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RINGS OF LOW RANK WITH A STANDARD INVOLUTION

JOHN VOIGHT

Abstract. We consider the problem of classifying (possibly non-
commutative) R-algebras of low rank over an arbitrary base

ring R. We first classify algebras by their degree, and we re-
late the class of algebras of degree 2 to algebras with a standard

involution. We then investigate a class of exceptional rings of

degree 2 which occur in every rank n ≥ 1 and show that they
essentially characterize all algebras of degree 2 and rank 3.

Let R be a commutative Noetherian ring (with 1) which is connected, so
that R has only 0,1 as idempotents (or equivalently that SpecR is connected).
Let B be an algebra over R, an associative ring with 1 equipped with an
embedding R ↪→ B of rings (mapping 1 ∈ R to 1 ∈ B) whose image lies in
the center of B; we identify R with its image in B. Assume further that B
is a finitely generated, projective R-module. Recall that a finitely generated
module is projective if and only if it is locally free; we define the rank of B to
be the common rank of its localizations.

The problem of classifying algebras B of low rank has an extensive history.
The identification of quadratic rings over Z by their discriminants is classical
and goes back as far as Gauss. Commutative rings of rank at most 5 over
R = Z have been classified by Bhargava [1], building on work of others; this
beautiful work has rekindled interest in the subject and has already seen many
applications. Progress on generalizing these results to arbitrary commutative
base rings R (or even arbitrary base schemes) has been made by Wood [11].
A natural question in this vein is to consider noncommutative algebras of low
rank, and in this article we treat algebras of rank at most 3.

The category of R-algebras (with morphisms given by isomorphisms) has
a natural decomposition by degree. The degree of an R-algebra B, denoted
degR(B), is the smallest positive integer n such that every x ∈ B satisfies a
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monic polynomial of degree n with coefficients in R. Any quadratic algebra
B, that is, an algebra of rank 2, is necessarily commutative (see Lemma 2.7)
and has degree 2. Moreover, a quadratic algebra has a unique R-linear
(anti-)involution : B → B such that xx ∈ R for all x ∈ B, which we call
a standard involution.

The situation is much more complicated in higher rank. In particular,
the degree of B does not behave well with respect to base extension (Ex-
ample 1.20). We define the geometric degree of B to be the maximum of
degS(B ⊗R S) with R → S a homomorphism of (commutative) rings. Our
first main result is as follows (Corollary 2.14).

Theorem A. Let B be an R-algebra and suppose there exists a ∈ R such
that a(a − 1) is a nonzerodivisor. Then the following are equivalent.

(i) B has degree 2;
(ii) B has geometric degree 2;
(iii) B �= R has a standard involution.

Note that if 2 is a nonzerodivisor in R then we can take a = −1 in the
above theorem.

In view of Theorem A, it is natural then to consider the class of R-
algebras B equipped with a standard involution which is then necessarily
unique (Corollary 2.9). For such an algebra B, we define the reduced trace
trd : B → R by x �→ x + x and the reduced norm by nrd : B → R by x �→ xx;
then every element x ∈ B satisfies the polynomial μ(x;T ) = T 2 − trd(x)T +
nrd(x).

Commutative algebras with a standard involution can be easily charac-
terized: for example, if 2 is a nonzerodivisor in R and B is a commutative
R-algebra with a standard involution, then either B is a quadratic algebra
or B is a quotient of an algebra of the form R[x1, . . . , xn]/(x1, . . . , xn)2 (more
generally, see Proposition 3.1).

There is a natural class of noncommutative algebras equipped with a stan-
dard involution which occur in every rank n ≥ 1, defined as follows. Let M be
a projective R-module of rank n − 1 and let t : M → R be an R-linear map.
Then we give the R-module B = R ⊕ M the structure of an R-algebra by defin-
ing the multiplication rule xy = t(x)y for x, y ∈ M . The map x �→ x = t(x) − x
is a standard involution on B. An exceptional ring is an R-algebra B with
the property that there is a left ideal M ⊂ B such that B = R ⊕ M and the
map M → HomR(M,B) given by left multiplication factors through a linear
map t : M → R.

Our second main result (Theorem 4.6) is as follows.

Theorem B. An R-algebra B of rank 3 has a standard involution if and
only if it is an exceptional ring.
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The results of this paper will be further used in an upcoming work [10]
which investigates algebras of rank 4 with a standard involution, in an attempt
to characterize quaternion rings over an arbitrary base ring.

This article is organized as follows. We begin (Section 1) with some pre-
liminary notions and define the degree of an algebra. We then explore the
relationship between algebras of degree 2 and those with a standard involu-
tion and then prove Theorem A (Section 2). Next, we investigate the class of
commutative algebras with a standard involution and define exceptional rings
(Section 3). We then classify algebras of rank 3, relating them to certain
endomorphism rings of flags and prove Theorem B (Section 4).

1. Degree

In this section, we discuss the notion of the degree of an algebra, general-
izing the notion from that over a field. We refer the reader to Scharlau [9,
Section 8.11] for an alternative approach.

Throughout this article, let R be a commutative, connected noetherian ring
and let B be an algebra over R, which as in the introduction is defined to
be an associative ring with 1 equipped with an embedding R ↪→ B of rings.
We assume further that B is finitely generated, projective R-module. For
a prime p of R, we denote by Rp the localization of R at p; we abbreviate
Bp = B ⊗R Rp and for x ∈ B we write xp = x ⊗ 1 ∈ Bp. Since B is projective,
we have that Bp is locally free of finite rank n, independent of p, and we define
the rank of B to be this common rank and denote n = rkR(B).

Remark 1.1. There is no loss of generality in working with connected rings,
since for an arbitrary ring R one has a statement for each of the connected
components of SpecR. Furthermore, one may work with non-noetherian rings
by the process of noetherian reduction, by finding a Noetherian subring R0 ⊂
R and an R0-algebra B0 such that B0 ⊗R0 R ∼= B.

Remark 1.2. For the questions we consider herein, we work (affinely)
with algebras over base rings. If desired, one could without difficulty extend
our results to an arbitrary (separated) base scheme by the usual patching
arguments.

We begin with a preliminary lemma.

Lemma 1.3. R is a direct summand of B.

Proof. For every prime ideal p of R, there exists a basis for the algebra
Bp/pBp over the field Rp/pRp which includes 1, and by Nakayama’s lemma
this lifts to a basis for Bp. In particular, the quotient B/R is locally free and
finitely generated of constant rank (since B is finitely generated over R, and
R is connected) hence projective, which implies that B/R and hence R is a
direct summand of B. �
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Every element x ∈ B satisfies a monic polynomial with coefficients in R
by the (generalized) Cayley–Hamilton theorem; indeed, by the “determinant
trick,” this polynomial has degree bounded by the minimal number of genera-
tors for B as an R-module [8, Theorem IV.17] (see also the determinant-trace
polynomial [8, Section V.E]). In fact, one can extend the notion of character-
istic polynomial directly as follows.

Lemma 1.4. For every x ∈ B, there exists a unique monic polynomial
χ(x;T ) ∈ R[T ] of degree n = rk(B) with the property that for every prime
p of R, the characteristic polynomial of left multiplication by x on Bp is equal
to χ(x;T )p ∈ Rp[T ]. Moreover, we have χ(x;x) = 0.

Proof. Let x ∈ B. Since B is projective, for each prime p of R we have
that Bp is free over Rp of rank n. By the determinant trick, we see that
xp ∈ Rp satisfies the characteristic polynomial χp(x;T ) ∈ Rp[T ] of left mul-
tiplication by xp on Bp, where χp(x;T ) is monic of degree n. Therefore
by standard patching arguments [4, Proposition II.2.2] (see also the proof of
Proposition 2.7), there exists a unique monic polynomial χ(x;T ) ∈ R[T ] such
that χ(x;T )p = χp(x;T ). Finally, since χ(x;x)p = 0 ∈ Rp for all primes p, we
have that χ(x;x) = 0 ∈ R. �

Definition 1.5. The degree of x ∈ B, denoted degR(x) (or simply deg(x) if
the base ring R is clear from context), is the smallest positive integer n ∈ Z>0

such that x satisfies a monic polynomial of degree n with coefficients in R.

By Lemma 1.4, we have degR(x) ≤ rkB for all x ∈ B. Note that degR(x) =
1 if and only if x ∈ R.

For x ∈ B, denote by R[x] the (commutative) R-subalgebra of B generated
by x, i.e., R[x] =

⋃∞
d=0 Rxd ⊂ B.

Lemma 1.6. Let x ∈ B. Then the following are equivalent:
(i) R[x] is free as an R-module;
(ii) R[x] is projective as an R-module;
(iii) x satisfies a unique monic polynomial of minimal degree degR(x) with

coefficients in R;
(iv) The ideal {f(T ) ∈ R[T ] : f(x) = 0} ⊂ R[t] is principal and generated by

a monic polynomial.
If any one of these holds, then degR(x) = rkR R[x].

Proof. The lemma is clear if x ∈ R, so we may assume x /∈ R or equivalently
degR(x) > 1.

The statement (i) ⇒ (ii) is trivial. To prove (ii) ⇒ (i), suppose that R[x] is
projective. Let p be a prime ideal of R and let k = Rp/pRp be the residue field
of Rp. Then R[x] ⊗R k = k[x] has a k-basis 1, x, . . . , xd−1 for some d ∈ Z>1. By
Nakayama’s lemma, 1, . . . , xd−1 is a Rp-basis for Rp[x]. Since R is connected,
the value of d = rkRp[x] does not depend on the prime ideal p. It follows that
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the surjective map
⊕d−1

i=0 Rei → R[x] by ei �→ xi is an isomorphism since it is
so locally, and hence R[x] is free.

To prove that (iii) ⇔ (i), we note that if f(T ) ∈ R[T ] is the unique monic
polynomial of degree d = degR(x) ≥ 2 with f(x) = 0, then 1, x, . . . , xd−1 is
an R-basis for R[x]—indeed, if ad−1x

d−1 + · · · + a0 = 0 with ai ∈ R then
g(T ) = f(T ) + ad−1T

d−1 + · · · + a0 has g(x) = 0 so f(T ) = g(T ) and a0 =
· · · = ad−1 = 0, and the converse follows similarly.

The equivalence (iii) ⇔ (iv) follows similarly. �
Corollary 1.7. Suppose that degR(x) = 2. Then R[x] is projective if and

only if ax /∈ R for all a �= 0 ∈ R, and this holds if 1, x belongs to a basis for B.

Example 1.8. Let p be prime and let B = R[ε]/(ε2) with R = Z/p2Z.
Then R[ε] = B is projective, but the element x = pε satisfies x2 = 0 as well as
px = 0, so R[x] is not projective.

If R → S is a ring homomorphism and x ∈ B, then we abbreviate degS(x)
for degS(x ⊗ 1) with x ⊗ 1 ∈ B ⊗R S = BS .

Lemma 1.9. For any x ∈ B, the map

SpecR → Z,

p �→ degRp
(x)

is lower semicontinuous, i.e., for all primes q ⊃ p we have degRq
(x) ≥

degRp
(x).

Proof. Let n = degR(x), and for each integer 0 ≤ m ≤ n, let am be the ideal
of R consisting of all leading coefficients of polynomials f(T ) ∈ R[T ] such that
f(x) = 0 with deg(f) ≤ i. Clearly, we have a0 = (0) ⊂ a1 ⊂ · · · ⊂ an = R. It
follows that degRp

(xp) = n if and only if p ⊃ an−1, and more generally that
degRp

(xp) = m if and only if am � p ⊃ am−1, and consequently the map is
lower semicontinuous. �

Corollary 1.10. For any x ∈ B with degR(x) = n, the set of primes
p ∈ SpecR where degRp

(x) ≥ n is closed and nonempty. Moreover, we have
degR(x) ≥ degRp

(x) for all primes p.

Remark 1.11. Note that if R[x] is projective, Lemma 1.9 is immediate
since then in fact degRp

(xp) = rk(R[x]p) is constant.

Definition 1.12. The degree of B, denoted degR(B) (or simply deg(B),
when no confusion can result), is the smallest positive integer n ∈ Z>0 such
that every element of B has degree at most n.

Example 1.13. B has degree 1 as an R-algebra if and only if B = R.
If B is free of rank n, then B has degree at most n but not necessarily degree

n, even if B is commutative: for example, the algebra R[x, y, z]/(x, y, z)2 has
rank 4 but has degree 2 and R[x, y]/(x3, xy, y2) has rank 4 but degree 3.
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Example 1.14. If K is a separable field extension of F with dimF K = n,
then K has degree n as a F -algebra (in the above sense) by the primitive
element theorem.

More generally, if F is a field and B is a commutative étale algebra with
#F ≥ dimF (B) = n, then degF (B) = n. Indeed, we can write B ∼=

∏
i Ki as

a product of separable field extensions Ki/F , and so if ai ∈ Ki are primi-
tive elements with different characteristic polynomials (equivalently, minimal
polynomials), which is possible under the hypothesis that #Ki ≥ #F ≥ n,
then the element (ai)i ∈

∏
i Ki

∼= B has minimal polynomial of degree n.

Example 1.15. If B is a central simple algebra over a field F , then
deg(B)2 = dimF (B). More generally, if B is a semisimple algebra over F ,
then the degree of B agrees with the usual definition [7] given in terms of the
Wedderburn–Artin theorem.

Definition 1.16. B has constant degree n ∈ Z>0 if degRp
(Bp) = n for all

prime ideals p of R.

Example 1.17. If R is a domain, then any R-algebra B has constant
degree. Indeed, for any prime p of R we have degR(B) ≥ degF (B) where F
denotes the quotient field of R, but on the other hand if degF (x/d) = n =
degF (B) for x ∈ B and d ∈ R, then we must have degR(x) = n.

Lemma 1.18. If B has constant degree n = rkR(B), then B is commutative.

Proof. We know that B is commutative if and only if Bm is commutative
for all maximal ideals m of B, since then the commutator [B,B] is locally
trivial and hence trivial. So we may suppose that R is a local ring with
maximal ideal m. By hypothesis, we have degR(B) = n = rkR(B), so there
exists an element x ∈ B with degR(x) = n. By Nakayama’s lemma, we find
that degk(x) = n, where k = R/m is the residue field of R; so the powers of x
form a basis for Bk, hence also of B, and it follows that B is commutative,
as claimed. �

Example 1.19. Lemma 1.18 is false if merely B has degree n = rkR(B)
(but not constant degree), as in Example 4.4.

Unfortunately, degR(B) is not invariant under base extension, as the fol-
lowing example illustrates.

Example 1.20. Let p be prime, let R = Fp, and let B =
∏n

i=1 Fp with
n ≥ p. Then every element x ∈ B satisfies xp = x, so degR(B) ≤ p. On the
other hand, the element x = (0,1,2, . . . , p − 1,0, . . . ,0) has degree p since the
elements 1, x, . . . , xp−2 are linearly independent over Fp (consider the corre-
sponding Vandermonde matrix), hence degR(B) = p. On the other hand,
deg

Fp
(B ⊗Fp Fp) = n by Example 1.14.
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Definition 1.21. The geometric degree of B, denoted gdegR(B) (or simply
gdeg(B)), is the maximum of degS(B ⊗R S) for all maps R → S with S a
(connected, Noetherian, commutative) ring.

Remark 1.22. In Definition 1.21, we may equivalently restrict the max-
imum to rings S which are algebraically closed fields: indeed, if gdeg(B) =
degS(B ⊗R S) with degS(x ⊗ s) = degS(B ⊗R S) = n then by Lemma 1.9 there
exists a maximal ideal m ⊂ S such that degSm

(x ⊗ s) = degk(x ⊗ s) = n where
k = Sm/mSm, and then degk(x ⊗ s) = n as well, where k is the algebraic closure
of k.

For m ∈ Z>0, we denote by R[a1, . . . , am] = R[a] the polynomial ring in n
variables over R.

Lemma 1.23. Suppose that B is generated by x1, . . . , xm as an R-module,
and define

ξ = a1x1 + · · · + amxm =
m∑

i=1

aixi ∈ B ⊗R R[a].

Then gdegR(B) = degR[a](ξ) < ∞.

Proof. Let S be an R-algebra. Then since x1, . . . , xm generate B ⊗R S
as an S-algebra, by specialization we see that degS(B ⊗R S) ≤ degR[a](ξ), so
gdeg(B) ≤ degR[a](ξ). But

degR[a](ξ) ≤ degR[a](BR[a]) ≤ gdeg(B)

by definition, so equality holds. �

We conclude with two results which characterize the geometric degree.

Lemma 1.24. If S is a flat R-algebra, then gdegR(B) = gdegS(B ⊗R S).

Proof. For ξ as in Lemma 1.23, we have gdegR(B) = degR[a](ξ) =
rkR[a] R[a][ξ]; since S is flat over R we have that S[a] is flat over R[a] and
rkR[a] R[a][ξ] = rkS[a] S[a][ξ] = degS[a](ξ) = degS(B ⊗R S), as claimed. �

Lemma 1.25. We have gdegR(B) = maxp∈SpecR gdegRp
(Bp).

Proof. We have by definition gdegR(B) ≥ gdegRp
(Bp) for all primes p.

Conversely, let S be a ring such that gdegR(B) = degS(B ⊗ S) = n, and
let x ∈ B ⊗ S have degS(x) = n. Then by Lemma 1.9, there exists a prime
q ⊂ S such that degSq

(x) = n. If q lies over p ∈ SpecR, then it follows that
gdegRp

(Bp) = n = gdegR(B). The result follows. �



1142 J. VOIGHT

2. Involutions

In this section, we discuss the notion of a standard involution on an R-
algebra, and we compare this to the notion of degree and geometric degree
from the previous section.

Definition 2.1. An involution (of the first kind) : B → B is an R-linear
map which satisfies:
(i) 1 = 1,
(ii) is an anti-automorphism, i.e., xy = y x for all x, y ∈ B, and
(iii) x = x for all x ∈ B.

If Bop denotes the opposite algebra of B, then one can equivalently de-
fine an involution to be an R-algebra isomorphism B → Bop such that the
underlying R-linear map has order at most 2.

Definition 2.2. An involution is standard if xx ∈ R for all x ∈ B.

Example 2.3. The usual adjoint map Mk(R) → Mk(R) defined by A �→ A†

(with AA† = A†A = det(A)I) is R-linear if and only if k = 2, since it restricts
to the map r �→ rk−1 on R; if k = 2, then it is in fact a standard involution. In
particular, we warn the reader that many authors consider involutions which
are not R-linear—although this more general class is certainly of interest (see,
e.g., Knus, Merkurjev, Rost, and Tignol [6]), we will not consider them here.

Example 2.4. To verify that an involution : B → B is standard, it is not
enough to check that xx ∈ R for x in a set of generators for B as an R-module.
The Clifford algebra of a quadratic form in many variables gives a wealth of
such examples, among others.

Remark 2.5. Note that if is a standard involution, so that xx ∈ R for
all x ∈ B, then

(x + 1)(x + 1) = (x + 1)(x + 1) = xx + x + x + 1 ∈ R

and hence x + x ∈ R for all x ∈ B as well. Consequently, (x + x)x = x(x + x)
so xx = xx for all x ∈ B.

Example 2.6. A standard involution is trivial if it is the identity map. The
R-algebra B = R has a trivial standard involution as does the commutative
algebra B = R[ε]/(ε2) for R any commutative ring of characteristic 2.

B has a trivial standard involution if and only if B is commutative and
x2 ∈ R for all x ∈ B. If the identity map is a standard involution on B,
then either B = R or 2 is a zerodivisor in R. Indeed, for any x ∈ B we have
(x + 1)2 ∈ R, so 2x ∈ R for all x ∈ B; if 2 is a nonzerodivisor in R, then
x/1 ∈ R[1/2] so rkB[1/2] = rkB = 1 so B = R.

Let : B → B be a standard involution on B. Then we define the reduced
trace trd : B → R by trd(x) = x + x and the reduced norm nrd : B → R by
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nrd(x) = xx for x ∈ B. Since

(2.1) x2 − (x + x)x + xx = 0

identically we have x2 − trd(x)x + nrd(x) = 0 for all x ∈ B. Therefore, any
R-algebra B with a standard involution has degR(B) ≤ 2. In particular, for
x, y ∈ B we have

(x + y)2 − trd(x + y)(x + y) + nrd(x + y) = 0

so

(2.2) xy + yx = trd(y)x + trd(x)y + nrd(x + y) − nrd(x) − nrd(y).

An R-algebra S is quadratic if S has rank 2. The following lemma is
well-known [5, I.1.3.6]; we give a proof for completeness.

Lemma 2.7. Let S be a quadratic R-algebra. Then S is commutative, we
have degR(S) = gdegR(S) = 2, and there is a unique standard involution on S.

Proof. First, suppose that S is free. Then by Lemma 1.3, we can write
S = R ⊕ Rx = R[x] for some x ∈ S and so in particular S is commutative. By
Lemma 1.6, the element x satisfies a unique polynomial x2 − tx + n = 0 with
t, n ∈ R, so degR(x) = degR(B) = 2. We define : R[x] → R by x = t − x,
and we extend the map by R-linearity to a standard involution on S. If

: S → S is any standard involution then identically equation (2.1) holds; by
uniqueness, we have t = x + x and n = xx = xx, and the involution x = t − x
is unique.

We now use a standard localization and patching argument to finish the
proof. For any prime ideal p of R, the Rp-algebra Sp is free. It then follows
that S is commutative, since the map R-linear map S × S → S by (x, y) �→
xy − yx is zero at every localization, hence identically zero. Further, for each
prime p, there exists f ∈ R \ p such that Sf is free over Rf . Since SpecR is
quasi-compact, it is covered by finitely many such SpecRf , and the uniqueness
of the involution defined on each Sf implies that they agree on intersections
and thereby yield a (unique) involution on S.

To conclude, we must show that gdegR(S) = 2. But any base extension of
S has rank at most 2 so has degree at most 2, and the result follows. �

Remark 2.8. It also follows from Lemma 2.7 that nrd(x) = xx = xx.

By covering any R-algebra B with a standard involution by quadratic al-
gebras, we have the following corollary.

Corollary 2.9. If B has a standard involution, then this involution is
unique.
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Proof. By localizing at all primes of R, we may assume without loss of
generality that B is free over R. Choose a basis for B over R. For any
element x of this basis, from Corollary 1.7 we conclude that S = R[x] is free,
hence projective; by Example 2.6 (if S = R) or Lemma 2.7, we conclude that
S has a unique standard involution. By R-linearity, we see that B itself has
a unique standard involution. �

For the rest of this section, we relate the (geometric) degree of B to the
existence of a standard involution. We have already seen that if B has a
standard involution, then it has degree at most 2. The converse is not true,
as the following example (see also Example 1.20) illustrates.

Example 2.10. Let R = F2 and let B be a Boolean ring of rank at least
3 over F2. Then B has degree 2, since every element x ∈ B satisfies x2 = x.
The unique standard involution on any subalgebra R[x] with x ∈ B \ R is the
map x �→ x = x + 1, but this map is not R-linear, since

x + y = 1 + (x + y) �= x + y = 1 + x + 1 + y = x + y

for any x, y ∈ B such that 1, x, y are linearly independent over F2. It is more-
over not an involution, since if x �= y ∈ B \ R satisfy xy /∈ R, then

xy = 1 + xy �= y x = (1 + y)(1 + x) = 1 + x + y + xy.

We see from Example 2.10 that the condition of R-linearity is essential.
We are led to the following key lemma.

Lemma 2.11. Suppose that B has an R-linear map : B → B with 1 = 1
such that xx ∈ R for all x ∈ B. Then is a standard involution on B.

Proof. We must prove that is an anti-involution, that is, xy = y x for all
x, y ∈ B. We can check that this equality holds over all localizations, so we
may assume that B is free over R. Since is R-linear, we may assume x, y ∈
B \ R are part of an R-basis for B which includes 1. Write xy = a+bx+cy+z
with z linearly independent of 1, x, y. Replacing x by x − c + 1 (again using
R-linearity), we may assume without loss of generality that c = 1. It follows
that 1, xy belongs to a basis for B, so by Corollary 1.7 we have R[xy] free
over R.

Now notice that

(xy)(y x) = x(yy)x = (xx)(yy) = (yy)(xx) = (y x)(xy) ∈ R

and also (using R-linearity one last time)

xy + y x = (x + y)(x + y) − xx − yy ∈ R.

But then
(xy)2 − (xy + y x)xy + (y x)(xy) = 0

as well as
(xy)2 − (xy + xy)xy + xy(xy) = 0



RINGS OF LOW RANK 1145

and so by the uniqueness in Lemma 1.6 we conclude that xy = y x. �

With this lemma in hand, we prove the following central result.

Proposition 2.12. B has a standard involution if and only if
gdegR(B) ≤ 2.

Proof. First, suppose that B is free with basis x1, . . . , xm. We refer to
Lemma 1.23; consider the element ξ = a1x1 + · · · +amxm ∈ BR[a], with R[a] =
R[a1, . . . , am] a polynomial ring.

The total degree map on R[a] defines a grading of R[a]. We have a natural
induced grading on BR[a] as an R[a]-module, taking coefficients in the basis
x1, . . . , xm. Since the coefficients of multiplication in BR[a] are elements of R
and so have degree 0, we see that this grading respects multiplication in B.
In this grading, the element ξ has degree 1.

Suppose that gdegR(B) ≤ 2. The proposition is true if B = R, so we
may assume gdegR(B) = 2. Then degR[a](ξ) = 2, so there exist polynomi-
als t(a), n(a) ∈ R[a] such that

ξ2 − t(a)ξ + n(a) = 0.

This equality must hold in each degree, so looking in degree 2 we may assume
that t(a) has degree 1 (and n(a) has degree 2). By specialization, it follows
that t(a) induces an R-linear map : B → B by x �→ t(x) − x with the property
that xx = n(x) ∈ R for all x ∈ B. This map is then a standard involution by
Lemma 2.11.

Conversely, suppose that B has a standard involution. Define the maps
(of sets) t, n : B → R by trd(x) = x + x and nrd(x) = xx for x ∈ B, so that
x2 − trd(x)x + nrd(x) = 0 for all x ∈ B. Define

t(a) =
n∑

i=1

trd(xi)ai ∈ R[a]

and

n(a) =
n∑

i=1

nrd(xi)a2
i +

∑
1≤i<j≤n

(
nrd(xi + xj) − nrd(xi) − nrd(xj)

)
aiaj ∈ R[a].

Then t(a) has degree 1 and n(a) has degree 2. Now consider the element

(2.3) ξ2 − t(a)ξ + n(a) =
n∑

k=1

ck(a)xk ∈ BR[a].

Each polynomial ck(a) ∈ R[a] in (2.3) has degree 2. If we let ei be the coor-
dinate point (0, . . . ,0,1,0 . . . ,0) with 1 in the ith place for i = 1, . . . ,m, then
by construction ck(ei) = ck(ei + ej) = 0 for all i, j, and therefore ck(a) = 0
identically. Therefore, degR[a](ξ) = 2 and gdegR(B) = 2, as claimed.
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Now let B be an arbitrary R-algebra. If gdegR(B) ≤ 2, then by localization
and uniqueness (Corollary 2.9) the result follows from the case where B is free.
Conversely, if B has a standard involution, we conclude that gdegR(Bp) ≤ 2
for all primes p ∈ B. The result then follows from Lemma 1.25. �

We conclude this section by relating the existence of a standard involution
to degree (not geometric degree).

Proposition 2.13. Suppose that degR(B) = 2 and suppose that there ex-
ists a ∈ R such that a(a − 1) is a nonzerodivisor. Then there is a standard
involution on B.

Proof. Again by localization and uniqueness, we may suppose that B is
free with basis x1, . . . , xm with x1 = 1. Thus for each i, the algebra Si = R[xi]
is free and by Lemma 2.7 there is a unique standard involution on Si. This
involution extends by R-linearity to a map : B → B, which (for the moment)
is just an R-linear map whose restriction to each Si is a standard involution.
For x ∈ B, we define t(x) = x + x and n(x) = xx.

We need to show that in fact n(x) ∈ R for all x ∈ B, for then is a standard
involution by Lemma 2.11. Let x, y ∈ B satisfy n(x), n(y) ∈ R. Since

n(x + y) = (x + y)(x + y) = xx + yx + xy + yy

= n(x) + n(y) + t(y)x + t(x)y − (xy + yx)

we have n(x+y) ∈ R if and only if xy+yx − t(y)x+ t(x)y ∈ R, or equivalently
if

(x + y)2 − t(x + y)(x + y) ∈ R.

By this criterion, it is clear that n(x+ y) ∈ R if and only if n(ax+ by) ∈ R for
all a, b ∈ R. So it is enough to prove that n(x + y) ∈ R when 1, x, y is part of
a basis for B with n(x), n(y) ∈ R.

Let a ∈ R. By Lemma 1.7, since x + ay is contained in a basis for B we
have that R[x+ay] is free over R. Letting a = 1, we have that R[x+ y] is free
so x + y satisfies a unique polynomial of degree 2 over R, hence there exists a
unique u ∈ R such that (x+ y)2 − u(x+ y) ∈ R. From the above, n(x+ y) ∈ R
if and only if u = t(x + y).

We have

(x + ay)2 = x2 + a(xy + yx) + a2y2 = a(xy + yx) + t(x)x + a2t(y)y ∈ B/R

and since

xy + yx = (x + y)2 − x2 − y2 = u(x + y) − t(x)x − t(y)y ∈ B/R

we have

(x + ay)2 =
(
au − at(x) + t(x)

)
x +

(
au − at(y) + a2t(y)

)
y ∈ B/R.
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But degR(B) = 2, so (x + ay)2 is an R-linear combination of 1, x + ay. But
this can only happen if

a
(
au − at(x) + t(x)

)
=

(
au − at(y) + a2t(y)

)
which becomes simply

a(a − 1)
(
u − t(x) − t(y)

)
= 0.

So, if a(a − 1) is a nonzerodivisor, then we have u = t(x) + t(y) = t(x + y), as
desired. �

We finish then by proving Theorem A.

Corollary 2.14. Suppose that there exists a ∈ R such that a(a − 1) is a
nonzerodivisor. Then the following are equivalent:
(i) degR(B) = 2;
(ii) gdegR(B) = 2;
(iii) B �= R and B has a standard involution.

Proof. Combine Proposition 2.12 with Proposition 2.13 and the trivial im-
plication (ii) ⇒ (i). �

3. Commutative algebras with a standard involution and
exceptional rings

In this section, we investigate two classes of algebras with a standard in-
volution: commutative algebras and exceptional rings.

First, note that if B is a commutative R-algebra with a standard involution
: B → B, then is in fact an R-algebra automorphism.

Proposition 3.1. Let J = annR(2) = {x ∈ R : 2x = 0} and let B be a
commutative R-algebra. Then B has a standard involution if and only if
either rkB ≤ 2 or B is generated by elements x1, . . . , xn that satisfy x2

i ∈ J
for all i and xixj ∈ JB for all i �= j.

Consequently, if a commutative R-algebra B with rkB > 2 has a standard
involution, then the involution is trivial.

Proof of Proposition 3.1. Let B be a commutative R-algebra with a stan-
dard involution and assume that rkB > 2.

First, suppose that 2 = 0 ∈ R. Let 1, x, y ∈ B be R-linearly independent.
Then by (2.2) we have

0 = 2xy = xy + yx = trd(x)y + trd(y)x + nrd(x + y) − nrd(x) − nrd(y).

Therefore, trd(x) = trd(y) = 0.
Now let R be any commutative ring. For any x ∈ B such that 1, x is

R-linearly independent, there exists y ∈ B such that 1, x, y is R-linearly inde-
pendent. By the preceding paragraph, by considering the image of x in the
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R/2R-algebra B/2B we conclude that trd(x) = 2u ∈ 2R. Replacing x by x − u,
we conclude that we may write B = R ⊕ B0 where B0 = {x ∈ B : trd(x) = 0}.

Again by (2.2), for any x, y ∈ B0 such that 1, x, y are R-linearly indepen-
dent, we have

2xy = n = nrd(x + y) − nrd(x) − nrd(y) ∈ R.

But then
x(2xy) = 2x2y = −2nrd(x)y = nx,

and this is a contradiction unless n = 2nrd(x) = 0. Thus, 2xy = 0 and hence
xy ∈ JB, and x2 = a with a = − nrd(x) ∈ J .

The conversely is easily verified, equipping B with the trivial standard
involution. �

Corollary 3.2. If 2 is a nonzerodivisor in R and rkB > 2, then B has a
standard involution if and only if B is a quotient of the algebra

R[x1, . . . , xn]/(x1, . . . , xn)2

for some n ∈ Z≥2.
If 2 = 0 ∈ R and rkB > 2, then B has a standard involution if and only if

B is a quotient of the algebra

R[x1, . . . , xn]/
(
x2

1, . . . , x
2
n

)
for some n ∈ Z≥2.

We now investigate the class of exceptional rings, first defined in the intro-
duction. Let M be a projective R-module M of rank n − 1 and let t : M → R
be an R-linear map. Then we define the R-algebra B = R ⊕ M by the rule
xy = t(x)y for x, y ∈ M . This algebra is indeed associative because

(xy)z =
(
t(x)y

)
z = t(x)yz = x(yz)

for all x, y, z ∈ M (since yz = t(y)z ∈ M ). The map : M → M by x �→
t(x) − x is an R-linear map, and since x2 = t(x)x we have xx = 0 ∈ R for all
x ∈ M . We conclude by Lemma 2.11 that defines a standard involution
on B.

Definition 3.3. An R-algebra B of rank n is an exceptional ring if there
is a left ideal M ⊂ B such that B = R ⊕ M and the map M → HomR(M,B)
given by left multiplication factors through a linear map t : M → R.

It follows from the preceding paragraph that an exceptional ring has a
standard involution. Since a standard involution is necessarily unique (Corol-
lary 2.9), if B = R ⊕ M is exceptional, corresponding to t : M → R, then we
automatically have t = trd |M . If R → S is a ring homomorphism and B is an
exceptional ring over R, then B ⊗R S is an exceptional ring over S.
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Example 3.4. Suppose B is a quadratic R-algebra. Then B is a free
exceptional ring if and only if B ∼= R × R or B ∼= R[x]/(x2). Moreover, the
splitting B = R ⊕ M (with rkR(M) = 1) is unique up to replacing M by its
conjugate M .

Lemma 3.5. If B is an exceptional ring and rk(B) > 2, then the splitting
B = R ⊕ M is unique.

Proof. Localizing, we may assume that B and M are free as R-modules.
Suppose that B = R ⊕ M = R ⊕ M ′ are splittings associated to linear maps
t : M → R and t′ : M ′ → R. Let x, y ∈ M be such that 1, x, y are R-linearly
independent. Then x = r + x′ and y = s + y′ with r, s ∈ R and x′, y′ ∈ M ′.
From xy = t(x)y, we have(

r + x′)(s + y′) = rs + sx′ +
(
r + t′(x′))y′ = t(x)

(
s + y′) = t(x)s + t(x)y′.

Since 1, x′, y′ are R-linearly independent, we conclude from the coefficient of
x′ that s = 0 and hence y = y′ ∈ N . Interchanging the roles of x and y we find
x = x′ ∈ N as well. �

Remark 3.6. Consequently, there is an equivalence of categories between
the category of exceptional rings of rank n > 2, with morphisms isomorphisms,
and the category of R-linear maps t : M → R with M projective of rank
n − 1 > 1, where a morphism between t : M → R and t′ : M ′ → R is simply a
map f : M → M ′ such that t′ ◦ f = t.

We will show in the next section that if rkB = 3 and B has a standard
involution then B is exceptional.

Lemma 3.7. An R-algebra B with rk(B) > 2 is exceptional if and only if
Bp is exceptional for all primes p of R.

Proof. If B is exceptional, then obviously Bp is exceptional for all primes p.
Conversely, suppose Bp is exceptional for all primes p of R. By Lemma 3.5,
we may write Bp = Rp ⊕ Mp uniquely for each prime p. Gluing, we have
B = R ⊕ M where

M = {x ∈ B : xp ∈ Mp for all p}.

Similarly, by uniqueness the linear maps tp : Mp → Rp glue to give a map
t : M → R such that xy = t(x)y for all x, y ∈ M . �

Remark 3.8. Lemma 3.7 is false when rk(B) = 2, consequent to the fact
that there exists a ring R and an element a ∈ R such that a is a square in every
localization Rp but a itself is not a square: the algebra B = R[x]/(x2 − a) is
then a counterexample.

Exceptional rings can be distinguished by a comparison of minimal and
characteristic polynomials. For an element x ∈ B, let μ(x;T ) = T 2 − trd(x)T +
nrd(x) and let χL(x;T ) (resp. χR(x;T )) be the characteristic polynomial of
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left (resp. right) multiplication as in Lemma 1.4. Recall from Section 1 that
if x /∈ R, then μ(x;T ) is the polynomial which realizes degR(x) = 2, that is,
it is the monic polynomial of smallest degree with coefficients in R which is
satisfied by x. Let Tr(x) denote the trace of left multiplication by x.

Lemma 3.9. Let B = R ⊕ M be an exceptional ring. Then for all x ∈ M ,
we have μ(x;T ) = T (T − trd(x)) and

χL(x;T ) = T
(
T − trd(x)

)n−1 = μ(x;T )
(
T − trd(x)

)n−2

so Tr(x) = (n − 1) trd(x) and

χR(x;T ) = Tn−1
(
T − trd(x)

)
.

Proof. This statement follows from a direct calculation. �

4. Algebras of rank 3

We saw in Section 2 that an algebra of rank 2 is necessarily commutative,
has (geometric and constant) degree 2, and has a (unique) standard involution.
Quadratic R-algebras are classified by their discriminants, and this is a subject
that has seen a great deal of study (see Knus [5]). In this section, we consider
the next case, algebras of rank 3.

First, suppose that B is a free R-algebra of rank 3. We follow Gross and
Lucianovic [3, Section 2] (see also Bhargava [2]). They prove that if B is
commutative and R is a PID or a local ring, then B has an R-basis 1, i, j such
that

i2 = −ac + bi − aj,

j2 = −bd + di − cj,(C)
ij = −ad

with a, b, c, d ∈ R. But upon further examination, we see that their proof
works for free R-algebras B over an arbitrary commutative ring R and that
their calculations remain valid even when B is noncommutative, since they
use only the associative laws. If we write

ji = r + si + tj

with r, s, t ∈ R, then the algebra (C) is associative if and only if

(4.1) as = dt = 0 and r + ad = −bs = ct.

For example, B is commutative if and only if r = −ad and s = t = 0.
We now consider the classification of such algebras B by degree. We assume

that B has constant degree (otherwise see Example 4.4). If degR(B) = 3,
then B is commutative by Lemma 1.18. So we are left to consider the case
degR(B) = 2. Then the coefficients of j, i in i2, j2, respectively, must vanish,
so a = d = 0 in the laws (C), and we have r = −bs = ct in (4.1). After the
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equivalences of Theorem A, it is natural to consider the case where further B
has a standard involution. Then

0 = −ad = ij = j i = (−c − j)(b − i) = −bc + ci − bj + ji

so ji = bc − ci+ bj and r = bc, s = −c, t = b. Now replacing i by i = b − i, and
letting u = b and v = −c we obtain the equivalent multiplication rules

i2 = ui, ij = uj,
(NC)

j2 = vj, ji = vi.

Following Gross and Lucianovic, we call such a basis 1, i, j a good basis. Note
that by definition an algebra with multiplication rules (NC) is exceptional,
with M = Ri ⊕ Rj. We have therefore proven that every free R-algebra B of
rank 3 with a standard involution is an exceptional ring.

We have shown that there is a bijection between pairs (u, v) ∈ R2 and free
R-algebras of rank 3 with a standard involution equipped with a good basis.
The natural action of GL2(R) on a good basis, defined by

(4.2)
(

i
j

)
�→

(
i′

j′

)
=

(
α β
γ δ

)(
i
j

)

takes one good basis to another, and the induced action on R2 is simply
(u, v) �→ (αu + βv, γu + δv). Therefore, the set of good bases of B is a prin-
cipal homogeneous space for the action of GL2(R), and we have proved the
following.

Proposition 4.1. Let N be a free module of rank 2. Then there is a
bijection between the set of orbits of GL(N) acting on N and the set of iso-
morphism classes of free R-algebras of rank 3 with a standard involution.

Example 4.2. The map R2 → R with e1, e2 �→ u, v corresponds to the
algebra (NC). In particular, the zero map R2 → R corresponds to the com-
mutative algebra R[i, j]/(i, j)2.

Remark 4.3. The universal element ξ = x+yi+zj of the algebra B defined
by the multiplication rules (NC) for u, v ∈ R satisfies the polynomial

ξ2 − (2x + uy + vz)ξ +
(
x2 + uxy + vxz

)
= 0

hence gdegR(B) = 2 and this verifies (in another way) that any such algebra
indeed has a standard involution.

The only algebra which is both of type (C) and (NC) is the algebra
with u = v = 0 (or a = b = c = d = 0), that is, the commutative algebra
R[i, j]/(i, j)2.

Example 4.4. We pause to exhibit in an explicit example the irregular
behavior of an algebra which is not of constant degree. Roughly speaking, we
can glue together an algebra of degree 2 and an algebra of degree 3 along a
degenerate algebra of degree 3.
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Let k be a field and let R = k[a, b]/(ab), so that SpecR is the variety of
intersecting coordinate lines in the (affine) plane. Consider the free R-algebra
B with basis 1, i, j and with multiplication defined by

i2 = bi − aj, ij = −a2,

j2 = ai − bj, ji = b2 − a2 − bi + bj.

We note that B indeed has degree 3, since for example i3 = b2i + a3 is the
monic polynomial of smallest degree satisfied by i.

We have R(b)
∼= k(a) with B(b) isomorphic to the algebra above with b = 0;

this algebra is commutative of rank 3, with ij = ji = −a2 (and i2 = −aj
and j2 = ai). On the other hand, we have R(a)

∼= k(b) with B(a) subject to
ij = 0 �= b2 − bi + bj = ji and i2 = bi, j2 = −bj, so B(b) is a noncommutative
algebra of rank 3 and degree 2.

Now consider a (projective, not necessarily free) R-algebra B of rank 3
with a standard involution.

Lemma 4.5. There exists a unique splitting B = R ⊕ M with M projective
of rank 2 such that for all primes p of R and any basis i, j of Mp, the elements
1, i, j are a good basis for Bp.

Proof. Let M be the union of all subsets {i, j} ⊂ B such that i, j satisfy
multiplication rules as in (NC). We claim that B = R ⊕ M is the desired
splitting. It suffices to show this locally, and for any prime p, the module
Mp contains all good bases for Bp by the calculations above, and the result
follows. �

Let B = R ⊕ M as in Lemma 4.5. Consider the map

M → EndR(M).

According the multiplication laws (NC), this map is well-defined and factors
as M → R ⊂ EndR(M) through scalar multiplication, since it does so locally.
It follows by definition that B is an exceptional ring, and that the splitting
B = R ⊕ M agrees with that in Lemma 3.5.

Theorem 4.6. Every R-algebra B of rank 3 with a standard involution is
an exceptional ring. There is an equivalence of categories between the category
of R-algebras B of rank 3 with a standard involution and the category of R-
linear maps t : M → R with M projective of rank 2.

Corollary 4.7. There is a bijection between the set of isomorphism classes
of R-algebras of rank 3 with a standard involution and isomorphism classes
of R-linear maps t : M → R with M projective of rank 2.
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We conclude this section with the following observation. Consider now the
right multiplication map M → EndR(M). When M = R2 is free as in (NC)
with basis i, j, we have under this map that

i �→
(

u 0
v 0

)
, j �→

(
0 u
0 v

)
.

If annR(u, v) = (0), then this map is injective. Note that (u, v) = t(R2) ⊂ R,
and ann(u, v) = (0) if and only if Bp is noncommutative for every prime ideal
p, in which case we say B is noncommutative everywhere locally. We compute
directly that element k = vi − uj satisfies k2 = 0, and hence is contained in the
Jacobson radical of B. Indeed, we have ki = kj = 0, and of course ik = uk and
jk = vk. In any change of good basis as in (4.2), we find that k′ = (αδ − βγ)k
with αδ − βγ ∈ R∗, so the R-module (or even two-sided ideal) generated by
k is independent of the choice of good basis, and so we denote it J(B). Note
that J(B) is free if and only if annR(u, v) = (0).

More generally, suppose that t : M → R has annR t(M) = (0), or equiva-
lently that B is noncommutative everywhere locally. Then the right multi-
plication map is injective since it is so locally, and so the right multiplication
map yields an injection B ↪→ EndR(M). By the above calculation, we see that
two-sided ideals J(Bp) for each prime p patch together to give a well-defined
two-sided ideal J(B) of B which is projective of rank 1, and the image of B in
EndR(M) annihilates this rank 1 submodule. Conversely, given a flag I ⊂ J ,
we associate the subalgebra B = R ⊕ M where M ⊂ EndR(I ⊂ J) (acting on
the right) consists of elements which annihilate I . We obtain the following
proposition.

Proposition 4.8. There is a bijection between the set of isomorphism
classes of R-algebras of rank 3 with a standard involution which are noncom-
mutative everywhere locally and flags I ⊂ J such that I, J are projective of
ranks 1,2.

Example 4.9. If M = R2 → R is the map e1 �→ 1 and e2 �→ 0, then the
above correspondence realizes the associated algebra B as isomorphic to the
upper-triangular matrices in M2(R).
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