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PURE SUBGROUPS OF COMPLETELY DECOMPOSABLE
GROUPS AND A GROUP CLASS PROBLEM

DANIEL HERDEN AND LUTZ STRÜNGMANN

Abstract. In the work of Herden and Strüngmann (In Mod-
els, modules and Abelian groups (2008) 169–186 de Gruyter), an

embedding problem for torsion-free Abelian groups was consid-
ered. It was shown for a large class of such groups, including

the class of all bounded extensions of completely decomposable

groups, that any member of the class can be purely embedded into

some completely decomposable group. Moreover, an algorithm

was given that determines explicitly the pure embedding and the

completely decomposable overgroup. We continue the approach

from the work of Herden and Strüngmann (In Models, modules

and Abelian groups (2008) 169–186 de Gruyter) improving the

algorithm and extending the main theorem to a broader class of

torsion-free Abelian groups including some Hawaiian groups from

the article of Mader and Strüngmann (J. Algebra 229 (2000) 205–
233) and thus complementing the main result from the article of
Strüngmann (Proc. Amer. Math. Soc. 137 (2009) 3657–3668).

A byproduct and starting point for this generalization will be
a discussion of the following group class problem: Which groups

G have the property that for any cardinal κ any subgroup U of
the direct sum G(κ) is the kernel of some endomorphism of G(κ)?

1. Introduction

Recall that Butler [5] defined a torsion-free Abelian group G to be a Butler
group if it is an epimorphic image of a completely decomposable group of
finite rank. It turned out that this is equivalent to saying that G is a pure
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subgroup of a completely decomposable group of finite rank. The class of
Butler groups of finite rank has been studied extensively and was generalized
in several ways to the infinite rank case implying interesting structure and in-
dependence results (see [4], [7], [13]). However, only little was proved on the
straightforward class of pure subgroups of completely decomposable groups
of arbitrary rank. Obviously, any pure subgroup H of a completely decom-
posable group is locally Butler meaning that every finite rank pure subgroup
of H is a finite rank Butler group. However, Arnold [1] (see also [3]) gave an
example of a countable group that is locally Butler but cannot be embedded
as pure subgroup into any completely decomposable group. In some cases it
is easy to describe all pure subgroups of a completely decomposable group
D, for instance if D is homogeneous completely decomposable. However, to
characterize the pure subgroups of completely decomposable groups in general
seems to be a hard task.

The authors attacked this problem in [9] and obtained a very constructive
proof of such pure embeddings for groups from a large class G of torsion-free
Abelian groups. In particular, the almost completely decomposable groups
and the bounded completely decomposable groups are contained in G. An
algorithm was obtained in [9] that produces for a given group G from the
above class G a completely decomposable group D and a pure embedding
G ↪→ D. Later on, this algorithm was implemented in Maple for the case of
finite rank groups (see [15]).

In this paper, we continue the work from [9] and improve the algorithm
showing that even more groups are pure subgroups of completely decompos-
able groups. This way we are able to answer some of the open problems from
[9]. The approach uses tools from linear algebra associating to a given group
G a matrix B that mirrors the relations defining G. The main theorem says
that if G is in strong normal form and there exists a matrix A that is B-good
(i.e., relating the kernel of A and the image of B), then G is a pure subgroup
of a completely decomposable group. As a starting point for this enhanced
result will serve the investigation of the following related group class problem
in Section 4: Which (not necessarily torsion-free) groups G have the property
that for any cardinal κ and any subgroup U ⊆ G(κ) there exists some endo-
morphism of G(κ) having kernel U? We will give a complete classification
for the case of reduced groups G and provide further results concerning the
nonreduced case. It remains the crucial question:

Do all pure subgroups of completely decomposable groups admit B-good ma-
trices?

Here we will investigate the class of Hawaiian groups introduced in [11]. These
groups are known to be pure subgroups of completely decomposable groups
by the main theorem from [14]. We will give a negative example of a Hawai-
ian group without a B-good matrix and classify those countable Hawaiian
groups which admit a B-good matrix. Thus it remains an interesting but still



PURE SUBGROUPS OF COMPLETELY DECOMPOSABLE GROUPS 1535

open challenge to characterize the pure subgroups of completely decompos-
able groups and unifying our result with [14] might be a first step to achieve
this goal.

Our notation is standard as can be found for instance in [6] and we write
maps from the left.

2. Preliminaries

In this section, we recall some basic definitions and terminology which shall
be used frequently below. Let Π be the set of primes. A group X is called
rational if it is isomorphic to a subgroup of the group of rationals Q, that is,
X is a torsion-free group of rank 1. If [X] is the class of all groups isomorphic
to X we may define an order relation by setting [X] ≤ [X ′] if Hom(X,X ′) �= 0.
The class [X] is called the type of X and if x ∈ G is an element of the torsion-
free group G, then we denote by type G(x) the type of x in G which is defined
as type G(x) = [〈x〉G

∗ ]. Here, 〈x〉G
∗ is the pure subgroup of G generated by x. It

is well known that types can also be described by equivalence classes of infinite
sequences (np : p ∈ Π) of natural numbers and the symbol ∞. For instance,
one can choose (np : p ∈ Π) such that X = 〈1/pmp : mp < np + 1〉 with the
convention that ∞ +1 = ∞. We say that two such sequences (np : p ∈ Π) and
(n′

p : p ∈ Π) are equivalent if they differ in finitely many finite entries only,
that is, if

∑
p∈Π |np − n′

p| is finite. For further details on types, see [6]. Since
there is no danger of confusion, we will assume that Z ⊆ X for every rational
group X and shall use X synonymously for its induced type [X] respectively,
the corresponding equivalence class [(np : p ∈ Π)].

A torsion-free group G is called completely decomposable if G is a direct
sum of rational groups. A Butler group is a pure subgroup of a finite rank
completely decomposable group or equivalently an epimorphic image of a com-
pletely decomposable group of finite rank. Examples of Butler groups are the
so-called almost completely decomposable groups (acd-groups) which are finite
extensions of completely decomposable groups of finite rank. More generally,
a torsion-free group G is a B0-group if every pure finite rank subgroup of G
is a Butler group. Examples of B0-groups are countable bcd-groups. Recall
that a bounded completely decomposable group (bcd-group) is a bounded ex-
tension of a completely decomposable group of arbitrary rank. For further
terminology and details on Butler groups, acd-groups and bcd-groups see [2],
[6], [10] and [11].

3. Extensions of completely decomposable groups by torsion
groups

In this section, we consider extensions of completely decomposable groups
by torsion groups as it was done in [9]. Adopting notation from [9] let C =⊕

i∈κ Riei be a completely decomposable group of rank κ for some cardinal κ
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and rational groups Ri (i ∈ κ). Moreover, let D = Q ⊗ C =
⊕

i∈κ Qei denote
the divisible hull of C.

Following notation in [9], we denote by G(C) the class of all (torsion)
extensions of C inside D. This is to say

G(C) := {G : C ⊆ G ⊆ D}.

Clearly, any G ∈ G(C) satisfies that G/C is torsion.
In [9], it turned out to be convenient for the reader to discuss a running

example to explain the theory that is developed. Our example is motivated
by [12] where the class of Hawaiian groups was considered. Solving an open
problem from [11] it was shown by the second author that these groups are in
fact pure subgroups of completely decomposable groups. Recall from [9] the
following definition where the support [d] of an element d =

∑
i∈κ qiei ∈ D is

defined as [d] = {i ∈ κ : qi �= 0}.

Definition 3.1. We say that a group G ∈ G(C) is given in standard form
if there are elements dj ∈ D, primes pj ∈ Π (not necessarily distinct) and
integers mj ∈ N0 for j ∈ κ such that
(i) G = 〈C,dj : j ∈ κ〉 and
(ii) dj = 1

p
mj
j

∑
i∈κ di,jei with di,j ∈ Z for all i, j ∈ κ.

Moreover, G is in normal form if in addition
(iii) hRi

pj
(1) = 0 for all i ∈ [dj ] and j ∈ κ

holds. Finally, G is in strong normal form if the more general condition
(iii′) hRi

pj
(1) = 0 for all i, j ∈ κ

holds.

Here hRi
pj

(1) denotes as usual the pj -height of 1 in Ri. Note that in Def-
inition 3.1, for all j ∈ κ the elements di,j are almost all equal to zero since
dj ∈ D and that the standard form of G is by no means unique. In [9], it was
proven that essentially every group in G(C) can be given in standard form by
adding a free summand. However, for a group to possess a normal form one
has to impose more conditions. Following [9], we associate to each group G
in G(C) which is given in standard form a matrix B(G) with rational entries.
B(G) describes the relations dj (j ∈ κ) that define the quotient G/C.

Definition 3.2. Let G = 〈C,dj : j ∈ κ〉 ∈ G(C) be given in standard form.
If dj = 1

p
mj
j

∑
i∈κ di,jei with di,j ∈ Z put B(G) = ( di,j

p
mj
j

)i,j∈κ, the κ × κ matrix

with di,j

p
mj
j

as entry in the ith row and jth column. We call B(G) the matrix

associated to G.

Note that the matrix B(G) from Definition 3.2 is column finite and hence
an endomorphism of D = Q(κ) mapping ei to di, that is, B(G)(ei) = di ∈ D.
From this, it is clear that B(G) acts on D as the usual matrix operation on
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a vector space. However, notice that B(G) does not define a homomorphism
from C to G since ei is of type Ri but di is not necessarily of this type inside G.

Sufficient conditions for the existence of a normal form were developed
in [9]. However, our running example shows that these conditions are not
necessary.

Lemma 3.3 ([9]). Let G = 〈C,dj : j ∈ κ〉 ∈ G(C) be given in standard form
and B(G) its associated matrix. If either
(i) {pj : j ∈ κ} is finite or
(ii) for every row b̄ of B(G) there is a natural number n ∈ N such that nb̄ ∈ Zκ

(e.g. B(G) is row finite),
then there is a completely decomposable group C ′ =

⊕
i∈κ R′

ie
′
i

∼= C and a
torsion-free group G′ ∼= G such that G′ ∈ G(C ′) is given in normal form. More-
over, the isomorphism G ∼= G′ is induced by the isomorphism C ∼= C ′.

We now consider our example G∗.

Example 3.4. Let ℵ0 ≤ κ be a cardinal, let C :=
⊕

n∈ω Zen ⊕
⊕

α∈κ Zeα

and Π = {pn : n ∈ ω} be an enumeration of the set of primes. Moreover, choose
subsets Aα ⊆ ω for α ∈ κ. Then G∗ = 〈C, en −eα

pn
: n ∈ ω,α ∈ κ,n ∈ Aα〉 ∈ G(C)

is given in strong normal form. However, none of the conditions in Lemma 3.3
is satisfied. If Aα = ω for all α ∈ κ the associated matrix B = B(G∗) of G∗ is

The matrix B(G∗) for the case of general Aαs is obtained by omitting some
of the columns.

4. A group class problem

In preparation for the pure embedding given in Section 5 we discuss the
following basic group theoretic question:
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(4.1) Which (not necessarily torsion-free) groups G have the property that
for any cardinal κ and any subgroup U ⊆ G(κ) there is some ϕ ∈ End(G(κ))
with U = Kerϕ?

As every endomorphism ϕ : G(κ) → G(κ) with Kerϕ = U is uniquely de-
termined by some monomorphism ϕ′ : G(κ)/U → G(κ) this question can be
rephrased as:

(4.2) Which (not necessarily torsion-free) groups G have the property that
for any cardinal κ and any subgroup U ⊆ G(κ) the group G(κ)/U embeds into
G(κ)?

The following lemma and theorem aim towards a partial answer of question
(4.1).

Lemma 4.1. Every torsion-free group fails property (4.1).

Proof. Let G be a torsion-free group and set U = 〈2g〉 ⊆ G for some element
0 �= g ∈ G. Then 0 �= g +U ∈ G/U is an element of order 2 and the group G/U
is not torsion-free. Thus, G/U does not embed into G contradicting (4.2). �

Theorem 4.2. A reduced Abelian group satisfies property (4.1) if and only
if it is a torsion group with bounded p-components.

Proof. First, we show that every bounded p-group satisfies property (4.1):
Together with G also G(κ) and G(κ)/U are bounded p-groups and thus

direct sums of cyclic p-groups. In particular, we can write

G(κ) ∼=
n⊕

i=1

Z
(
pi

)(κi) and G(κ)/U ∼=
n⊕

i=1

Z
(
pi

)(λi)

for some n < ω and suitable cardinals 0 ≤ κi, λi. Using that Z(pi) embeds into
Z(pj) for i ≤ j, the existence of a monomorphism ϕ′ : G(κ)/U → G(κ) will be
an easy consequence of

n∑
i=m

λi ≤
n∑

i=m

κi for all 1 ≤ m ≤ n.(1)

Towards proving (1), we first observe that

rp

(
pm−1G(κ)/pmG(κ)

)
=

n∑
i=m

κi and

rp

(
pm−1

(
G(κ)/U

)
/pm

(
G(κ)/U

))
=

n∑
i=m

λi,

where rp denotes the p-rank of the respective p-bounded groups. Now from

pm−1
(
G(κ)/U

)
/pm

(
G(κ)/U

)
=

((
pm−1G(κ) + U

)
/U

)
/
((

pmG(κ) + U
)
/U

)
∼=

(
pm−1G(κ) + U

)
/
(
pmG(κ) + U

)
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=
(
pm−1G(κ) +

(
pmG(κ) + U

))
/
(
pmG(κ) + U

)
∼= pm−1G(κ)/

(
pm−1G(κ) ∩

(
pmG(κ) + U

))
∼= pm−1G(κ)/

(
pmG(κ) +

(
pm−1G(κ) ∩ U

))
,

and pmG(κ) ⊆ pmG(κ) + (pm−1G(κ) ∩ U) follows
n∑

i=m

λi = rp

(
pm−1

(
G(κ)/U

)
/pm

(
G(κ)/U

))

= rp

(
pm−1G(κ)/

(
pmG(κ) +

(
pm−1G(κ) ∩ U

)))

≤ rp

(
pm−1G(κ)/pmG(κ)

)
=

n∑
i=m

κi

for the p-ranks of the respective p-bounded groups. This verifies (1).
Now property (4.1) follows for every torsion group G whose p-components

Gp are bounded:
As together with G also G(κ) and U are torsion groups we can write G(κ) =⊕
p∈Π Ap and U =

⊕
p∈Π Bp with bounded p-groups Bp ⊆ Ap (p ∈ Π). Thus

G(κ)/U ∼=
⊕
p∈Π

(Ap/Bp)

holds and an embedding ϕ′ : G(κ)/U → G(κ) is defined by setting ϕ′ =⊕
p∈Π ϕ′

p for suitable embeddings ϕ′
p : Ap/Bp → Ap.

It remains to be shown that every reduced Abelian group with property
(4.1) has to be torsion with bounded p-components.

We start with the case of torsion groups: Thus, assume that G is torsion
and satisfies property (4.1). Without loss of generality we may assume that G
is p-torsion for some prime p. We choose a p-basic subgroup B of G. Hence,
B is a direct sum of cyclic p-groups and the quotient G/B is divisible. If
G/B �= 0, property (4.1) implies that G/B embeds into G—a contradiction
since G is reduced. Therefore, G = B and it remains to prove that B is
bounded. However, if B is unbounded, then the group T =

⊕
n∈ω Z(pn) is

an epimorphic image of B. By [6], Exercise 17.14(a), p. 91, any countable
p-group is an epimorphic image of T , hence of B and thus any countable
p-group embeds into B by property (4.1). This includes countable divisible
p-groups contradicting G being reduced.

Now for the case of general reduced Abelian groups: Assume that G is
reduced and satisfies property (4.1). As shown the torsion subgroup (which
satisfies property (4.1) as a fully invariant subgroup of G) has bounded p-
components. Choose a prime p and let pn denote the bound of the p-compo-
nent of t(G), hence pn(t(G))p = 0. If now x is a torsion-free element of G, then
x + 〈pn+1x〉 is an element of order pn+1 inside G/〈pn+1x〉 and with property
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(4.1) also inside G, a contradiction. Thus, G itself is a torsion group with
bounded p-components. �

Finally, we have the following result which shows that groups with large
divisible part always satisfy property (4.1). Let D0 denote the torsion-free
part of a divisible Abelian group D.

Lemma 4.3. Let G = D ⊕ R be an Abelian group with D divisible and R
reduced. If for all p ∈ Π ∪ {0} the p-component Dp of D has size at least |G|,
then G satisfies property (4.1).

Proof. For any subgroup U of G(κ) the corresponding quotient G(κ)/U

has size less than or equal to |D(κ)
0 | by our assumptions. Moreover, any p-

component (G(κ)/U)p of G(κ)/U (for p ∈ Π) has size less than or equal to
|D(κ)

p |. Thus, G(κ)/U can be embedded into D(κ) ⊆ G(κ). �

5. The pure embedding

We now return to matrices. If α,β are ordinals and R ⊆ Q, then let
Mat(α×β)(R) consist of all column finite matrices with α rows and β columns
and with entries in R. Note that any B ∈ Mat(α×β)(R) defines a homomor-
phism from Q(β) to Q(α) in the obvious way.

We need to introduce a subclass of G(C) as follows. Let

Gbd(C) =
{
G ∈ G(C) | (G/C)p is bounded by some pnG

p for all p ∈ Π
}
.

If G ∈ Gbd(C), then we will assume that np := nG
p denotes the corresponding

bound of (G/C)p and that np is chosen to be minimal with this property for
every prime p ∈ Π. Note that np = nG

p depends on G but there will be no
danger of confusion if we suppress the index G in the sequel. Moreover, for
G ∈ Gbd(C) we define

R(G) :=
〈

1
pn

: p ∈ Π, n ≤ np

〉

and if p ∈ Π we let

Rp(G) :=
〈

1
qn

: p �= q ∈ Π, n ≤ nq

〉
.

Clearly, for G ∈ Gbd(C) in standard form we have the following properties
• without loss of generality, we can choose mj ≤ np whenever pj = p.
• B(G) ∈ Mat(κ×κ)(R(G)).
• pnpB(G) ∈ Mat(κ×κ)(Rp(G)).
• pnpB(G) defines a homomorphism from Z(κ) to Rp(G)(κ).
Different to [9], we now define B-good matrices as follows.
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Definition 5.1. Let G ∈ Gbd(C) be in standard form and B = B(G) ∈
Mat(κ×κ)(R(G)) its associated matrix. A matrix

A = (ai,j)i∈κ,j∈κ ∈ Mat(κ×κ)(Z)

is B-good if the following condition is satisfied for all p ∈ Π:

x ∈ Im
(
pnpB

)
+

(
pnpRp(G)

)(κ) ⇐⇒ A(x) ∈
(
pnpRp(G)

)(κ)

if one regards pnpB and A as homomorphisms from Z(κ) to Rp(G)(κ), respec-
tively, from Rp(G)(κ) to Rp(G)(κ).

We have a first easy lemma that shows the existence of B-good matrices
locally.

Lemma 5.2. Let G ∈ Gbd(C) be in standard form and

B = B(G) ∈ Mat(κ×κ)

(
R(G)

)
its associated matrix. For every p ∈ Π, there is a matrix Ap = (ai,j)i∈κ,j∈κ ∈
Mat(κ×κ)(Z) such that

x ∈ Im
(
pnpB

)
+

(
pnpRp(G)

)(κ) ⇐⇒ Ap(x) ∈
(
pnpRp(G)

)(κ)
.

Proof. We start with the observation that(
g + pnpRp(G)

)
∩ Z �= ∅ for all g ∈ Rp(G).(2)

We represent g = s
t ∈ Rp(G) with s, t ∈ Z and gcd(t, p) = 1. Choosing a, b ∈ Z

with at + bpnp = 1 we have

g =
(
at + bpnp

)
g = as + bpnpg

and as ∈ (g + pnpRp(G)) ∩ Z proving (2).
Now Theorem 4.2 holds for Rp(G)(κ)/(pnpRp(G))(κ) as bounded p-group

and there exists an endomorphism ϕ ∈ End(Rp(G)(κ)/(pnpRp(G))(κ)) with
Kerϕ = (Im(pnpB) + (pnpRp(G))(κ))/(pnpRp(G))(κ). With (2), we can rep-
resent ϕ by a matrix Ap = (ai,j)i∈κ,j∈κ ∈ Mat(κ×κ)(Z) and the claim of the
lemma is immediate. �

Clearly, if the set of all primes p such that (G/C)p is nontrivial for G ∈
Gbd(C) is finite, then the above Lemma 5.2 together with the Chinese Re-
mainder theorem implies the following corollary (see [9]). Note that by [8]
(see also Lemma 3.3) every bcd-group can be assumed to be in strong normal
form.

Corollary 5.3. Let G ∈ G(C) be a bcd-group and

B = B(G) ∈ Mat(κ×κ)

(
R(G)

)
be the associated matrix of its strong normal form. Then there exists a B-good
matrix A ∈ Mat(κ×κ)(Z).
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We return to our running example G∗ from Example 3.4.

Example 5.4. Let G∗ be as in Example 3.4 with Aα = ω for all α ∈ κ.
Then G∗ ∈ Gbd has a B-good matrix of the following form:

where this matrix is of dimension (ω,κ) × (ω,κ).

Proof. First, note that for every p ∈ Π we have Rp(G∗) = 〈 1
q : q �= p〉. We

have to check Definition 5.1 for all p ∈ Π but will only do this for p = p0. The
general case is then obtained by obvious modification. To start, let be

x =
(
x0 x1 · · · | x0 x1 · · · xα · · ·

)T ∈ Rp

(
G∗)(ω,κ)

and assume x ≡ p0By modp0Rp(G∗)(ω,κ) for some vector

y =
(
y0
0 y0

1 · · · | y1
0 y1

1 · · · | · · · | yα
0 yα

1 · · · | · · ·
)T ∈ Z(ω·κ).

Hence, with matrix B from Example 3.4 we can write

x ≡ p0By =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑
α∈κ yα

0
p0
p1

∑
α∈κ yα

1

...
−

∑
i∈ω

p0
pi

y0
i

...
−

∑
i∈ω

p0
pi

yα
i

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

≡

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑
α∈κ yα

0

0
...

−y0
0

...
−yα

0
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

modp0Rp

(
G∗)(ω,κ)

and any element in the image of p0B is particularly of the form(∑
α∈κ yα

0 0 · · · | −y0
0 · · · −yα

0 · · ·
)T modp0Rp

(
G∗)(ω,κ)

.
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Clearly, in this case Ax = A(p0By) ≡ 0 mod p0Rp(G∗)(ω,κ).
We now calculate Ax for any vector x as above and obtain

Ax =
(
p0x0 p1x1 · · · |

∑
n∈ω xn +

∑
α∈κ xα 0 · · ·

)T
.

Thus, if Ax ∈ p0Rp(G∗)(ω,κ), then xn ∈ p0Rp(G∗) for all n ≥ 1. Moreover,
x0 ≡ −

∑
α∈κ xα mod p0Rp(G∗) and hence

x ≡
(

−
∑

α∈κ xα 0 · · · | x0 x1 · · · xα · · ·
)T modp0Rp

(
G∗)(ω,κ)

which is in the image of p0B. �
That in general Hawaiian groups fail to have a B-good matrix is shown by

the following

Example 5.5. Let G∗ be as in Example 3.4 with A0 = ω \ {0} and Aα = ω
for all 0 < α ∈ κ. Then G∗ ∈ Gbd has no B-good matrix.

Proof. We retain the notations from Examples 3.4 and 5.4 and assume that
a B-good matrix A exists. Let

a =
(
a0 a1 · · · | a0 a1 · · · aα · · ·

)
∈ Z(ω,κ)

denote a row vector of this matrix A. Then for n ≥ 1, α ∈ κ setting p = pn

we have e0 − eα = (en − eα) − (en − e0) ∈ Im(pnB) and hence a0 − aα = aT ·
(e0 − eα) ∈ Z ∩ pnRp(G∗) = pnZ. Thus, a0 − aα = 0 and aα = aβ holds for all
α,β ∈ κ. But then aT · (e0 − e0) = a0 − a0 = a0 − a1 = aT · (e0 − e1) ∈ p0Rp(G∗)
and A(e0 − e0) ∈ p0Rp(G∗)(ω,κ) follows though obviously e0 − e0 /∈ Imp0B +
p0Rp(G∗)(ω,κ), a contradiction. �

The last two examples can easily be generalized to characterize all those
countable Hawaiian groups which admit a B-good matrix.

Lemma 5.6. Let G∗ be as in Example 3.4 with κ = ω. Then G∗ admits a
B-good matrix if and only if for all α �= β < ω the sets Aα and Aβ are either
almost disjoint or Aα = Aβ = ω holds.

Proof. We again retain the notations from Examples 3.4 and 5.4.
Our condition on the sets Aα (α < ω) is obviously necessary: If |Aα ∩ Aβ | =

ω with n /∈ Aβ for some α �= β < ω, then an argument similar to Example 5.5
contradicts the existence of a B-good matrix A as A(eα − eβ) = 0 but eα − eβ /∈
ImpnB + pnRpn(G∗)(ω,ω).

To show that our condition is also sufficient, we will describe how to con-
struct a B-good matrix A′ from a given family of sets Aα (α < ω). We will
start off from the matrix A given in Example 5.4 which is B-good in the
special case of Aα = ω for all α < ω. From Example 5.4, we know

Ax ∈ pnRpn

(
G∗)(ω,ω)

⇐⇒ x ∈ Un :=
〈
Rpn

(
G∗)(

en − eα
)

|α < ω
〉

+ pnRpn

(
G∗)(ω,ω)
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and we have

x ∈ Im(pnB) + pnRpn

(
G∗)(ω,ω)

⇐⇒ x ∈ Vn :=
〈
Rpn

(
G∗)(

en − eα
)

|n ∈ Aα

〉
+ pnRpn

(
G∗)(ω,ω) ⊆ Un.

Our goal is to realize for all n < ω

A′x ∈ pnRpn

(
G∗)(ω,ω) ⇐⇒ x ∈ Vn

by adding appropriate additional lines

a =
(
a0 a1 · · · | a0 a1 · · · aα · · ·

)
∈ Z(ω,κ)

to the matrix A. For this let some m < ω and y ∈ Um \ Vm be given. Without
loss of generality, we can assume a representation y =

∑
m/∈Aα

zα(em − eα)
with integers zα �≡ 0 (modpm). We now can easily choose the coefficients
an, aα ∈ Z of our new line vector a by induction over α < ω such that the
following conditions hold:
(1) If α,β < ω with Aα = Aβ , then aα = aβ .
(2) If α,n < ω with n ∈ Aα, then aα ≡ an (modpn).
(3)

∑
m/∈Aα

zα(am − aα) �≡ 0 (modpm).
Both conditions (2) and (3) make crucial use of the Chinese Remainder the-
orem and the almost disjointness of the sets Aα �= ω (α < ω).

Now, adding the line a to our starting matrix A will guarantee A′y /∈
pmRpm(G∗)(ω,ω) while at the same time preserving A′x ∈ pnRpn(G∗)(ω,ω) for
all x ∈ Vn (n < ω). Thus, adding to A a suitable line for each single bad
candidate y ∈ Um \ Vm will result in a B-good matrix A′. �

We now prove the main result of this section.

Theorem 5.7. Let C =
⊕

i∈κ Riei and G ∈ Gbd(C) be in strong normal
form and B = B(G) ∈ Mat(κ×κ)(R(G)) its associated matrix. Moreover, as-
sume there exists a B-good matrix A. Then G is a pure subgroup of some
completely decomposable group D.

Proof. Let G ∈ Gbd(C) be given in strong normal form with C =
⊕

i∈κ Riei.
Since G is in strong normal form we have hRi

p (1) = 0 for all i ∈ κ and 1
p ∈ R(G)

and hence Ri ∩ R(G) = Z for all i ∈ κ. Let B = B(G) be the matrix associated
to G and let A = (ai,j)i∈κ,j∈κ be B-good.

Define A′ = (a′
i,j)i∈κ+κ,j∈κ ∈ Mat((κ+κ)×κ)(Z) as follows:

• a′
i,j = ai,j and a′

κ+i,j = δ(i, j) for i, j ∈ κ where δ denotes the Kronecker
function, that is, δ(i, j) = 1 if i = j and 0 otherwise.

For i ∈ κ, we now put
• R′

i = Z +
∑

ai,j �=0,j∈κ Rj ⊆ Q,
• R′

κ+i = Ri + R(G) and
• C ′ =

⊕
i∈κ+κ R′

ie
′
i.
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We will view A′ as an embedding of C into C ′ and define a mapping

ϕ : C → C ′, ej �→
∑
i∈κ

ai,je
′
i + e′

κ+j = A(ej) + e′
κ+j = A′(ej).

By the choice of the R′
i (i ∈ κ + κ) the mapping ϕ is well-defined and we

have that κ + i ∈ [ϕ(ej)] if and only if i = j for i, j ∈ κ. We claim that ϕ
extends to ϕ : G → C ′ and is a pure embedding. Let ϕ̃ be the extension of
ϕ to D = Q ⊗ G = Q(κ). We have to prove first that ϕ̃(dk) ∈ C ′ for all k ∈ κ.
Fix k ∈ κ, put p = pk and recall that dk = 1

pmk

∑
i∈κ di,kei. Then

pnpdk ∈ Z(κ) and pnpdk = pnpB(ek) ∈ Im
(
pnpB

)
.

Note that mk ≤ np since p = pk. Thus,

A
(
pnpdk

)
∈

(
pnpRp(G)

)(κ)
,

A(pnpdk) ∈ (pnpRp(G) ∩ Z)(κ) = (pnpZ)(κ) and

ϕ̃(dk) = A(dk) +
1

pmk

∑
i∈κ

di,ke′
κ+i ∈

⊕
i∈κ

Ze′
i ⊕

⊕
i∈κ

R(G)e′
κ+i ⊆ C ′.

Therefore, ϕ extends to ϕ : G → C ′.
In order to see that ϕ is a monomorphism, assume that ϕ(g) = 0 for

some g ∈ G and represent g as g =
∑

i∈κ riei with ri ∈ Ri + R(G). Then
ϕ(g) �R′

κ+ie
′
κ+i

= rie
′
κ+i and hence ri = 0 follows for all i ∈ κ. Therefore, g = 0

and ϕ is a monomorphism.
Finally, we have to show that Im(ϕ) is pure in C ′. Let q be a prime and

g =
∑

i∈κ riei ∈ G with ri ∈ Ri + R(G). Assume that

ϕ(g) = q
∑

i∈κ+κ

r′
ie

′
i =: qg′ ∈ C ′

for some r′
i ∈ R′

i. We distinguish two cases.
Case 1: (G/C)q = {0}.
In this case, we conclude 1

q /∈ R(G), hence there is t ∈ Z such that gcd(t, q) =
1 and tri ∈ Ri for all i ∈ κ. Choose s1, s2 ∈ Z such that s1q + s2t = 1. Then

g = s1qg + s2tg ∈ qG + C.

In order to prove that g is divisible by q inside G we may therefore assume
without loss of generality that g = s2tg ∈ C and hence ri ∈ Ri for all i ∈ κ. We
consider the R′

κ+je
′
κ+j component of C ′ and deduce qr′

κ+j = rj ∈ Rj for all
j ∈ κ. Since by assumption 1

q /∈ R(G) it is easy to see that q divides rj inside
Rj for all j ∈ κ and hence q divides g inside C. Thus, ϕ( 1

q g) =
∑

i∈κ+κ r′
ie

′
i ∈

Im(ϕ).
Case 2: (G/C)q �= {0}.
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As in Case 1, we obtain that qr′
κ+j = rj ∈ Rj + R(G) for all j ∈ κ. Since

G is in strong normal form we have 1
q /∈ Rj for all j ∈ κ. Thus there is a least

integer h such that
• (h, q) = 1,
• qnq −1hri = qnqhr′

κ+i ∈ Z by definition of R′
κ+i for all i ∈ κ,

• hr′
i ∈ Z by definition of R′

i for all i ∈ κ.
We now look at the first κ components of g′. Let g′ ′ =

∑
i∈κ r′

ie
′
i. It follows

that qnqhg′ ′ = A(qnq −1hg). Since qnq −1hg ∈
⊕

i∈κ Zei and hg′ ′ ∈
⊕

i∈κ Ze′
i we

deduce that A(qnq −1hg) ∈
⊕

i∈κ qnqRq(G)e′
i and hence qnq −1hg ∈ Im(qnqB)+⊕

i∈κ qnqRq(G)ei. Therefore, qnq −1hg =
∑

k∈κ nkqnqdk + qnqc for some inte-
gers nk ∈ Z (k ∈ κ) and c ∈

⊕
i∈κ Rq(G)ei. We deduce hg = q

∑
k∈κ nkdk + qc

and

hh′g = q

(
h′

∑
k∈κ

nkdk + h′c

)
∈ qG

for some integer h′ with (h′, q) = 1 and h′c ∈
⊕

i∈κ Zei ⊆ C. Again using
Euclid and the fact that gcd(q,hh′) = 1, we obtain that g is divisible by q
inside G and thus g′ = ϕ( 1

q g) ∈ Im(ϕ). �

Clearly the above result together with Corollary 5.3 implies the main result
from [9].

Corollary 5.8. Every bcd-group is a pure subgroup of some completely
decomposable group.

Moreover, together with Theorem 2.6 from [14] we have the following neg-
ative result

Corollary 5.9. Let C =
⊕

i∈κ Riei and G ∈ Gbd(C) be in strong normal
form and B = B(G) ∈ Mat(κ×κ)(R(G)) its associated matrix. Then G being
a pure subgroup of some completely decomposable group D does not imply the
existence of a B-good matrix A.

Proof. The group G∗ from Example 5.5 has no B-good matrix while at the
same time we can choose with Rα = 〈 1

pn
: n ∈ Aα〉 the completely decompos-

able group
D =

⊕
n∈ω

Zfn ⊕
⊕
α∈κ

Rαfα ⊕ Zg

and the pure embedding

ϕ : G∗ → D via en �→ pnfn + g and eα �→ fα + g (see [14]). �

Finally, we are able to answer Question 7.2 from [9] partially.

Lemma 5.10. Let C =
⊕

i∈ω Riei and G = 〈C, e0+ei

pi
: i ≥ 1〉 where {pi : i ≥

1} is a list of primes. Moreover, assume that G is in strong normal form,
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i.e. h
Rj
pi (1) = 0 for all i, j. Then G is a pure subgroup of some completely

decomposable group.

Before we prove Lemma 5.10, we note that Lemma 7.1 from [9] shows
that in some cases, namely when G is not in strong normal form, the above
conclusion is indeed wrong. This shows that being a pure subgroup of some
completely decomposable group does not only depend on the defining relations
but also on the base group C in the definition of G.

Proof of Lemma 5.10. We only verify the case when C =
⊕

i∈ω Zei and
{pi : i ≥ 1} lists the set of primes in increasing order. The general case is then
obtained by obvious modification. In order to apply the Main Theorem 5.7,
we need to see that G has a B-good matrix A. We first calculate the matrix
B associated to G.

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1
2

1
3

1
5

1
7

1
11 . . .

1
2 0 0 0 0 · · ·
0 1

3 0 0 0 · · ·
0 0 1

5 0 0 · · ·
0 0 0 1

7 0 · · ·
...

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Now, one easily sees that the following matrix A is B-good.

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−1 1 1 1 1 · · ·
0 2 0 0 0 · · ·
0 0 3 0 0 · · ·
0 0 0 5 0 · · ·
0 0 0 0 7 · · ·
...

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

We exemplify this for p = p2 = 3 (the general case is similar). In this case, 3B
is

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

3
2 1 3

5
3
7

3
11 . . .

3
2 0 0 0 0 · · ·
0 1 0 0 0 . . .
0 0 3

5 0 0 · · ·
0 0 0 3

7 0 · · ·
...

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.
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Thus, an element x = 3By ∈ Im(3B) is of the form

x = 3By =

⎛
⎜⎜⎜⎜⎜⎝

y1

0
y1

0
...

⎞
⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎝

3
2y0 + 3

5y2 + 3
7y3 + · · ·

3
2y0

0
3
5y2

...

⎞
⎟⎟⎟⎟⎟⎠

≡

⎛
⎜⎜⎜⎜⎜⎝

y1

0
y1

0
...

⎞
⎟⎟⎟⎟⎟⎠

mod3R3(G)(ω).

Thus,

Ax ≡

⎛
⎜⎜⎜⎜⎜⎝

−y1 + y1

0
3y1

0
...

⎞
⎟⎟⎟⎟⎟⎠

≡ 0mod3R3(G)(ω).

Conversely, if Ax ∈ 3R3(G)(ω), then

Ax =

⎛
⎜⎜⎜⎜⎜⎝

−x0 +
∑

i≥1 xi

2x1

3x2

5x3

...

⎞
⎟⎟⎟⎟⎟⎠

∈ 3R3(G)(ω)

which implies that x1, x3, x4, · · · ∈ 3R3(G). Hence, also −x0 + x2 ∈ 3R3(G)
and we conclude that

x =

⎛
⎜⎜⎜⎜⎜⎝

x2

0
x2

0
...

⎞
⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎝

x0 − x2

x1

0
x3

...

⎞
⎟⎟⎟⎟⎟⎠

≡

⎛
⎜⎜⎜⎜⎜⎝

x2

0
x2

0
...

⎞
⎟⎟⎟⎟⎟⎠

mod3R3(G)(ω).

But the latter is certainly in the image of 3B, so A is B-good.
Thus, the algorithm in the Main Theorem 5.7 applies and we obtain the

following pure embedding:

ϕ : G −→ D =
⊕
k∈ω

Zfk ⊕
⊕
k∈ω

Sgk

e0 �→ −f0 + g0

ej �→ f0 + pjfj + gj for j ≥ 1

with S = R(G) = 〈 1
p : p ∈ Π〉. �
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