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SOME PROPERTIES OF HÖLDER SURFACES IN THE
HEISENBERG GROUP

ENRICO LE DONNE AND ROGER ZÜST

Abstract. It is a folk conjecture that for α> 1/2 there is no α-
Hölder surface in the subRiemannian Heisenberg group. Namely,

it is expected that there is no embedding from an open subset

of R
2 into the Heisenberg group that is Hölder continuous of

order strictly greater than 1/2. The Heisenberg group here is

equipped with its Carnot–Carathéodory distance. We show that,

in the case that such a surface exists, it cannot be of essential

bounded variation and it intersects some vertical line in at least
a topological Cantor set.

1. Introduction

As phrased by Gromov in [4, §0.5.C], the Hölder mapping problem between
Carnot–Carathéodory spaces (CC spaces, for short) is the following. Given
two CC spaces V and W and a real number α ∈ (0,1), describe the spaces
of Cα maps f : W → V . In [4, §2.1], Gromov showed that if V is a contact
3-dimensional CC manifold and α > 2/3, then there is no f : R2 → V that is a
Cα embedding. Here and in what follows, R2 is endowed with the Euclidean
distance. Gromov proved such a nonexistence result by showing the nontrivial
fact that any topological surface in V has Hausdorff dimension at least 3.

Giving examples of C1/2 embeddings into contact 3-dimensional CC man-
ifolds is a triviality. Indeed, by the ball–box theorem, any smooth embedding
would give an example. Since the work of Gromov, it has been an open
problem whether there is any Cα embedding f : R2 ↪→ V with α ∈ (1/2,2/3].

We focus on the example of a standard contact structure, namely the sub-
Riemannian Heisenberg group. Since all contact 3-manifolds are locally con-
tactomorphic, there is no loss for generality, being the problem local. Hence,
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we consider the contact structure on R
3 with coordinates p= (px, py, pz) where

the horizontal distribution is given by

span

{
∂1 −

py
2
∂3, ∂2 +

px
2
∂3

}
.

Since we are only interested in Hölder continuity, instead of using a given CC
distance, we may use any other distance that is biLipschitz equivalent to it.
Our choice is the following: for p, p′ ∈R

3,

d
(
p, p′

)4
=

((
p′x − px

)2
+

(
p′y − py

)2)2
+

(
p′z − pz −

1

2

(
pxp

′
y − pyp

′
x

))2

.

We denote by H the metric space (R3, d), while R
2 will always be con-

sidered with the Euclidean distance. We refer to H as the (subRiemannian)
Heisenberg group.

In our discussion a very special role is played by the horizontal projection,
that is, the map

π : R3 →R
2, π(x, y, z) := (x, y).

Notice that π : H→R
2 is 1-Lipschitz.

As a first result, we show that, if α > 1/2, there are no Cα surfaces in
H with the extra property of having essentially bounded variation. For this
latter notion, we follow [7] and review it in Definition 1.3.

Theorem 1.1. Let U ⊂R
2 be an open set in the plane. Assume there exists

F : U →H that is a Cα embedding for some α> 1
2 . Then:

(i) the map π ◦F : U →R
2 is not of essentially bounded variation (cf. Defi-

nition 1.3);
(ii) in particular, ∫

R2

#
{
(π ◦ F )−1(q)

}
dq =∞.

We remark that in the assumption that a map F : U →H is a Cα embed-
ding there is no requirement on Hölder regularity of the inverse map. Namely,
the map F−1 : F (U)→ U is only assumed to be continuous.

Our second result gives some topological properties of such Cα surfaces (if
α > 1/2). Recall that a topological Cantor set is a metrizable space that is
compact, totally disconnected, and has no isolated points. In other words, it
is a homeomorphic image of the standard Cantor set.

Theorem 1.2. Let U ⊂R
2 be an open set in the plane. Assume there exists

F : U →H that is a Cα embedding for some α> 1
2 . Then:

(i) the projection π(F (U)) has nonempty interior;
(ii) there is a dense set of points q ∈ π(F (U)) such that (π ◦F )−1(q) contains

a topological Cantor set.
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Notice that, since F is an embedding, Theorem 1.2 is claiming that there
exists vertical lines (i.e., sets of the form π−1(q)) that intersect the surface
F (U) in a Cantor set.

We recall now what it means for a map ϕ : V →R
n defined on a bounded

open set V ⊂R
n to be of essentially bounded variation. Since for us it will be

the case, we may assume that ϕ has a continuous extension to the compact
set V . Consider a point q ∈R

n. A set D is an indicator domain for (q,ϕ,V )
if:

(1) D is a connected open subset of Rn,
(2) D ⊂ V ,
(3) q /∈ ϕ(∂D) and
(4) deg(q,ϕ,D) �= 0.

Here we denote by deg the mapping degree, see the next section for some
basic facts. We define a multiplicity function at q by

K(q,ϕ,V ) := sup
S

∑
D∈S

∣∣deg(q,ϕ,D)
∣∣,

where the supremum is taken over all collections S of pairwise disjoint indi-
cator domains for (q,ϕ,V ), see [7, Subsection II.3.2].

Definition 1.3 (Essentially bounded variation). Let V ⊂ R
n be an open

bounded set. A continuous map ϕ : V →R
n is said to be of essentially bounded

variation if ∫
K(q,ϕ,V )dq <∞,

whereK(·, ϕ,V ) denote the multiplicity function, which we just defined above.

Recall that by [7, Subsection II.3.2, Theorem 3], the functions K(q,ϕ,V )
is nonnegative and lower semi-continuous in q and therefore also Lebesgue
measurable.

The paper is organized as follows. In Section 2, we review some notions and
some previous results. A part from setting the terminology, we recall some
properties of mapping degree, winding number, and currents. We remark
how, on the plane, a Hölder curve of order strictly greater than 1/2 induces a
well-defined 1-current. In Section 3, we prove Theorem 1.2. Initially we recall
the observation that in the subRiemannian Heisenberg group a Hölder curve
of order strictly greater than 1/2 is uniquely determined by its projection. In
other words, the projection can be uniquely lifted and such a lift is done via
the use of currents or via the use of winding numbers and areas of components
of the complement of the curve, see Lemma 3.2. Subsequently, we focus on
α-Hölder surfaces, with α> 1/2. In Lemma 3.3 we show the first crucial fact:
on each surface there are closed curves that have positive winding number
with respect to some vertical line. From such a lemma, it will be easy to
show Theorem 1.2, see Theorem 3.6 for the construction of the Cantor set.
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In Section 4, we prove Theorem 1.1. Parts (i) and (ii) of the theorem are
discussed in Theorem 4.2 and Corollary 4.3, respectively. Actually, property
(ii) of Theorem 1.1 follows from property (i) by a general fact. Namely,
if a map has bounded variation, then it has essentially bounded variation.
We give a self-contained proof of this latter fact, for our specific case, in
Section 5.

2. Preliminaries: Euclidean Hölder curves and induced currents

Let us first fix some notation. If (X,dX) is a metric space and A ⊂ X ,
then B(A,r) := {x ∈X : dX(A,y)≤ r} and U(A,r) := {x ∈X : dX(A,y)< r}
denote the closed and the open r-neighborhoods of A, respectively. If A
consists of a single point p these sets are the closed and the open balls of
radius r centered at p.

Next, we recall the definition of Hölder maps.

Definition 2.1 (Hölder constant H(f)). For α ∈ (0,1), a map f : X → Y
between metric spaces (X,dX) and (Y,dY ) is said to be Hölder of order α (or
simply, we say that f is Cα) if there exists a constant K <∞ such that, for
all x,x′ ∈X ,

dY
(
f(x), f

(
x′)) ≤K

(
dX

(
x,x′))α.

In this case, the infimum over all such K is denoted by Hα(f).

Let U ⊂R
n be a bounded open set and ϕ : U →R

n a continuous map. For
every point q ∈R

n \ϕ(∂U) the mapping degree of ϕ at q is an integer denoted
by deg(q,ϕ,U). For the exact definition and the following properties, we refer
to [6].

• (Locality property) If K ⊂ U is closed and q /∈ ϕ(K ∪ ∂U), then

deg(q,ϕ,U) = deg(q,ϕ,U \K).

• (Sum property) Let U be a disjoint union of open sets Ui. Then

deg(q,ϕ,U) =
∑
i

deg(q,ϕ,Ui),

in case that all the degrees are defined.
• (Homotopy invariance) Let H : [0,1]× U → R

n be a continuous map and
let γ : [0,1] → R

n be a continuous path such that γ(t) /∈ Ht(∂U) for 0 ≤
t ≤ 1. Then deg(γ(t),Ht,U) does not depend on t, see [6, Chapter IV,
Proposition 2.4]. An immediate consequence is that the degree deg(·, ϕ,U)
is constant on connected components W of R

n \ ϕ(∂U) and we use the
notation deg(W,ϕ,U) to denote this value.

• (Multiplication formula) Let U,V ⊂R
n be bounded open sets. Let ϕ : U →

R
n and ψ : V → R

n continuous maps such that ϕ(U) ⊂ V . The open set
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V \ ϕ(∂U) decomposes into countably many connected components Vl. If
q ∈R

n \ ψ(∂V ∪ϕ(∂U)), then

deg(q,ψ ◦ϕ,U) =
∑
l

deg(q,ψ,Vl)deg(Vl, ϕ,U),

see [6, Chapter IV, Proposition 6.1].

Let ϕ,ψ : U →R
n be two continuous extensions of a map γ : ∂U →R

n and
q /∈ γ(∂U), then

deg(q,ϕ,U) = deg(q,ψ,U),

see [6, Chapter IV, Proposition 2.6]. Such an extension of γ always exists by
the Tietze extension theorem. The winding number of q with respect to γ is
denoted by wind(q, γ) and defined as the degree of such an extension. The
winding number is constant on connected subsets of Rn \ im(γ). This allows
to define wind(W,γ) for every W ∈ co(γ). Here and afterwards, we denote by
co(γ) the collection of all connected components of the set Rn \ im(γ).

As an illustration of the winding number consider a map γ : S1 →R
2 \{0}.

Then γ induces a homomorphism on homology γ∗ : H1(S
1)→H1(R

2 \ {0}).
Since H1(S

1)
H1(R
2 \ {0})
 Z we have γ∗(1) = k for some k ∈ Z. In this

case, γ is homotopic to s �→ sk and k =wind(0, γ).
In our approach, we will occasionally make use of the language of currents.

We refer to [1] and [5] for a systematic introduction to the subject in metric
spaces. Let us review some notation. For k ∈N and a locally compact metric
space X , we denote by Dk(X) the collection of k-dimensional currents in X
as defined in [5]. The currents we will consider live in Euclidean spaces, that
is, X = R

n for some n ∈ N, and have compact support. For this reason, the
standard reference by Federer also serves our purpose and one can replace
Dk(R

n) by k-dimensional flat chains in R
n as defined in [2, Subsection 4.1.12]

without any complication. By M we denote the mass of a current. If f ∈
L1(Rn) has compact support, then [f ] ∈Dn(R

n) is the n-current that acts on
compactly supported differential n-forms ω ∈Ωn

c (R
n) as

[f ](ω) =

∫
Rn

fω.

This current has finite mass M([f ]) = ‖f‖L1 . If A ⊂ R
n is measurable and

bounded, then [A] denotes the current induced by the characteristic function
of A. For k ≥ 1 the space of k-currents is naturally equipped with a boundary
operator ∂ : Dk(R

n)→Dk−1(R
n) by the defining equation ∂T (ω) = T (dω) for

ω ∈Ωk−1
c (Rn). A current T ∈Dn(R

n) with finite mass can be restricted to a
measurable subset A⊂R

n, the resulting current T �A ∈Dn(R
n) has also finite

mass. If γ : X → Y is a map, then γ# : D∗(X)→D∗(Y ) is the push forward
operator on currents (in the smooth setting one has (γ#T )(ω) = T (γ#ω)).
A priori, the push forward is only defined when γ is Lipschitz, however, the
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work of the second author extends this operator to a class of Hölder maps by
reducing its domain to normal currents, see [9] or [10] for more details.

The following proposition relates currents in R
n with maps and their de-

grees. It is a bit more general than what we will need in the process, but we
state it here for completeness.

Proposition 2.2 (Proposition 4.6 of [9]). Let U ⊂ R
n be a bounded open

set with finite perimeter. Let γ : ∂U →R
n be a map that is Hölder continuous

of order α > n−1
n . Then γ#(∂[U ]) has a unique filling Tγ in Dn(R

n) with
compact support, Tγ has finite mass, and

Tγ�
(
R

n \ im(γ)
)
=

[
wind(·, γ)

]
=

∑
W∈co(γ)

wind(W,γ)[W ],

M
(
Tγ�

(
R

n \ im(γ)
))

=

∫
Rn\im(γ)

∣∣wind(q, γ)∣∣dq
=

∑
W∈co(γ)

∣∣wind(W,γ)
∣∣Ln(W ).

If the (n− 1)-dimensional Hausdorff measure of ∂U is finite, then the follow-
ing two equations hold

Tγ =
[
wind(·, γ)

]
=

∑
W∈co(γ)

wind(W,γ)[W ],

M(Tγ) =

∫
Rn

∣∣wind(q, γ)∣∣dq = ∑
W∈co(γ)

∣∣wind(W,γ)
∣∣Ln(W ).

We will only apply the proposition above in dimension 2 and in the context
of curves. Assume now that γ : [0,1]→ R

2 is a closed curve that is Hölder
continuous of order α > 1

2 . By Proposition 2.2, we obtain a unique filling

Tγ ∈D2(R
2) of γ#[[0,1]] given by

Tγ =
∑

W∈co(γ)

wind(W,γ)[W ].

By abuse of notation, we may also write [γ] for γ#[[0,1]].

Lemma 2.3. Let γ : [0,1]→ R
2 be a closed Hölder curve of order α > 1

2 .
Then ∑

W∈co(γ)

∣∣wind(W,γ)
∣∣L2(W )<∞

and

(2.1)
1

2

(∫ 1

0

γx dγy −
∫ 1

0

γy dγx

)
=

∑
W∈co(γ)

wind(W,γ)L2(W ).

The Riemann–Stieltjes integrals in the statement above exist for this class
of Hölder functions by a result of Young [8].
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Proof of Lemma 2.3. Let Tγ be the filling of Proposition 2.2. The first
equation is just stating the fact that M(Tγ) is finite. To obtain (2.1), note
that ∑

W∈co(γ)

wind(W,γ)L2(W ) =
∑

W∈co(γ)

wind(W,γ)[W ](dx∧ dy)

= Tγ(dx∧ dy)

=
1

2

(
Tγ(dx∧ dy)− Tγ(dy ∧ dx)

)

=
1

2

(
∂Tγ(xdy)− ∂Tγ(y dx)

)

=
1

2

((
γ#[[0,1]]

)
(xdy)−

(
γ#[[0,1]]

)
(y dx)

)
.

If γ is smooth, the last term is another expression for the left-hand side of
(2.1). The general case then follows from [10, Theorem 3.2] or [8] by a suitable
approximation of γ. �

3. Hölder surfaces and their intersection with vertical lines

Initially, we want to clarify to what extent a Hölder curve in the Heisenberg
group is the lift of its horizontal projection. The following lemma has been
noticed as well by other authors, such as Z. Balogh, A. Kozhevnikov, P. Pansu,
J. Tyson, . . . .

Lemma 3.1. Let γ : [0, T ]→H be a Cα curve for some α > 1
2 . Then

γz(t) = γz(0) +
1

2

(∫ t

0

γx dγy −
∫ t

0

γy dγx

)
.

Proof. Let L=Hα(γ) and define zγ to be the right-hand side of the equa-
tion above. We want to show that γz = zγ . It is obvious that γx and γy are
α-Hölder continuous by the definition of d. Let 0≤ s≤ t≤ T . We know that∣∣∣∣γz(t)− γz(s)−

1

2

(
γx(s)γy(t)− γy(s)γx(t)

)∣∣∣∣≤ d
(
γ(s), γ(t)

)2 ≤ L|t− s|2α.

We combine the last inequality with the following three, see, for example, [10,
Corollary 3.4] or [8],

γx(s)γy(t)− γy(s)γx(t) = γx(s)
(
γy(t)− γy(s)

)
− γy(s)

(
γx(t)− γx(s)

)
,∣∣∣∣

∫ t

s

γx dγy − γx(s)
(
γy(t)− γy(s)

)∣∣∣∣≤CHα(γx)H
α(γy)|t− s|2α

≤CL2|t− s|2α,∣∣∣∣
∫ t

s

γy dγx − γy(s)
(
γx(t)− γx(s)

)∣∣∣∣≤CHα(γx)H
α(γy)|t− s|2α

≤CL2|t− s|2α,
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for some constant C > 0 depending only on α. We obtain∣∣γz(t)− γz(s)−
(
zγ(t)− zγ(s)

)∣∣ ≤D|t− s|2α,
where D = L+CL2. For t ∈ [0, T ] and n ∈N (observe that γz(0) = zγ(0)), we
have∣∣γz(t)− zγ(t)

∣∣ ≤ ∣∣γz(0)− zγ(0)
∣∣

+

n∑
i=1

∣∣∣∣γz
(
t
i

n

)
− γz

(
t
i− 1

n

)
−

(
zγ

(
t
i

n

)
− zγ

(
t
i− 1

n

))∣∣∣∣
≤

n∑
i=1

Dn−2α =Dn1−2α.

Taking the limit n→∞, we get γz(t) = zγ(t), for all t. �
Lemma 3.1 is already the first result where the bound α> 1

2 is sharp. This
follows from the fact that for any bounded set B ⊂H there is a constant C > 0
such that

1

C
dE

(
p, p′

)
≤ d

(
p, p′

)
≤CdE

(
p, p′

) 1
2

for all p, p′ ∈B. Here, dE denotes the Euclidean distance on R
3.

Hereafter we start the discussion on Hölder surfaces in the Heisenberg
group. Let U be an open set in the Euclidean plane and let F : U → H

be a Hölder embedding of order α> 1
2 . We set

Fh := π ◦ F,
and call Fh the horizontal part of F . Recall that, since π is 1-Lipschitz, we
have Hα(Fh)≤Hα(F ) for all α.

Lemma 3.2. Let γ : S1 → U (resp. γ : [0,1] → U ) be a closed Lipschitz
curve and γ̃ := Fh ◦ γ. Then∑

W∈co(γ̃)

wind(W, γ̃)L2(W ) = 0

and γ̃ is not injective.

Proof. Lemma 3.1 in combination with Lemma 2.3 implies that

0 = Fz

(
γ(1)

)
− Fz

(
γ(0)

)
=

1

2

(∫ 1

0

γ̃x dγ̃y −
∫ 1

0

γ̃y dγ̃x

)

=
∑

W∈co(γ̃)

wind(W, γ̃)L2(W ).

Assume by contradiction that γ̃ is injective. By the Jordan–Schönflies theo-
rem, there is a homeomorphism ϕ of R2 such that ϕ|S1 = γ̃. The multiplication
formula of degree theory leads to

1 = deg
(
ϕ−1(p), id,U(0,1)

)
= deg

(
ϕ−1(p), ϕ−1, V

)
deg

(
p,ϕ,U(0,1)

)
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for a point p in the bounded component V ∈ co(γ̃) and hence∣∣wind(p, γ̃)∣∣ = ∣∣deg(p,ϕ,U(0,1)
)∣∣ = 1.

Because the unbounded component of co(γ̃) has vanishing winding number
with respect to γ̃∑

W∈co(γ̃)

wind(W, γ̃)L2(W ) = wind(V, γ̃)L2(V ) �= 0

contradicting the first part of the lemma. �

As an immediate consequence, we get that π cannot be injective on F (U).
In other words, the surface F (U) is not a graph with respect to the vertical
direction. In Theorem 3.6, we will see a much stronger statement.

We show now that our Hölder surfaces have a special property of twisting.
The following proof is based on the fact that a game of Hex always has a
winner.

Lemma 3.3. Let F : U →H be a Hölder embedding of order α> 1
2 defined

on an open set U ⊂R
2. Then:

(∗) for every open set V ⊂ U there is a Lipschitz curve γ : S1 → V such that
the current Fh#[γ] is not 0.

In particular, for such a γ, there exist a component W ∈ co(Fh ◦ γ) with
nonzero winding number wind(W,Fh ◦ γ).

Proof. Assume by contradiction that we have an open ball V ⊂ U for which
all closed Lipschitz curves contained in it go to zero by applying Fh#. Fix two
points p and q in V with Fh(p) �= Fh(q) (this is possible because otherwise
F (V ) would be contained in a vertical axis of H). By some rotation and
scaling of V , we can assume that p= (−1,0) and q = (1,0). Our assumption
implies that there is a 1-current T ∈ D1(R

2) such that Fh#[γ] = T for every
Lipschitz curve γ in V connecting p with q (otherwise we could build a loop not
going to the zero-current). The current T is not zero because its boundary is
[Fh(q)]− [Fh(p)], which is not zero. Let x ∈ spt(T )\{Fh(p), Fh(q)} and ε0 > 0
such that B(x, ε0) does not contain Fh(p) and Fh(q) (this is possible because
a nonzero metric 1-current cannot be supported on finitely many points, see,
e.g., [5]). By continuity, there is a δ > 0 such that

Fh

({
(−1, t), (1, t) : t ∈ [−δ, δ]

})
∩B(x, ε0) = ∅.

Again by some scaling we can assume that δ = 1 and that the whole square
[−1,1]2 is contained in V .

Let ε ∈ (0, ε0] and n ∈ N satisfying Hα(F )2
α
2 n−α ≤ ε. We want to play a

Hex game on Q = (n−1
Z
2) ∩ [−1,1]2. Two points a, b ∈ Q are connected if

they have the same color and are adjacent in the sense that

max
{
|b1 − a1|, |b2 − a2|

}
= n−1 and a1 + a2 �= b1 + b2.
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Figure 1. The square [−1,1]2 with lattice to the value n= 4
and a feasible black path connecting the two horizontal faces.
In dotted lines are all the path segments allowed by this lat-
tice.

If every point of Q is colored with either white or black, then there exists
a white path connecting the two vertical faces of [−1,1]2 or a black path
connecting the two horizontal faces, this is implied by the Brouwer Fixed
Point theorem, see, for example, [3]. The black points are those contained
in F−1

h (B(x, ε)), all others are white. See Figure 1 for an illustration of the
situation at hand.

We first show that there is no white path from the left to the right face.
Assume otherwise. Because both the left and the right faces contain only
white points (ε ≤ ε0), we get a piecewise linear white path γ connecting p

with q. Let r ∈ im(γ) and rQ be a white vertex of γ with d(rQ, r)≤
√
2n−1.

Then

d
(
Fh(rQ), Fh(r)

)
≤Hα(F )d(rQ, r)

α ≤Hα(F )2
α
2 n−α ≤ ε

and hence Fh(r) �= x since d(Fh(rQ), x) > ε. This implies that x /∈ im(γ)
and also x /∈ spt(Fh#[γ]) (this is a subset of im(γ)). But Fh#[γ] = T , a
contradiction.

So there must be a black path γ′ from top to bottom. Again if r is on this
path, we can find a black vertex rQ with d(rQ, r)≤

√
2n−1 leading to

d
(
x,Fh(r)

)
≤ d

(
x,Fh(rQ)

)
+ d

(
Fh(rQ), Fh(r)

)
≤ 2ε

and therefore Fh(im(γ))⊂B(x,2ε).
Choose a sequence εn > 0 converging to 0. Based on the preparation above,

we can find sequences of points an on the top face, bn on the bottom face and
a piecewise linear path γn inside [−1,1]2 connecting an with bn such that
Fh(im(γn)) ⊂ B(x, εn). Going to a subsequence if necessary, we can assume
that an → a and bn → b (also both on the top resp. bottom face). By the
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continuity of Fh we must have Fh(a) = Fh(b) = x. Let c be a Lipschitz curve
connecting b with a (i.e., ∂[c] = [a] − [b]). The curve Fh ◦ c is closed and
Hölder and Fh#[c] �= 0 by Lemma 2.3 and Lemma 3.1 (F (a) and F (b) have
to be separated vertically inside H). By the formula in Lemma 2.3, there is a
point y ∈R

2 \ im(Fh ◦ c) with wind(y,Fh ◦ c) �= 0. Let ε < d(x, y) and choose
n big enough so that εn ≤min{ε0, ε} and Hα(F )max{d(a, an), d(b, bn)}α ≤ ε.
Denote by γa the straight line connecting a with an and γb the straight line
connecting bn with b. The concatenation γ := c ∗ γa ∗ γn ∗ γb is a closed
Lipschitz curve such that y /∈ im(Fh ◦γ) since im(Fh ◦ (γa ∗γn ∗γb))⊂B(x, ε).
For the same reason, the linear homotopy contracting the closed curve Fh ◦
(γa ∗γn ∗γb) inside B(x, ε) to x misses y. This shows that 0 �=wind(y,Fh ◦c) =
wind(y,Fh ◦ γ). But this contradicts Fh#[γ] = 0 by Lemma 2.3. �

In the following lemma, we plan to strengthen the property (∗) of Lem-
ma 3.3. We show that one can assume that the Lipschitz curve of property
(∗) is actually the boundary of a triangle.

Lemma 3.4. Let α > 1/2. Fix a Cα embedding F : U →H. Then for any
open V ⊂ U we can find a simplex Δ⊂ V such that

Fh#∂[Δ] �= 0.

Proof. Without loss of generality, V is some open convex set containing
some point p0. By the previous lemma, there is a closed Lipschitz curve
γ : S1 → V such that Fh#[γ] �= 0. The curve γ can be approximated by
piecewise linear maps γn such that Lip(γn) is bounded. This means that
there are points 0 = s0 < s1 < · · · < skn = 2π such that, for s ∈ [si, si+1], we
have

γn(s) = γn(si) +
s− si

si+1 − si

(
γn(si+1)− γn(si)

)
.

The boundedness of the Lipschitz constants implies that Fh#[γn] converges

weakly to Fh#[γ] because H
α(Fh ◦γn) is also bounded in n and α > 1

2 . There-
fore, we can find some n for which Fh#[γn] �= 0. Fix this n. Let λ : B(0,1)→ V

be the Lipschitz extension of γn defined by λ(ts) = p0 + tγn(s) for all s ∈ S1

(V is convex so this makes sense). We get

[γn] = λ#∂
[
B(0,1)

]
= λ#∂

kn∑
i=1

[
c(si−1, si)

]
=

kn∑
i=1

∂λ#

[
c(si−1, si)

]
,

where c(si−1, si) = {ts : t ∈ [0,1], s ∈ [si−1, si]}. By construction, the pushfor-
ward λ#[c(si−1, si)] is equal to [Δi] for some simplex Δi ⊂ V and because
of

Fh#[γn] =

kn∑
i=1

Fh#∂[Δi]

there is at least one i for which Fh#∂[Δi] �= 0. �
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Definition 3.5 (Set IF of irregular points). Let F : U → H be a map.
A point p ∈ U is called regular if it is an isolated point in F−1

h (Fh(p)). Oth-
erwise p is called irregular and we denote by IF ⊂ U the set of irregular
points.

A regular point p has the property that there is an ε > 0 such that

F−1
h

(
Fh(p)

)
∩B(p, ε) = {p}.

The next result indicates, in terms of the quantity of irregular points, that
the surface F (U) has to be folded quite strongly.

Theorem 3.6. For all open V ⊂ U there is a point q ∈ Fh(V ) for which
F−1
h (q)∩ V contains a Cantor set. In particular, IF is dense in U .

Proof. By Lemma 3.4 and Lemma 3.3 there is a simplex Δ⊂ V such that
Fh#[∂Δ] �= 0. By Lemma 3.2 this means that there are components W+

Δ and

W−
Δ of R2 \ Fh(∂Δ) that have positive resp. negative winding number with

respect to ∂Δ (∂Δ is given the standard counterclockwise orientation). Now

consider the set Δ+ := F−1
h (W+

Δ ) ∩ Δ̊. Repeating the same procedure with

Δ̊+ in place of V , there is a simplex Δ′ ⊂ Δ̊+ and a component W−
Δ′ as before.

Define the two sets

V0 := F−1
h

(
W−

Δ′
)
∩Δ+ \Δ′,

V1 := F−1
h

(
W−

Δ′
)
∩ Δ̊′.

By the sum property for the degree

deg
(
q,Fh,Δ

+
)
= deg(q,Fh, V0) + deg(q,Fh, V1)

for any point q ∈W−
Δ′ . We have that deg(q,Fh, V1) is negative and deg(q,Fh,

Δ+) is positive. Hence, deg(q,Fh, V0) is positive and q has to be in the
image Fh(V0). In particular, V0 and V1 are two open sets with closures con-
tained inside V and Fh(V0) = Fh(V1) = W−

Δ′ =: W1. By taking a smaller
simplex for Δ, we can ensure that diam(V0) and diam(V1) are as small as
we want. Similarly by taking a smaller set for W−

Δ′ in the construction
of V0 and V1 above, we can ensure that the closures of V0 and V1 are dis-
joint.

Assume now that we have constructed the open sets W1, . . . ,Wn as well
as the open sets Vω for all words ω in letters 0 and 1 with length |ω| ≤ n.
Further, assume these sets satisfy:

(1) V ω ⊂ Vω′ if ω′μ = ω for some nonempty word μ, i.e., ω′ is a proper be-
ginning of ω,

(2) V ω ∩ V ω′ = ∅ if of the two words ω and ω′ none is a proper beginning of
the other,
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(3) Fh(Vω) =W|ω|,

(4) diam(Vω)≤ 2−|ω|.

Note that (1) and (3) together imply that W i+1 ⊂Wi.
Let ω1, . . . , ω2n be an enumeration of all words of length n. First, the

construction above is repeated for the set Vω1 in place of V to obtain open
sets V ′

ω10, V
′
ω11 ⊂ Vω1 and W 1

n+1 satisfying the 4 properties above (with an

appropriate renaming of the sets). Next, apply this to Vω2 ∩ F−1
h (W 1

n+1)
to obtain V ′

ω20,V
′
ω21 and W 2

n+1 ⊂ W 1
n+1. We proceed 2n times until the

sets Vω2n0, Vω2n1 and W 2n

n+1 are constructed out of Vω2n
∩ F−1

h (W 2n−1
n+1 ).

W 2n

n+1 is contained in all the W i
n+1’s so we let Wn+1 := W 2n

n+1 and Vω :=

V ′
ω ∩ F−1

h (Wn+1) for all |ω| ≤ n + 1. The 4 properties hold for these new
sets and recursively we can construct the sets Vω and W|ω| for all finite
words ω.

The equality ⋂
i≥1

Wi =
⋂
i≥1

W i

holds by (1) and (3). This set consists of a single point q by (3) and (4) and
the completeness of R2. Further,

C :=
⋂
i≥1

⋃
|ω|≤i

V ω

is a Cantor set and Fh(C) = {q}. In conclusion, F−1
h (q)∩V contains a Cantor

set. �

Although the set of points q for which #{F−1
h (q)}=∞ is dense in Fh(U),

it could be a set of measure zero. In the subsequent section, we will look
into the sets {q : #{F−1

h (q)} ≥ k} and their measures in more detail. We
finish this section by joining the previous results to prove Theorem 1.2 of the
Introduction.

Proof of Theorem 1.2. The first part is implied by Lemma 3.4. There is a
simplex Δ⊂ U and a component W of R2 \Fh(∂Δ) such that deg(W,Fh, Δ̊) �=
0 and hence W ⊂ Fh(U). The second part is just Theorem 3.6 above. �

4. Projection of essentially bounded variation

In this section, we want to investigate the possibility of Fh having essen-
tially bounded variation in the sense of Definition 1.3. Let F : U → H be
α-Hölder with α > 1/2. We assume that U is bounded. The next result is an
immediate consequence of Proposition 2.2 and the definition of the multiplic-
ity function K.
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Lemma 4.1. If V is a connected open set such that V ⊂ U and H1(∂V )<
∞, then the filling of Fh#(∂[V ]), called T∂V , coincides with the current in-
duced by the integrable function deg(·, Fh, V ). Moreover,

M(T∂V ) =

∫
R2

∣∣deg(q,Fh, V )
∣∣dq <∞,

T∂V (dx∧ dy) =

∫
R2

deg(q,Fh, V )dq = 0

and |deg(q,Fh, V )| ≤K(q,Fh,U) for almost all q ∈R
2.

Proof. From Proposition 2.2, we know that T∂V = [deg(·, Fh, V )] and the
first two equations are immediate. It remains to prove the relation with K.
The set V is a union of countable many pairwise disjoint connected open sets
Vk. By the sum property for the degree and the definition of K,

∣∣deg(q,Fh, V )
∣∣ =

∣∣∣∣
∑
k

deg(q,Fh, Vk)

∣∣∣∣ ≤
∑
k

∣∣deg(q,Fh, Vk)
∣∣ ≤K(q,Fh,U)

holds for every point q /∈ Fh(∂V ) (note that ∂Vk ⊂ ∂V for all k). Further,
H2(Fh(∂V )) = 0 because Fh is Cα for some α> 1/2 and H1(∂V )<∞. �

We can now present a proof of the first part of Theorem 1.1 stated in the
Introduction.

Theorem 4.2. There is no embedding F : U → H of Hölder class α > 1
2

such that Fh is of essentially bounded variation.

Proof. Let us assume, by the way of contradiction, that such an embedding
F exists. From Lemma 3.4 and Lemma 3.3, we know that there exists a
simplex Δ⊂ U and a component W of R2 \ Fh(∂Δ) such that

deg(W,Fh, Δ̊) �= 0.

Let V := Δ̊∩ F−1
h (W ). By the locality property,

deg(W,Fh, V ) = deg(W,Fh, Δ̊) �= 0.

We can approximate V from the inside by an increasing sequence of open
sets Vn such that ∂Vn can be covered by finitely many Lipschitz curves. For
example, one can take an exhaustion of V by a union of dyadic squares and Vn

is the interior of the union of all squares with diameter bigger than n−1. The
locality property for the degree implies that deg(·, Fh, Vn) converges pointwise
to deg(·, Fh, V ) on W . Due to Lemma 4.1, |deg(q,Fh, Vn)| ≤ K(q,Fh,U),
whereas

∫
K(q,Fh,U)dq <∞ because Fh has essentially bounded variation.

The Lebesgue dominated convergence theorem implies that∫
R2

deg(q,Fh, Vn)dq→
∫
R2

deg(q,Fh, V )dq.
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But this leads to a contradiction because
∫
deg(·, Fh, Vn)dq = 0 for all n and∫

R2

deg(q,Fh, V )dq = L2(W )deg(W,Fh, V ) �= 0

by construction. �

A particular instance of Fh having essentially bounded variation is when∫
R2

#{Fh = q}dq <∞.

In this case, Fh is said to have bounded variation. With this implication taking
for granted at the moment, the following corollary is immediate.

Corollary 4.3. Let F : U → H be an embedding of Hölder class α > 1
2 .

Then ∑
k≥1

L2(Ak) =

∫
R2

#{Fh = q}dq =∞,

where Ak = {q ∈R
2 : #{Fh = q} ≥ k}.

It is a general fact that a map ϕ : U → R
2 of bounded variation is also

of essentially bounded variation, see [7, Subsection VI.2.2, Theorem 4]. The
reason for this is that, for almost all q ∈R

2, the preimage ϕ−1(q) consists of
regular points only. The harder part is then to show that, for all but countably
many regular points p ∈ U , the degree satisfies

deg
(
Fh(p), Fh,U(p, r)

)
∈ {−1,0,1}

for all r small enough, that is, such that F−1
h (Fh(p))∩B(p, r) = {p}. Because

of the special topological setting of a surface projection, we will recover this
property for all regular points in the next section.

5. On the degree of surface projections

The results of this section are of purely topological nature and we do not
need the particular structure of the Heisenberg group or the fact that the
embedding F is Hölder continuous. To emphasize this let G : U → R

3 be
an embedding of an open set U ⊂ R

2. We want to investigate the value of
deg(q, π ◦G,V ), where π is the projection of R3 to the xy-plane and V ⊂ U
is some open set. As before we abbreviate Gh := π ◦G. It is understood that
all the results that follow apply in particular to the Hölder embeddings F of
the previous sections. The main result of this section is the following.

Proposition 5.1. Let G : U →R
3 be an embedding of an open set U ⊂R

2.
Assume that V is a bounded connected open set such that V ⊂ U , Gh(∂V )⊂
S1, and R

2 \ V is connected. Then

deg(0,Gh, V ) ∈ {−1,0,1}.
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Before we turn to the proof, we need some technical preparations. We say
that a closed curve γ : S1 →R

n is in general position if γ is injective outside
a finite subset of S1 and every point of Rn has at most 2 preimages. One can
show that any closed curve into R

2, or into any other 2-dimensional manifold
for that matter, can be approximated by a curve in general position. This
approximation and the one that follow are always assumed with respect to
the C0-topology.

Let s, s′ ∈ S1. With [s, s′] we denote the closed arc in S1 starting from s
and connecting it with s′ in clockwise direction.

Lemma 5.2. Let γ : S1 → R
2 be a curve in general position. If |wind(0,

γ)| > 1, then there is an arc a = [s, s′] in S1 such that γ(s) = γ(s′) and
|wind(0, γ|a)|= 1.

Proof. As in the proof of Lemma 3.2, we note that a simple closed curve
γ̃ : S1 →R

2 with 0 /∈ im(γ̃) satisfies

(5.1)
∣∣wind(0, γ̃)∣∣ ≤ 1.

By our assumption, there are only finitely many (unordered) pairs {s1, s′1},
. . . , {sn, s′n} in S1 such that si �= s′i but γ(si) = γ(s′i). Denote the set of these
pairs by Pγ . Each pair of points {si, s′i} cuts S1 into two closed arcs. Let
Aγ be the sub-collection of such arcs b with wind(0, γ|b) = 0. We modify γ
recursively. Set γ0 = γ and γi+1 is obtained from γi by choosing some b ∈Aγi

and set γi+1|b = const and γi+1|S1\b = γi|S1\b. By a further reparametrization
in a neighborhood of b, in order that γi+1 is not constant on b, we can achieve
that γi+1 is in general position. This neighborhood can be chosen small
enough such that Aγi+1 is equal to Aγi minus the pairs {s, s′} ∈ Aγi with
{s, s′} ∩ b �= ∅. It follows that |Pγi+1 |< |Pγi | as well as |Aγi+1 |< |Aγi | and in
k ≤ n steps we get that Aγk

is empty. Now,

wind(0, γ) = wind(0, γk)

because in each step we removed loops with zero winding number w.r.t. 0.
By (5.1) we know that Pγk

�= ∅. Take a pair {s, s′} ∈ Pγk
such that one of the

two arcs [s, s′] or [s′, s] contains no other pair of Pγk
(this is possible because

Pγk
is nonempty but finite). Call this arc a. Let γ′ be the restriction of γk

to a. Then γ′ is a closed Jordan curve and thus |wind(0, γ′)| ≤ 1 by (5.1).
But wind(0, γ′) = 0 is not possible because Aγk

is empty. By the construction
of γk, the pair {s, s′} is also a double point for γ, i.e., {s, s′} ∈Aγ . Finally, we
note that |wind(0, γk|a)|= |wind(0, γ|a)| because γk|a is obtained from γ|a by
removing some loops with zero winding number defined on sub-arcs of a (and
a slight reparametrization which does not matter for the winding number).
This proves that |wind(0, γ|a)|= 1. �

This can readily be generalized to particular curves into R
3.
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Corollary 5.3. Let γ : S1 →R
3 be a curve in general position with image

contained in the cylinder S1 ×R. If |wind(0, π ◦ γ)|> 1, then there is an arc
a= [s, s′] in S1 such that γ(s) = γ(s′) and |wind(0, π ◦ γ|a)|= 1.

Proof. By some scaling and translation of γ in the z-direction we can as-
sume that im(γ)⊂ S1 × [0,1] since these operations do not change π ◦ γ. Let
Z := S1 × [0,1] be this closed cylinder. Consider the following deformation
H : [0,1]×Z →R

3 of Z in R
3 given by

Hs(x, y, z) :=
(
(sz + 1)x, (sz + 1)y, z

)
.

Obviously, 0 is not in the image of π ◦H and H0 = id. By the homotopy
invariance of the winding number, we have

wind(0, π ◦ γ) = wind(0, π ◦H1 ◦ γ).
The result follows now by the lemma above by noting that π ◦H1 is injective:
If (z+1)(x, y,0) = (z′+1)(x′, y′,0), then (z+1)2 = (z′+1)2 hence z = z′ and
consequently also (x, y) = (x′, y′). �

Now we are ready to prove Proposition 5.1. In case ∂V can be parametrized
by a simple closed curve, the statement is a direct consequence of Corol-
lary 5.3. The general case is reduced to this one by an approximation argu-
ment.

Proof of Proposition 5.1. By restricting G if necessary, we can assume that
U is bounded and that G has a continuous extension to U . This has the
advantage that G as well as G−1 are uniformly continuous. The open set V
can be approximated from the inside by connected open sets V ′ such that
∂V ′ is parametrized by finitely many simple closed Lipschitz curves. This can
be achieved for example by representing V as a union of dyadic squares and
considering a fixed point of V and its connected component in the interior of
the union of all squares bigger than a certain size. Because V and R

2 \ V are
connected we can even assume that the boundary of V ′ is parametrized by
just one simple closed Lipschitz curve γ : S1 → V (this could be justified, for
example, by the Jordan curve theorem).

By the connectedness of V and the fact that Gh(∂V ) ⊂ S1, there is a
compact connected set Ki ⊂ V (i stands for ‘inside’) such that

V ∩G−1
h (0)⊂Ki.

Similarly, because U is bounded, there is a compact set Ko ⊂R
2 \V (o stands

for ‘outside’) such that (
R

2 \ V
)
∩G−1

h (0)⊂Ko.

Obviously,

G−1
h (0)⊂Ki ∪Ko
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since Gh(∂V ) does not contain 0. Let K ′
o be an unbounded closed connected

set such that Ko ⊂K ′
o ⊂ R

2 \ V . Take the union of B(Ko, δ) for some δ > 0
with a piecewise linear ray connecting it to infinity for example (remember
R

2 \ V is path connected). We further assume that the approximation of V ′

inside V is good enough such that

(5.2) B(Ki, ε)⊂ V ′

and

(5.3) B
(
K ′

o, ε
)
⊂R

2 \ V
for some ε > 0. To this end, note that K ′

o is closed and disjoint from the
compact set V . We can also assume that the approximation of V ′ in V is
good enough such that d(Gh(p), S

1) < 1
4 for all p ∈ ∂V ′. This is possible

because Gh(∂V )⊂ S1. Consider a piecewise linear approximation σ of G ◦ γ
such that d(σ,G ◦ γ)< 1

4 . With these bounds

d
(
σ(s), S1 ×R

)
≤ d

(
σ(s),G

(
γ(s)

))
+ d

(
G

(
γ(s)

)
, S1 ×R

)
<

1

4
+

1

4
=

1

2

for all s ∈ S1. This allows us to define the closed curve σ̃ : S1 →R
3 by post-

composing σ with the orthogonal projection onto the cylinder S1 ×R in R
3.

By choosing σ appropriately we can assume that σ̃ is in general position. The
following equalities hold:

(5.4) deg(0,Gh, V ) = deg
(
0,Gh, V

′) =wind(0,Gh ◦ γ) = wind(0, π ◦ σ̃).
The fist equation holds because V ∩G−1

h (0)⊂Ki ⊂ V ′ and the locality prop-
erty for the degree, the second equation by the definition of the winding num-
ber and the third one is induced by a linear homotopy H : [0,1]×B(0,1)→R

2

since, by the estimates

d(G ◦ γ, σ̃)≤ d(G ◦ γ,σ) + d(σ, σ̃)<
1

4
+

1

2
< 1,

the point 0 is not contained in the image H([0,1]× S1). Assume by contra-
diction that |deg(0,Gh, V )|> 1. Then (5.4) implies that |wind(0, π ◦ σ̃)|> 1
as well. By Corollary 5.3, we can find an arc a = [s1, s2] in S1 such that
σ̃(s1) = σ̃(s2) and |wind(0, π ◦ σ̃|a)|= 1. The curve G ◦ γ|a is in general not
a closed curve. But G(γ(s1)) is close to G(γ(s2)), the closeness depends on
how good the approximation of V ′ inside V is and how small d(G ◦ γ,σ) is.
Because G−1 is uniformly continuous, we can make γ(s1) as close to γ(s2) as
we want. We construct now a closed curve out of G ◦ γ|a by parameterizing
the straight line connecting γ(s2) with γ(s1) on S1 \ a. We call this curve
γ′. If the approximation is good enough and the fact that G is uniformly
continuous, a linear homotopy forces

±1 = wind(0, π ◦ σ̃|a) = wind
(
0,Gh ◦ γ′).



HÖLDER SURFACES IN THE HEISENBERG GROUP 247

For the rest, we assume that d(γ(s1), γ(s2)) < ε. Then the line connecting
γ(s2) with γ(s1) can’t intersect Ki resp. K ′

o because otherwise γ(s1) and
γ(s2) would be contained in B(Ki, ε) resp. B(Ko, ε) contradicting (5.2) resp.
(5.3) because the image of γ has distance bigger than ε from Ki resp. K

′
o.

The sets Ki and K ′
o are connected, hence there are components Wi and Wo

in co(γ′) such that Ki ⊂ Wi and K ′
o ⊂ Wo. The locality property and the

multiplication formula for the degree together with the observation that Wo

is the unique unbounded component of co(γ′) (since K ′
o is unbounded) imply

that

±1 = wind
(
0,Gh ◦ γ′)

=wind
(
Wi, γ

′)deg(0,Gh,Wi) +wind
(
Wo, γ

′)deg(0,Gh,Wo)

= wind
(
Wi, γ

′)deg(0,Gh,Wi).

Therefore,

1 =
∣∣deg(0,Gh,Wi)

∣∣ = ∣∣deg(0,Gh, V )
∣∣,

by successively using the equation above and then the locality property for the
degree together with the inclusion V ∩G−1

h (0)⊂Ki ⊂Wi. But this contradicts
our assumption |deg(0,Gh, V )|> 1. �

Instead of taking S1 in the projection, we can take any other simple closed
curve C ⊂R

2.

Corollary 5.4. Let G : U →R
3 be an embedding of an open set U ⊂R

2,
C ⊂ R

2 a simple closed curve and q ∈ R
2 \ C. Assume that V is a bounded

connected open set such that V ⊂ U , Gh(∂V ) ⊂ C and R
2 \ V is connected.

Then

deg(q,Gh, V ) ∈ {−1,0,1}.

Proof. If q is not in the bounded component of R2 \C, it is obvious that
deg(0,Gh, V ) vanishes. Otherwise there is a homeomorphism ϕ : R2 → R

2

such that ϕ(C) = S1 and ϕ(q) = 0 due to the Jordan–Schönflies theorem. If we
consider G′ := (ϕ× idR) ◦G and apply Proposition 5.1, we get the result. �

As indicated at the end of the last section, the fact that Gh has bounded
variation, i.e.,

∫
R2 #{Gh = q}dq <∞, implies that Gh has essentially bounded

variation. With the help of Proposition 5.1 this is immediate.
Note that q �→#{Gh = q} is a Lebesgue measurable function, see e.g. [7].

This follows in essence from the fact that Gh(B) is a Suslin set in case B is a
Borel set and Suslin sets are Lebesgue measurable.

Corollary 5.5. Let G : U → R
3 be an embedding of a bounded open set

U ⊂ R
2 such that Gh is of bounded variation. Then Gh is of essentially

bounded variation.
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Proof. For almost every point q ∈ R
2 it holds that G−1

h (q) is finite. Take
any such point and label the preimages by p1, . . . , pn. Let r > 0 such that the
balls B(pi, r), i = 1, . . . , n, are pairwise disjoint and contained in U . By the
locality property for the degree, it is obvious that

ind(pi,Gh) := deg(q,Gh,D)

is independent of the choice of an open neighborhood D ⊂ B(pi, r) of pi.
Proposition 5.1 implies that

ind(pi,Gh) ∈ {−1,0,1}
by constructing an appropriate domain D. In order to construct D take s
small enough such that

G−1
h

(
B(q, s)

)
∩ ∂B(pi, r) = ∅.

Define

K :=G−1
h

(
B(q, s)

)
∩B(pi, r)

and let K ′ be the union of K with all the bounded components of R2 \K.
Then taking the interior of K ′ for D works fine. If D is any indicator domain
for (q,Gh,U), then again by the locality and sum property for the degree

deg(q,Gh,D) =
∑
pi∈D

ind(pi,Gh).

For the supremum over all systems S of pairwise disjoint indicator domains
we obtain

K(q,Gh,U) = sup
S

∑
D∈S

∣∣deg(q,Gh,D)
∣∣ ≤

n∑
i=1

∣∣ind(pi,Gh)
∣∣ ≤#{Gh = q}.

This estimate is true for almost all q ∈ R
2. Hence, K(q,Gh,U) is integrable

because #{Gh = q} is. �
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