lemma 5 gives

’da < T.

Z'(s) 1
=% T
(7) 70 —a > T o),
‘Pa_SO‘S%
for |s —so| < §. Thus,
/B Z’(aji—iT) o
1-p| Z(c+iT) —a
B 1
P P
> [ 1
= do+O(T)
pazsates 17 V(7 = Bal? £ (T = 7)?
= > (log(B—fu+ V(T =)+ (B~ F5.)?)
|pa_30|§%
—log(1=b—=Bo + V(T —7a)? + (1 =b = fa)?)) + O(T)
«T
since the disc |pa — so| < § contains O(T') many a-points. O

In the following lemma, we express the Selberg zeta-function by a general
Dirichlet series.
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LEMMA 7. There is an unbounded sequence 1 < xo < x3--- of real numbers

and real numbers a,, n=2,3,..., such that
(8) =1+ Z
n=2 2

where the Dirichlet series converges absolutely for o > 1.

Proof. Multiplying the Euler product, we obtain a formal Dirichlet series

HHI— (Py)~*7%) —1+Z—.

{Po} k=0

In view of the properties of Dirichlet series (Hardy and Riesz [8, Section 2.2,
Theorem 1)), it is enough to prove that the series (8) converges absolutely at
s =0 > 1. For any positive x, we have that

1+ > lanl 11 ﬁ(1+N(P0)“’"f).
zn <z In {Py} k=0

In the last formula, the product converges for o > 1 since (Hejhal [9, Sec-
tion 1.2, Proposition 2.5])

This proves the lemma. O

The next lemma is essentially due to Landau [11] and deals with general
Dirichlet series. Let 1 =z <9 < --- be an unbounded sequence X of real
numbers and define

S={Tk, Ty, T, - mENk; €N, ...k, € N}

as the set of all possible products of elements of the sequence X. Let 1 =y; <
Yo < --- be an ordered sequence of all different numbers of S.

LEMMA 8. For n € N let a, and b, be complexr numbers such that the
general Dirichlet series A(s) =Y, anz,® and B(s) =), byx,* converge ab-
solutely in the right half-plane o > o¢. If by # 0, then there exist a real number

o1 > 09 and complex numbers c,, n=1,2,..., such that
A(s) = ¢,
B(s) =

and the series converges absolutely for o > 0.
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Proof. Without loss of generality, we assume that by = 1. Then there ex-
ists o1 > 0g such that |B(s) — 1| < 1, for o > o1, and the series of B(s) —1
converges absolutely. Thus, there exist complex numbers d,, such that

1 %) . 0 oo %

where the last series converges absolutely for ¢ > o;. Now the lemma follows
in view of the absolute convergence of the series for A(s) and B(s)~!. O

The following lemma describes the asymptotic behavior of the factor X (s)
from the functional equation (3).

LEMMA 9. Fort>1,

X(s)= exp<27ri(g _ 1)(5 _ %)2 N @

+0<ejﬂ> *O((U@W) +0((“€2}T{2)t)> (t — 00)

uniformly in o.

Proof. This is Lemma 1 in [7]. O

3. Proofs

Proof of Proposition 2. First, we may assume a # 1. Let B be a sufficiently
large fixed number, such that B > A, where A is defined in Introduction. Then
the strip 1 — B < ¢ < B contains all the nontrivial a-points and a finite number
of trivial a-points.

Next, let T' be such that there are no a-points on the line t =7. Using the
residue theorem and the fact that the logarithmic derivative of Z(s) — a has
simple poles at each a-point p, with residue equal to the order of p,, we get

1 A

g xp“:—,/xsi(s) ds+ O(1);
2wt Jo Z(s)—a

0<v, <T

here O denotes the counterclockwise oriented rectangular contour with ver-
tices B+1, B+1i1T,1— B+iT,1— B+1i. If the line t =1 contains a-points,
we slightly alter the lower edge of the rectangular contour OJ.

In order to evaluate the integral, we write

Z/(S) B+iT 1—B+:iT 1—-B+1i B+ Z/(S)
/a:sids:{/ + +/ +/ }msids
o Z(s)—a B+i B+iT 1—B+iT 1—B+i Z(s)—a
4
= I
j=1

We shall evaluate each I; individually.
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In view of Lemmas 7 and 8, we may suppose that the logarithmic derivative
of Z(s) — a has an absolutely convergent Dirichlet series expansion for o > B,
namely
Z'(s) =
Z(s)—a us
Now we interchange summation and integration on the right-hand side of the
rectangle, which gives

I- ch () dS—ch [ espl(8 4 iyt )

B+1i Yn

s
n=2 Yn

:chiexp(Blog(x/yn))/l exp(itlog(x/yn)) dt

By N
T
-/1 exp(itlog(z/yn)) dt
- T-1 if x =y,
~ (D (T og(x/yn)) — exp(ilog(e/ya)))/(ilog(x/yn))  otherwise,
we obtain

I =ic(x)T 4+ O(1).
Here ¢(z) equals the Dirichlet coefficient ¢, if =y, and 0 otherwise.
Next, we estimate the integrals along the horizontal segments. Clearly,
I, =0(1). In view of Lemma 6, the contribution of the upper horizontal
segment gives

B / . B / .
v Z'(o+iT) Z' (o +iT)
I, = ot _Z 7~ 7 "/ —\d T.
? ~/1—Bx Z(o+iT)—a o 1-B|Z(c+iT) —a 7
It remains to estimate the integral along the left-hand side:
1—B+iT A
(9) I3 =0(1) —/ AR
1—B+ito Z(s)—a

In view of the expression of Z(s) by a Dirichlet series (Lemma 7), we may
assume |Z (1 —o —it)] > 1/2 for 0 <1— B and all ¢; it follows from Lemma 9
above that

Z(1— B+ it) > exp(t),
as t — oo. Hence there exists to such that the absolute value of Z(1 — B +it)
is greater than 2|a| for t >ty and we obtain the following expansion into a

geometric series:
Z(s) z 1 z, >/ a \"
Zo)-a 2= ajz() “(”;(zw) )
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Then, in view of the bound Z'/Z(1 — B +it) < t, for t — oo (see Randol [14,
Lemma 2]), we get

1—B+:iT Z/ e o] a k B e o] 1 k
S — —_— —°T 1.
o Z(Sg(zw) e ,;<exp<T>> <

— B+itg

By Hejhal [9, Chapter 2, Proposition 4.2] we have

1 o o Y _ Y —k\—1
0) Z ()= 3 30 BN AN (R

{Po} k=1 N(Fo)** 7

where the series converges absolutely in the half-plane o > 1.
Recall that x # 1. By the functional equation (Lemma 9) and (10), for the
second part of the integral in (9) we get

1-B+iT
3 / G
1— B+itg Z(s)

1—-B+iT / /
Z X
= 2% —(1—35)— —(s) | ds
/1—B+it0 (Z( ) X ( )>

— lo 0 - o))t T it
:_ml_BZZIg(N(P)]zf((l N(Py)™") /(xN(P())k) dt

P)kB
Py k=1 ) to

+iz! =B /T 2" (—4m(g — 1)t + 0(1)) dt.

to
< T.

Thus, Is < T.

So far we have been considering the case a # 1. Now we consider the case
a=1. In the expression of Z(s) by a Dirichlet series (Lemma 7), we can
suppose that as # 0. Let us define the function:

Then the logarithmic derivative of ¢ is given by

v, Z'(s)
Z(s) =logzy + 720 -1

S

Applying contour integration and the above reasoning to this function proves
Proposition 2. U

Proof of Theorem 1. Our argument goes along the lines of the proof of
Theorem 1 in [16]. We use the property that non-trivial a-values are clustered
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around the critical line. By formulas (5) and (6), we have

1
I S D VD D
1<~ <T 1<va <T,|Ba—1/2|>8 1<~ <T,|Ba—1/2|<5
T2 T2 (loglog T)?
< (loglog T)*
loglogT logT

Since the function Z(s) has only a bounded number of nontrivial a-points
satisfying 0 <t <1, we get

2.

0<v. <T

ﬁa_i

!

/Ba_

1 < T2
2 loglogT"

Since, for any real number y,

lexp(y) — 1] = ‘/Oy exp(t) dt’ < Iyl max{1,exp(y)},

we find
A A 1
|x1/2+wa _ pPative| — pBa exp((é _ 5a> logm) _ 1‘
1
<|Ba— i‘logﬂmax{xﬂa,xlﬂ}.
Furthermore,
1 1/241i, Bat+iv X 1
Ya __ a Ya < .
Na(T) Z |$ €T — Na(T) Z /Ba 9 ’
0<7a<T 0<7a<T
where X = max{z?, 1}|logz|. Hence,
1 1240 _ gfative X
No(T) Z (v * ) < loglog T

0<v <T
By Theorem 2,
Z ghativa T
0<7a<T
Therefore, as T — oo,

- 1
1/244vq
Z . < loglogT"

Na(T) 0<vo<T
Now let z = 2™ with some positive z # 1 and m € N. It follows from the latter

formula that

1
lim ———— exp(imy, logz) = 0.
T—o0 Na(T) 0<’YZaST

By Weyl’s criterion (Lemma 4), the sequence of numbers v, log z/27 is uni-
formly distributed modulo 1. This proves Theorem 1. O
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Proof of Theorem 3. In view of Weyl’s criterion (Lemma 4), the eigenval-
ues A; are uniformly distributed modulo one if, and only if, for any fixed
n € Z\{0},

E i = 0( E 1),
0<\; <T?2 0<\; <T?

where z = €2™. By the relation between eigenvalues and nontrivial zeros (2)
and by the formula for the number of nontrivial zeros (4), it follows that

o= ) 1(gl)T2+O<1OZT>.

0<A;<T2+1 0<t; <T

First, we consider the case z > 1. If T' is not an ordinate of a zero, then

(11) Z 2N — Z s Z L hrit?

0<>\].<T2+% 0<tj<T —T<—tj<0
1 i 24 (s+
:f/xz+zsz¥d +0(1)
2 Jo Z(s+1)

=: Il +IQ +13+I4+O(1),

where the integration is over the counterclockwise oriented rectangular con-
tour OJ in the lower half-plane with vertices 1/T' —4, —1—¢, =1 —4T, 1/T —T.

Clearly, for the integral on the upper horizontal line segment of [] we have
L 1.

For the integral I5 over the left vertical line we use the bound Z'/Z(—1 +
iT) < T, T — oo (Randol [14, Lemma 2]). Then, in view of 2 =
x_Q”“‘i(”z_tz), we deduce I, < 1.

For the integral I3 over the lower horizontal line, we use once more formula
(7) and derive

YT—iT o YT—iT| gr( 4 1
[3:/ it ¥ds<</ (s 12) ds
1—iT Z(s+1) —1—ir | Z(s+3)

:|p§<r/1/T\/02 (T —7)? 7 17+ O
= > <log(%+ (T—v)—&-ﬁ)

[p—s0l<5

—log(1+ /(T —7)*+ 1)) +0(T)

< TlogT.



THE a-POINTS OF THE SELBERG ZETA-FUNCTION 217

Further, the integral I, can be estimated by

-1 !
) 27" (1 1
I4 = ’i,IZU2 [T $720t71t27 <2 + T + Zt) dt

This proves the assertion of the theorem in the case n > 0.

In order to prove the assertion in the case n <0, we choose the rectangular
contour in the upper half-plane with vertices —1+14, 1/T 414, 1/T +4T, —1+iT
in formula (11) and proceed as in the previous case. This proves Theorem 3.

g
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