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POINTWISE CONVERGENCE OF ERGODIC AVERAGES IN
ORLICZ SPACES

ANDREW PARRISH

Abstract. We construct a sequence an such that for any aperi-
odic measure-preserving system (X,Σ,m,T ) the ergodic averages

ANf(x) =
1

N

N∑
n=1

f
(
T anx

)
converge a.e. for all f in L log log(L) but fail to have a finite
limit for an f ∈ L1. In fact, we show that for each Orlicz space

properly contained in L1 there is a sequence along which the

ergodic averages converge for functions in the Orlicz space, but

diverge for all f ∈ L1. Our method, introduced by A. Bellow and
extended by K. Reinhold and M. Wierdl, is perturbation.

1. Introduction and preliminaries

In this paper, we give a method for constructing sequences along which
ergodic averages converge a.e. for functions in a certain Orlicz space Lφ(L),
yet diverge for a function in L1. All measure-preserving systems mentioned
should be understood to be aperiodic (free) and of finite (probability) measure.

If A is a set of integers, |A| denotes the cardinality of A and A(N) =
A ∩ [1,N). {an} = S will always denote an increasing sequence of positive
integers.

Definition 1.1. If F is a function space, then S is universally F -good iff
the sequence of averages

AN [S, f ](x) = ANf(x) =
1
N

N∑
n=1

f
(
T anx

)
converges a.e. for every f ∈ F for all measure-preserving systems.
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S is universally F -bad if there is an f ∈ F for which the limit fails to exist
for all x in a set of positive measure for all measure-preserving systems.

Definition 1.2. We say that S is universally ∞-sweeping out in F if for
all measure-preserving systems there exists an f ∈ F such that

sup
N

1
N

N∑
n=1

f
(
T anx

)
= ∞.

The Pointwise Ergodic theorem shows that the natural numbers are univer-
sally L1-good. The existence of sequences of zero density that are universally
L1-good was proven in [1]. In [4], it was shown that the sequence of squares is
universally Lp-good, for p > 1. In [10], we see that the sequence of primes are
universally Lp-good for p > 1, as well. Recently, it has been shown that the
squares [5] and primes [6] are L1-bad. More may be found in [3]: for example,
{�n2 log logn�} is Lp-good for p > 1, and { �√

n log(
√

n)�} is L1-good.
In [2], Bellow constructs a universally Lp-good sequence that is universally

Lq-bad for 1 ≤ q < p and any 1 < p < ∞. Using similar methods, Reinhold
[8] showed that there is a sequence which is universally Lp-good for p > q ≥ 1
but universally Lq-bad and constructed sequences which are Lq-bad for all
q < ∞ but good in L∞. Our proof will use same method, perturbation, but
will build on a different approach, explored in [11].

Definition 1.3. Let S be a strictly increasing sequence of positive integers.
A sequence Δ is a perturbation of S iff

lim
N →∞

| {(Δ\S) ∪ (S\Δ)}(N)|
|S(N)| = 0.

Suppose φ : R → R
+ is strictly increasing, unbounded, and φ(x) = 1 when

x ≤ 1. For a probability space (X,Σ,m), we define

Lφ(L) =
{

f : X → R

∣∣∣ ∫
X

∣∣f(x)
∣∣φ(∣∣f(x)

∣∣)dm < ∞
}

.

Notice that |x|φ(|x|) is a Young’s function; Lφ(L) is therefore an Orlicz
space. Conversely, if X is a finite measure space, it can be shown that for
every Orlicz space LΦ(X) containing Lp for all p > 1 and contained in L1(X),
there is a φ so that LΦ = Lφ(L) [7]. Similarly, if 1 < q < ∞, an Orlicz space
containing Lq and contained in L1 is equivalent to

Lq

φ(L)
=

{
f :

∫
X

|f |q
φ(|f |) dm < ∞

}
for some strictly increasing, unbounded φ : R → R

+ with φ(x) = 1 for x ≤ 1,
so long as |x|q−1

φ(x) → ∞ as x → ∞.

We will use this notation, with Lφ(L) or Lq

φ(L) representing our Orlicz space
rather than the traditional LΦ(X), for two reasons: first, because the variation
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on Yano’s Extrapolation theorem in Section 2 will be stated in terms of φ, and
second, because φ plays an important role in Lemma 1.1. Using this notation,
our results may be written as follows.

Theorem A. Suppose φ : R → R
+ is strictly increasing, unbounded, φ(x) =

1 for x ≤ 1, and φ(x) � |x|q . Let S be a zero-density sequence that is uni-
versally Lq

φ(L) -good, 1 < q < ∞. Then there exists a perturbation of S that is

universally Lq-good but universally ∞-sweeping out in Lq

φ(L) .

Theorem B. Let S be a zero-density sequence that is universally L1-good.
Then for any strictly increasing, unbounded φ : R → R

+, with φ(x) = 1 for
x ≤ 1, there exists a perturbation of S that is universally Lφ(L)-good but
universally ∞-sweeping out in L1.

Lemma 1.1. Suppose ψ and φ are each strictly increasing, unbounded real-
valued functions with ψ(x) = φ(x) = 1 for x ≤ 1, and φ(x) � logβ(x) for all

real β > 0. If there exists a k so that [φ(u)]
k

k+1

ψ(u) → ∞ then there is a sequence
that is universally Lφ(L)-good but universally ∞-sweeping out for Lψ(L).

Our strategy in Theorem A will be to adapt the approach of [11] to the
Orlicz space setting. Using a similar adaptation and a slight generalization of
Yano’s extrapolation theorem from [12], we prove Theorem B. We will then
show how these methods can lead us to Lemma 1.1.

2. Yano’s extrapolation theorem

Theorem 2.1 is a slight generalization of Shigeki Yano’s extrapolation result
from [12], and the proof follows Yano’s original proof closely. The main idea
of the proof is first to take advantage of the sublinearity of both the operator
and the norm to disassemble the function, apply the assumed inequality, and
finally to reassemble the function from the pieces.

Theorem 2.1. Suppose T is a positive sublinear operator taking measure-
able functions to measureable functions and bounded on L∞, X is a probability
space with measure m, and φ : R

+ → R is a nondecreasing function so that
(a) φ(x) = 1 if x ≤ 1, and
(b) φ(x) ≤ c

√
x for some constant c and all x > 1.

Let ε > 0. If, for a measureable function f : X → R, we have

(2.1) ‖Tf ‖Lp ≤ φ
(
e

1
p−1

)
‖f ‖Lp

for all p, 1 < p ≤ 1 + ε, then there is a constant Aφ so that

(2.2) ‖Tf ‖L1 ≤ Aφ + 4e3

∫
X

|f |φ
(

|f |
)
dm.
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Proof. Let f : [0,1] → R be a measureable function. Then f = f+ − f −,
where f+ and f − are the positive and negative parts of f .

Define g+ = f+

2 + 1 and g− = f −

2 + 1, and let En = {x : en ≤ g+ < e(n+1)}.
Then

∑∞
n=0 enχEn ≤ g+ ≤

∑∞
n=0 en+1χEn .

By sublinearity and positivity of T , we have

∣∣Tg+
∣∣ ≤

∞∑
n=0

e(n+1)|TχEn |.

Integrating and then applying Hölder’s inequality, we have∫
X

∣∣Tg+
∣∣dm ≤

∞∑
n=0

e(n+1)

∫
X

|TχEn | dm

≤
∞∑

n=0

e(n+1)‖TχEn ‖Lpn .

Let pn = 1 + 1
n . Then, applying the assumption (2.1),

(2.3)
∫

X

∣∣Tg+
∣∣dm ≤

∞∑
n=0

e(n+1)φ
(
en

)(
m(En)

) n
n+1 .

If m(En) < e−2(n+1), then the sum in (2.3) converges to a constant aφ.
If m(En) ≥ e−2(n+1), we have∑

m(En)≥e−2(n+1)

e(n+1)φ
(
en

)(
m(En)

) n
n+1

=
∑

m(En)≥e−2(n+1)

e(n+1)φ
(
en

)
m(En)

(
m(En)

) −1
n+1

≤
∑

m(En)≥e−2(n+1)

e(n+1)φ
(
en

)
m(En)

(
e−2(n+1)

) −1
n+1

= e3
∑

m(En)≥e−2(n+1)

enφ
(
en

)
m(En)

≤ e3

∫
X

g+φ
(
g+

)
dm.

Hence, ∫
X

∣∣Tg+
∣∣dm ≤ aφ + e3

∫
X

g+φ
(
g+

)
dm.

Similarly,
∫

X
|Tg− | dm ≤ a′

φ + e3
∫

X
g−φ(g−)dm.
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By the sublinearity of T, we have∫
X

∣∣∣∣T
(

f

2

)∣∣∣∣dm ≤
∫

X

∣∣Tg+
∣∣dm +

∫
X

∣∣Tg−∣∣dm

≤ aφ + e3

∫
X

(
g+

)
φ
(
g+

)
dm + a′

φ + e3

∫
X

(
g−)

φ
(
g−)

dm

≤
(
aφ + a′

φ

)
+ 2e3

∫
X

(
|f |
2

+ 1
)

φ

(
|f |
2

+ 1
)

dm.

But

2e3

∫
X

(
|f |
2

+ 1
)

φ

(
|f |
2

+ 1
)

dm

= 2e3

{∫
{ |f |

2 >1}

(
|f |
2

+ 1
)

φ

(
|f |
2

+ 1
)

dm

+
∫

{ |f |
2 ≤1}

(
|f |
2

+ 1
)

φ

(
|f |
2

+ 1
)

dm

}

≤ 2e3

{∫
{ |f |

2 >1}
|f |φ

(
|f |

)
dm +

∫
{ |f |

2 ≤1}
2φ(2)dm

}

< 2e3

∫
X

|f |φ
(

|f |
)
dm + 4e3φ(2).

Applying the sublinearity of T once more,

1
2

∫
X

∣∣T (f)
∣∣dm ≤ aφ + a′

φ + 4e3φ(2) + 2e3

∫
X

|f |φ
(

|f |
)
dm.

Letting Aφ = 2aφ + 2a′
φ + 8e3φ(2) we are done. �

3. Proof of Theorem A

To construct our sequence, we will begin with any zero-density, universally
Lq

φ(L) -good sequence. The zero-density property gives us large gaps in the
sequence, into which we will insert sets of “badly behaved” elements. The
number of these added elements will be very small relative to the number of
elements of our original sequence up to the point of their inclusion, thereby
guaranteeing that our new sequence will be a perturbation of the original.
They will be of sufficient number, however, to insure the failure of the relevant
maximal inequality. We will then seek a bound on the Lq norm of the maximal
operator.

In order to show that our constructed sequence is universally ∞-sweeping
out for Lq

φ(L) , we will make use of the following lemma (and associated defini-
tion) adapted from [11].
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Definition 3.1. Suppose f : Z → R. Define

D(f) = limsup
N →∞

1
2N + 1

N∑
n=−N

∣∣f(n)
∣∣.

Further, if A is a measureable set, we define D(A) = D(χA).

Lemma 3.1. Let Φ(x) : R → R be a non-decreasing function with 1 �
Φ(x) � xr for some real constant r > 0, and denote by Φ(L) the set of real-
valued functions {f :

∫
X

Φ(|f |)dm < ∞}. Let S be a strictly increasing se-
quence of positive integers. If for every positive K and ε there is an f : Z → R,
with D(Φ(f)) ≤ 1, and a finite set of integers Λ so that

D

{
n : max

N ∈Λ

1
|S(N)|

∑
m∈S(N)

f(n + m) ≥ K

}
≥ 1 − ε

then S is a universally ∞-sweeping out sequence for Φ(L).

The proof does not significantly differ from that presented in [11].

Proof of Theorem A. Suppose M(u) : N → N ∪ {0} is a nondecreasing
function. For u = 1,2,3, . . . define a sequence of sets {Au} as follows.

A1 =
{
0,1,2, . . . ,M(1) − 1

}
,

A2 =
{
M(1),M(1) + 1, . . . ,M(1) + M(2) − 1

}
,

...

Au =

{
u−1∑
j=1

M(j),
u−1∑
j=1

M(j) + 1, . . . ,

u∑
j=1

M(j) − 1

}
,

...

So every positive integer is contained in some Au, Ai and Aj are disjoint for
all i �= j, and |Au| = M(u) for all u.

Let {nk } be a sequence with properties to be discussed below. To create
our perturbation, Δ, we will add a certain number of elements to S from
each interval [nk,2nk). Let R(x) : R → R

+ be a decreasing function with
limx→∞ R(x) = 0. From each interval [nk,2nk), we will add R(u)|S(nk)| ele-
ments congruent to k modM(u) if k ∈ Au.

We will need each [nk,2nk) to be disjoint from the next. Hence, we require
that nk > 2nk−1. We also will need each interval to be large enough to contain
our added elements. Since there is an integer congruent to k modM(u) in
every M(u) consecutive integers, we require the length of each interval, nk,
to be greater than

R(u)
∣∣S(nk)

∣∣ · M(u), k ∈ Au.
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We want the number of elements of S in the interval [nk,2nk) to be small
relative to the length of the interval. This will help us insure that the added el-
ements upset the relevant maximal inequality. We require |S(2nk)| ≤ 3|S(nk)|.
Finally, choosing our intervals so that

R(u)
∣∣S(nk)

∣∣ >

k−1∑
j=1

∣∣S(nj)
∣∣

will help insure that Δ is, in fact, a perturbation.
We can satisfy both our disjointness and perturbation requirements by

choosing nk large enough. To see that we may likewise choose nk in such a
way as to satisfy the other two, consider that since our original sequence has
density zero, there must be a sequence of positive integers {mj } such that

|S(mj)|
mj

≤ |S(m)|
m

, for m ≤ mj .

Let nk = [mj/2]. We then have

|S(nk)|
nk

≤ |S([mj/2])|
[mj/2]

≤ 3
|S(mj)|

mj
.

Since |S(mj)|
mj

→ 0 monotonically as j → ∞, we can choose j large enough so
that

|S(nk)|
nk

≤ 1
R(u)M(u)

.

Further, we have∣∣S(2nk)
∣∣ ≤

∣∣S(mj)
∣∣ =

|S(mj)|
mj

· mj ≤ |S([mj/2])|
[mj/2]

· mj

≤ 3
∣∣S(

[mj/2]
)∣∣ = 3

∣∣S(nk)
∣∣,

our third requirement.
Having constructed Δ, we will now show that it is a perturbation. Since

Δ, is formed by adding new terms to S, we need only show that

lim
n→∞

|Δ(n) \ S|
|S(n)| = 0.

For any n sufficiently large, there is a k and u, with k ∈ Au so that nk ≤
n < nk+1. Then, using that R(u)|S(nk)| >

∑k−1
j=1 |S(nj)| and R(u)2 < R(u),

we have

(3.1)
∣∣Δ(n) \ S

∣∣ ≤ R(u)

(∣∣S(nk)
∣∣ +

k−1∑
j=1

∣∣S(nj)
∣∣) < 2R(u)

∣∣S(nk)
∣∣.

Since |S(n)| ≥ |S(nk)|,
|Δ(n) \ S(n)|

|S(n)| ≤ 2R(u)
∣∣S(n)

∣∣ · 1
|S(n)| = 2R(u).
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This goes to 0 as n → ∞ since as n goes to infinity so do k and u.
To complete the construction of our perturbation, we will now let

M(u) =
⌈

{φ−1(u3)}q

u3

⌉
and

R(u) =
u

1
q

φ−1(u3)
.

Define F : Z → R by

F (n) =

{
φ−1

(
u3

)
, if n = 0 modM(u),

0, otherwise.

If we let Φ(x) = |x|q

φ(|x|) , we have

D
(
Φ(F )

)
= limsup

N →∞

1
2N + 1

N∑
n=−N

Φ
(
F (n)

)

= limsup
N →∞

1
2N + 1

∑
−N ≤n≤N

n≡0 modM(u)

(φ−1(u3))q

u3

= limsup
N →∞

| { −N ≤ n ≤ N : n ≡ 0 modM(u)}|
2N + 1

· (φ−1(u3))q

u3

=
1

M(u)
· (φ−1(u3))q

u3

≤ 1.

If n is an integer, then for every u there must be some k ∈ Au so that
n ≡ −k modM(u). By our construction of Δ, there are at least R(u)|S(nk)|
integers congruent to k modM(u) in Δ ∩ [nk,2nk). Let

Ek =
{
m ∈ Δ ∩ [nk,2nk) : m ≡ k modM(u)

}
.

Note that F (n + m) = φ−1(u3) for all m ∈ Ek. We will now apply Lem-
ma 3.1.

Fix u large enough so that∣∣Δ(2nk)
∣∣ =

∣∣S(2nk)
∣∣ +

∣∣Δ(2nk) \ S(2nk)
∣∣ ≤ 3

∣∣S(nk)
∣∣ +

∣∣Δ(2nk) \ S(2nk)
∣∣

≤ 4
∣∣S(nk)

∣∣.
We may then estimate

max
k∈Au

1
|Δ(2nk)|

∑
m∈Δ(2nk)

F (n + m) ≥ 1
4|S(nk)|

∑
m∈Ek

F (n + m)

=
1

4|S(nk)|
∑

m∈Ek

φ−1
(
u3

)
.
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By our construction of Δ, however, there must be at least R(u)|S(nk)| ele-
ments in Ek. So

1
4|S(nk)|

∑
m∈Ek

φ−1
(
u3

)
≥ 1

4|S(nk)| · R(u)
∣∣S(nk)

∣∣ · φ−1
(
u3

)

=
u

1
q

4
.

By Lemma 3.1, then, we have that Δ is universally ∞-sweeping out in Lq

φ(L) .
We will now show that Δ is universally Lq-good. Let (X, B, μ,T ) be a

measure-preserving system. Since |Δ(n)|
|S(n)| → 1, we need only show that for all

f ∈ Lφ(L),
1

|S(n)|
∑

m∈Δ(n)

f
(
Tmx

)
converges almost everywhere.

We may assume f ≥ 0. Since S is already universally Lq

φ(L) (and hence Lq)
good, and since

1
|S(n)|

∑
m∈Δ(n)

f
(
Tmx

)
=

1
|S(n)|

{ ∑
m∈S(n)

f
(
Tmx

)
+

∑
m∈Δ(n)\S

f
(
Tmx

)}
,

it will suffice if we show that for any f ∈ Lq

(3.2) limsup
1

|S(n)|
∑

m∈Δ(n)\S

f
(
Tmx

)
= 0.

For arbitrary n, there exist k and u so that nk ≤ n < nk+1. Since the
elements in (Δ \ S) ∩ [nk, nk+1) are contained in Δ(2nk) \ S, we have

1
|S(n)|

∑
m∈Δ(n)\S

f
(
Tmx

)
≤ 1

|S(nk)|
∑

m∈Δ(2nk)\S

f
(
Tmx

)
.

So we will have (3.2) if∫
X

∑
k=1

(
1

|S(nk)|
∑

m∈Δ(2nk)\S

f
(
Tmx

))q

dm < ∞

for all f ∈ Lq .
Passing the integral inside the sum, and applying the triangle inequality,∫

X

∞∑
k=1

(
1

|S(nk)|
∑

m∈Δ(2nk)\S

f
(
Tmx

))q

dm

=
∞∑

k=1

∥∥∥∥ 1
|S(nk)|

∑
m∈Δ(2nk)\S

f
(
Tmx

)∥∥∥∥
q

Lq
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≤ ‖f ‖q
Lq

∞∑
k=1

(
|Δ(2nk) \ S|

|S(nk)|

)q

= ‖f ‖q
Lq

∞∑
u=1

∑
k∈Au

(
|Δ(2nk) \ S|

|S(nk)|

)q

.

Recalling inequality (3.1),

‖f ‖q
Lq

∞∑
u=1

∑
k∈Au

(
|Δ(2nk) \ S|

|S(nk)|

)q

< ‖f ‖q
Lq

∞∑
u=1

∑
k∈Au

(
2R(u)|S(nk)|

|S(nk)|

)q

= 2q ‖f ‖q
Lq

∞∑
u=1

M(u)
(
R(u)

)q
.

Since φ−1(x) � x
1
q , we have

∞∑
u=1

M(u)
(
R(u)

)q ≤
∞∑

u=1

(
{φ−1(u3)}q

u3
+ 1

)
· u

(φ−1(u3))q

≤
∞∑

u=1

1
u2

+
∞∑

u=1

u

(φ−1(u3))q

<

∞∑
u=1

1
u2

+ C

∞∑
u=1

1
u2

for some constant C. �

4. Proofs of Theorem B and Lemma 1.1

Proof of Theorem B. We will consider only φ(x) ≤ (logx)3. If φ(x) �
ψ(x), then we have Lψ(L) ⊂ Lφ(L). In order to construct a sequence that is
good for L log5 L, for example, but bad for L1, we need only construct an L1-
bad perturbation that is good for L log3(L); this sequence will remain good
for L log5(L).

Let g(u) = logφ−1(u6). Since φ(x) ≤ (logx)3, we have that g(u) ≥ u2. The
construction of our perturbation and proof that Δ is universally ∞-sweeping
out in L1 proceeds exactly as in the proof of Theorem A, with

M(u) =
⌈
2g(u)

⌉
,

R(u) =
u

1
2

2g(u)
, and

F (n) =

{
2g(u), if n = 0 modM(u),
0, otherwise.
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It remains to show that Δ is universally Lφ(L)-good.
Again we find that it suffices to show that

(4.1) limsup
1

|S(n)|
∑

m∈Δ(n)\S

f
(
Tmx

)
= 0

for every f ∈ Lφ(L). Since for arbitrary n, there exist k and u so that nk ≤
n < nk+1, we have

1
|S(n)|

∑
m∈Δ(n)\S

f
(
Tmx

)

≤ 1
|S(nk)|

∑
m∈Δ(2nk)\S

f
(
Tmx

)
.

So we need only show that

∫
X

{ ∞∑
k=1

(
1

|S(nk)|
∑

m∈Δ(2nk)\S

f
(
Tmx

))2
} 1

2

dm < ∞.

This follows from Theorem 2.1 so long as∥∥∥∥∥
{ ∞∑

k=1

(
1

|S(nk)|
∑

m∈Δ(2nk)\S

f
(
Tmx

))2
} 1

2
∥∥∥∥∥

Lp

≤ φ
(
e

1
p−1

)
‖f ‖Lp ,

for all p, 1 < p ≤ 2.
Now, ∥∥∥∥∥

{ ∞∑
k=1

(
1

|S(nk)|
∑

m∈Δ(2nk)\S

f
(
Tmx

))2
} 1

2
∥∥∥∥∥

Lp

=

{∫
X

( ∞∑
k=1

(
1

|S(nk)|
∑

m∈Δ(2nk)\S

f
(
Tmx

))2
) p

2

dm

} 1
p

.

Our first goal is to move the integral inside the first sum. Noting that the l
2
p

norm is less than the l1 norm,

{∫
X

( ∞∑
k=1

(
1

|S(nk)|
∑

m∈Δ(2nk)\S

f
(
Tmx

))2
) p

2

dm

} 1
p

(4.2)

<

{∫
X

∞∑
k=1

∣∣∣∣ 1
|S(nk)|

∑
m∈Δ(2nk)\S

f
(
Tmx

)∣∣∣∣
p

dm

} 1
p
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≤
{ ∞∑

k=1

∫
X

∣∣∣∣ 1
|S(nk)|

∑
m∈Δ(2nk)\S

f
(
Tmx

)∣∣∣∣
p

dm

} 1
p

=

{ ∞∑
k=1

∥∥∥∥ 1
|S(nk)|

∑
m∈Δ(2nk)\S

f
(
Tmx

)∥∥∥∥
p

Lp

} 1
p

.

Applying the triangle inequality as in the proof of Theorem A, (4.2) is less
than

‖f ‖Lp

{ ∞∑
k=1

(
|Δ(2nk) \ S|

|S(nk)|

)p
} 1

p

.

Breaking up the sum over k, we have

‖f ‖Lp

{ ∞∑
k=1

(
|Δ(2nk) \ S|

|S(nk)|

)p
} 1

p

= ‖f ‖Lp

{ ∞∑
u=1

∑
k∈Au

(
|Δ(2nk) \ S|

|S(nk)|

)p
} 1

p

≤ ‖f ‖Lp

{ ∞∑
u=1

(
2g(u) + 1

)( u
1
2

2g(u) · 2|S(nk)|
|S(nk)|

)p
} 1

p

= 2‖f ‖Lp

{ ∞∑
u=1

u
p
2

2g(u)·(p−1)
+

∞∑
u=1

u
p
2

2g(u)·p

} 1
p

≤ 2‖f ‖Lp

{ ∞∑
u=1

u

2g(u)·(p−1)
+

∞∑
u=1

u

2g(u)

} 1
p

≤ 2‖f ‖Lp

{ ∞∑
u=1

u

2g(u)·(p−1)
+

∞∑
u=1

u

2u2

} 1
p

≤ 2‖f ‖Lp

{ ∞∑
u=1

u

2g(u)·(p−1)
+ K

} 1
p

< 2‖f ‖Lp

( ∞∑
u=1

u

2g(u)·(p−1)
+ K

)
,

where K is suitable constant independent of p.
We now wish to show that

∞∑
u=1

u

2g(u)·(p−1)
≤ φ

(
e

1
p−1

)
.
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In the course of providing an upper estimate for this sum, we will make use
of our requirement that φ(x) ≤ (logx)3. In the search for this upper estimate,
we will consider two separate cases.

First, suppose there are there are positive constants c and C so that cun ≤
g(u) < Cun+1. Let

α =
n + 1
n − 1

, and

N = g−1

(
1

p − 1

)
.

Then
∞∑

u=1

u

2g(u)(p−1)
=

∑
u≤Nα

u

2g(u)(p−1)
+

∑
u>Nα

u

2g(u)(p−1)

≤ Nα
∑

u≤Nα

1
2g(u)(p−1)

+
∑

u>Nα

u

2g(u)(p−1)

≤ N2α +
∑

u>Nα

u

2g(u)(p−1)
.

We claim that the second sum above is bounded by a constant. If u > Nα,
then we have

g(u)(p − 1) > cun(p − 1)

> cuNα(n−1)(p − 1)

= cuNn+1(p − 1)

≥ c

C
ug(N)(p − 1)

=
c

C
u.

Thus there is positive constant K, dependent on g but independent of p,
so that ∑

u>Nα

u

2g(u)(p−1)
≤

∞∑
r=1

r

2Kr
.

This series is convergent regardless of what K is, so the entire sum
∞∑

u=1

u

2g(u)(p−1)
≤ N2α + A,

where A is some constant dependent only on g. Since g(u) ≥ u2, we have
n ≥ 2; so α ≤ 3. Wrapping up this first case, we have

∞∑
u=1

u

2g(u)(p−1)
≤ N6 + A =

(
g−1

(
1

p − 1

))6

+ A

= φ
(
e

1
p−1

)
+ A.
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Now suppose g � un for all n. Defining N and α as before, we have
∞∑

u=1

u

2g(u)(p−1)
≤ N2α +

∑
u>Nα

u

2un(p−1)
.

Letting n → ∞, we have
∞∑

u=1

u

2g(u)(p−1)
≤ N2 + A

=
(

g−1

(
1

p − 1

))2

+ A

=
(
φ
(
e

1
p−1

)) 1
3 + A,

where A is again independent of p. �

Proof of Lemma 1.1. In this lemma, we construct our perturbation by let-
ting

M(u) =
⌈
2g(u)ψ

(
2g(u)

)⌉
,

R(u) =
( uk

ψ(2g(u))
)

1
2

2g(u)
, and

F (u) =

{
2g(u), if n = 0 modM(u),
0, otherwise,

where g(u) = logφ−1(uk+1). The proof that Δ is a perturbation proceeds as

before. We will need the requirement that [φ(u)]
k

k+1

ψ(u) → ∞ to show that Δ is
universally ∞-sweeping out in Lψ(L).

In order to show that the perturbation is bad for Lψ(L), we will once again
seek to apply Lemma 3.1.

With Ψ(x) = |x|ψ(|x|), we have

D
(
Ψ(F )

)
= limsup

N →∞

1
2N + 1

N∑
n=−N

Ψ
(
F (n)

)

= limsup
N →∞

1
2N + 1

∑
−N ≤n≤N

n≡0 modM(u)

2g(u)ψ
(
2g(u)

)

= limsup
N →∞

| { −N ≤ n ≤ N : n ≡ 0 modM(u)}|
2N + 1

· 2g(u)ψ
(
2g(u)

)
=

1
M(u)

· 2g(u)ψ
(
2g(u)

)
≤ 1.
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Once more, fix u large enough so that∣∣Δ(2nk)
∣∣ ≤ 4

∣∣S(nk)
∣∣.

We may then estimate

max
k∈Au

1
|Δ(2nk)|

∑
m∈Δ(2nk)

F (n + m)

≥ 1
4|S(nk)|

∑
m∈Ek

F (n + m)

=
1

4|S(nk)|
∑

m∈Ek

2g(u).

As before, there must be at least R(u)
∣∣S(nk)

∣∣ elements in Ek. So

1
4|S(nk)|

∑
m∈Ek

2g(u) ≥ 1
4|S(nk)| · R(u)|S(nk)| · 2g(u)

=
1
4

·
(

uk

ψ(2g(u))

) 1
2

.

If uk � ψ(2g(u)), we will then have that Δ is universally ∞-sweeping out in
Lψ(L) by Lemma 3.1.

But uk � ψ(2g(u)) whenever ψ−1(uk) � φ−1(uk+1). Since [φ(u)]
k

k+1

ψ(u) → ∞,
we have that φk � ψk+1. So by Lemma 3.1, Δ is universally ∞-sweeping out
in Lψ(L).

As in Theorem B, we will prove that our perturbation Δ remains good for
Lφ(L) by showing that

(4.3) limsup
1

|S(n)|
∑

m∈Δ(n)\S

f
(
Tmx

)
= 0.

We will show that∥∥∥∥∥
{ ∞∑

k=1

(
1

|S(nk)|
∑

m∈Δ(2nk)\S

f
(
Tmx

))2
} 1

2
∥∥∥∥∥

Lp

≤ φ
(
e

1
p−1

)
‖f ‖Lp ,

for all p, 1 < p ≤ 2, arriving at (4.3) through the extrapolation theorem.
Proceeding as in the previous proof, we find that∥∥∥∥∥

{ ∞∑
k=1

(
1

|S(nk)|
∑

m∈Δ(2nk)\S

f
(
Tmx

))2
} 1

2
∥∥∥∥∥

Lp

≤ ‖f ‖Lp

{ ∞∑
k=1

(
|Δ(2nk) \ S(2nk)|

|S(nk)|

)p
} 1

p
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= ‖f ‖Lp

{ ∞∑
u=1

∑
k∈Au

(
|Δ(2nk) \ S(2nk)|

|S(nk)|

)p
} 1

p

< ‖f ‖Lp

{ ∞∑
u=1

M(u)
(

2R(u)S(nk)
S(nk)

)p
} 1

p

.

But { ∞∑
u=1

M(u)
(

2R(u)S(nk)
S(nk)

)p
} 1

p

≤ 2
p+1

p

{ ∞∑
u=1

(
2g(u)ψ

(
2g(u)

)
+ 1

) ( uk

ψ(2g(u))
)

p
2

2g(u)p

} 1
p

≤ 4

{ ∞∑
u=1

uk

2g(u)(p−1)
+

uk

2g(u)ψ(2g(u))

} 1
p

< 4
∞∑

u=1

uk

2g(u)(p−1)
+ K,

where K is again a constant independent of p.
Because φ(x) � logβ(x) for all β, we have that g(u) � u

k+1
β . Letting n = 1

β ,
α = n

n−1 and defining N as before, we again break up the sum:
∞∑

u=1

uk

2g(u)(p−1)
=

∑
u≤Nα

uk

2g(u)(p−1)
+

∑
u>Nα

uk

2g(u)(p−1)

≤ N (k+1)α +
∑

u>Nα

uk

2u(k+1)n(p−1)
.

Letting n → ∞, we have α → 1, and
∞∑

u=1

uk

2g(u)(p−1)
≤ N (k+1) + A

= φ
(
e

1
p−1

)
+ A,

where A is once more a constant independent of p. �

5. Questions

In Lemma 1.1, the requirement that φk � ψ(k+1) is a product of our
method of overestimating the sum. Likewise, note that if g(u) ∼ un for some
n—that is, if φ(x) ≥ C logβ(x) for some β—the method above requires that
[φ(u)]

k
2(k+1)

ψ(u) → ∞ to achieve the result. In [9], C. Wedrychowicz uses a different
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method of perturbation to show that one may construct a sequence good in
L logβ L but bad in L logα L, where β > α are real numbers. The question
of whether one can construct a sequence that is good for a particular Orlicz
space but bad for any larger Orlicz space remains.

Since Theorem B shows that we can construct a sequence that is good for
a fixed Orlicz space, but bad for L1, one might ask whether we can construct
a sequence good for all Orlicz spaces but bad for L1. As it turns out, there
is no such sequence; L1 is the union of all Orlicz spaces properly contained in
it (see [7]). Since there is a sequence that is universally L log log(L)-good but
universally ∞-sweeping out for L1, there is a sequence universally L logβ(L)-
good, for all β, but universally ∞-sweeping out in L1. What other families of
functions have this property?

Given a family of functions {φα}α∈A, we may construct a sequence that
is universally good for Lφα(L) but universally ∞-sweeping out so long as
there is an unbounded function meeting the requirements of Theorem B that
grows more slowly than any φα. In this manner, we can construct a sequence
universally Lφ(L)-good for all φ where φ is one of Hardy’s logarithmico-
exponential functions by letting our slower function be

f(x) = 1χ[0,1) + (1 + logx)χ[1,2) +
(
1 + log(2) + log logx

)
χ[1,4) + · · · .

The question remains, however, for larger families, such as functions in the
intersection of all maximal Hardy Fields.
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