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MODULAR NUMERICAL SEMIGROUPS WITH EMBEDDING
DIMENSION EQUAL TO THREE

AURELIANO M. ROBLES-PÉREZ AND JOSÉ CARLOS ROSALES

Abstract. In this paper, we give explicit descriptions of all nu-
merical semigroups, generated by three positive integer numbers,

that are the set of solutions of a Diophantine inequality of the
form axmod b ≤ x.

1. Introduction

Let N be the set of nonnegative integer numbers. A numerical semigroup
is a subset S of N such that it is closed under addition, 0 ∈ S and N \ S is
finite. If A ⊆ N, we denote by 〈A〉 the submonoid of (N,+) generated by A,
that is,

〈A〉 =
{
λ1a1 + · · · + λnan | n ∈ N \ {0}, a1, . . . , an ∈ A, and λ1, . . . , λn ∈ N

}
.

It is well known (see [7], [8]) that 〈A〉 is a numerical semigroup if and only if
gcd{A} = 1, where gcd means greatest common divisor.

Let S be a numerical semigroup and let X be a subset of S. We say that
X is a system of generators of S if S = 〈X〉. In addition, if no proper subset
of X generates S, then we say that X is a minimal system of generators of S.
Every numerical semigroup admits a unique minimal system of generators
and, moreover, such system has finitely many elements (see [2], [7], [8]). The
cardinal of this system is known as the embedding dimension of S and it is
denoted by e(S). On the other hand, if X = {n1 < n2 < · · · < ne} is a minimal
system of generators of S, then n1, n2 are known as the multiplicity and the
ratio of S, and the first of them is denoted by m(S). Let us observe that
m(S) is the least positive integer of S.

Let m,n be integers such that n �= 0. We denote by mmodn the remain-
der of the division of m by n. Following the notation of [9], we say that a

Received March 20, 2009; received in final form March 9, 2010.
Both authors were supported by MTM2007-62346, MEC (Spain), and FEDER funds.

2010 Mathematics Subject Classification. Primary 11D75, 20M14. Secondary 13H10.

77

c©2012 University of Illinois

http://www.ams.org/msc/
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proportionally modular Diophantine inequality is an expression of the form

(1.1) axmod b ≤ cx,

where a, b, c are positive integers. We call a, b, and c the factor, the modulus,
and the proportion of the inequality, respectively. Let S(a, b, c) be the set of
integer solutions of (1.1). Then S(a, b, c) is a numerical semigroup (see [9])
that we call proportionally modular numerical semigroup (PM-semigroup).

Let x1, x2, . . . , xq be a sequence of integers. We say that it is arranged in a
convex form if one of the following conditions is satisfied,
(1) x1 ≤ x2 ≤ · · · ≤ xq ;
(2) x1 ≥ x2 ≥ · · · ≥ xq ;
(3) there exists h ∈ {2, . . . , q − 1} such that x1 ≥ · · · ≥ xh ≤ · · · ≤ xq .

As a consequence of [11, Theorem 31] (see its proof and [11, Corollary 18]),
we have an easy characterization for PM-semigroups.

Lemma 1.1. A numerical semigroup S is a PM-semigroup if and only if
there exists a convex arrangement n1, n2, . . . , ne of its set of minimal genera-
tors that satisfies the following conditions,
(1) gcd{ni, ni+1} = 1 for all i ∈ {1, . . . , e − 1},
(2) (ni−1 + ni+1) ≡ 0modni for all i ∈ {2, . . . , e − 1}.

A modular Diophantine inequality (see [10]) is an expression of the form

(1.2) axmod b ≤ x,

that is, it is a proportionally modular Diophantine inequality with propor-
tion equal to one. A numerical semigroup is a modular numerical semigroup
(M-semigroup) if it is the set of integer solutions of a modular Diophantine
inequality. Therefore, every M-semigroup is a PM-semigroup, but the recip-
rocal is false. In effect, from [9, Example 26], we have that the numerical
semigroup 〈3,8,10〉 is a PM-semigroup, but is not an M-semigroup.

Let us observe that it is easy to determine whether or not a numerical
semigroup is a PM-semigroup via the previous characterization. On the other
hand, this question is more complicated for M-semigroups. In [10], there is
an algorithm to give the answer to this problem, but we have not got a good
characterization for M-semigroups.

The purpose of this paper is to give explicit descriptions of all M-semigroups
with embedding dimension equal to three. The content is summarized in the
following way. After a section of preliminaries, in Section 3 we use the idea of
numerical semigroup associated to an interval (see [9]) and give three families
of M-semigroups with embedding dimension equal to three in an explicit way.
In Section 4, we will prove that every M-semigroup with embedding dimension
equal to three belongs to one of these families. Finally, in Section 5 we give
another description by fixing the multiplicity and the ratio of the numerical
semigroup.
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2. Preliminaries

Let α,β be two positive rational numbers with α < β and let T be the
submonoid of (Q+

0 ,+) generated by the interval [α,β]. Here we denote by
Q the set of rational numbers and by Q+

0 the set of nonnegative rational
numbers. In [9], it is shown that T ∩ N is a PM-semigroup and that every
PM-semigroup is of this form. We will refer to T ∩ N as the PM-semigroup
associated to the interval [α,β], and it will be denoted by S([α,β]). As a
reformulation of [9, Corollary 9], we have the following result.

Lemma 2.1.
(1) Let c < a < b be positive integers. Then

{x ∈ N | axmod b ≤ cx} = T ∩ N,

where T is the submonoid of (Q+
0 ,+) generated by [ b

a , b
a−c ].

(2) Conversely, let a1, a2, b1, b2 be positive integers such that b1
a1

< b2
a2

and let
T be the submonoid of (Q+

0 ,+) generated by [ b1
a1

, b2
a2

]. Then

T ∩ N =
{
x ∈ N | a1b2xmod b1b2 ≤ (a1b2 − a2b1)x

}
.

Since the inequality axmod b ≤ cx has the same set of solutions as the
inequality (amod b)xmod b ≤ cx, we will always assume that a < b. Besides,
if c ≥ a, then {x ∈ N | axmod b ≤ cx} = N. Therefore, the condition c < a < b
imposed in the previous lemma is not restrictive.

A sequence of rational numbers b1
a1

< b2
a2

< · · · <
bp

ap
is a Bézout sequence if

a1, a2, . . . , ap, b1, b2, . . . , bp are positive integers such that aibi+1 − ai+1bi = 1 for
all i ∈ {1,2, . . . , p − 1}. The fractions b1

a1
and bp

ap
are the ends of the sequence

and p is the length of the sequence. We will say that a Bézout sequence is
proper if aibi+h − ai+hbi ≥ 2 for all h ≥ 2 such that i, i + h ∈ {1,2, . . . , p}.

The next result is [11, Theorem 12]. It shows the relation between Bézout
sequences and PM-semigroups.

Lemma 2.2. Let b1
a1

< b2
a2

< · · · <
bp

ap
be a Bézout sequence. Then

S
([

b1

a1
,
bp

ap

])
= 〈b1, b2, . . . , bp〉.

The following result is part of [3, Theorem 2.7].

Lemma 2.3. Let a1, a2, b1, b2 be positive integers such that gcd{a1, b1} =
gcd{a2, b2} = 1 and b1

a1
< b2

a2
. Then there exists a unique proper Bézout se-

quence with ends b1
a1

and b2
a2

.

Let us observe that in [3] it is given an algorithm to compute the unique
proper Bézout sequence with ends b1

a1
and b2

a2
.
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We will say that two fractions b1
a1

< b2
a2

are adjacent if

b2

a2 + 1
<

b1

a1
and either a1 = 1 or

b2

a2
<

b1

a1 − 1
.

The next result is [11, Theorem 20].

Lemma 2.4. Let b1
a1

< b2
a2

< · · · <
bp

ap
be a proper Bézout sequence with ad-

jacent ends. Then {b1, b2, . . . , bp} is the minimal system of generators of the
PM-semigroup S([ b1

a1
,

bp

ap
]).

We finish this section with a remark about the definition of PM-semigroup.
In [12], it is shown that we can consider any type of interval for such definition.
In fact, by [12, Proposition 5], we have that S(I) = T ∩ N is a PM-semigroup
if T is the submonoid of (Q+

0 ,+) generated by any (not necessarily closed)
interval I with positive rational numbers as ends.

3. Three families of M-semigroups

The aim of this section is to prove Propositions 3.1, 3.2 and 3.6 in order to
obtain M-semigroups with embedding dimension equal to three.

Proposition 3.1. Let m1,m2 be integers greater than or equal to three
such that gcd{m1,m2} = 1. Then S = 〈m1,m2,m1m2 − m1 − m2〉 is an M-
semigroup and e(S) = 3.

Proof. Because gcd{m1,m2} = 1, there exist two positive integers u, v such
that m1

u < m2
v is a Bézout sequence. By a straightforward computation, it is

easy to see that m1m2−m1−m2
m2u−u−v < m1

u < m2
v < m1m2−m1−m2

m1v−v−u is also a Bézout
sequence. Let us have a = m2u − u − v and b = m1m2 − m1 − m2. It is clear
that m1m2−m1−m2

m2u−u−v = b
a and m1m2−m1−m2

m1v−v−u = b
a−1 . By Lemma 2.2, we have

that S = S([ b
a , b

a−1 ]) and, by Lemma 2.1, S is an M-semigroup. Since b
a < m2

v

are adjacent fractions, we conclude from Lemma 2.4 that e(S) = 3. �

The following result is deduced from [6, Corollary 6, Proposition 9].

Proposition 3.2. Let λ,d, d′ be integers greater than or equal to 2 such
that gcd{d, d′ } = gcd{λ,d + d′ } = 1. Then S = 〈λd, d + d′, λd′ 〉 is an M-
semigroup with e(S) = 3.

If S is a numerical semigroup, then the largest integer that does not belong
to S is called the Frobenius number of S (see [5]) and denoted here by F(S).
A numerical semigroup S is symmetric if x ∈ Z \ S implies F(S) − x ∈ S
(as it is usual, Z is the set of integers). This type of semigroups has been
widely studied and has relevance in Algebraic Geometry because they are
those numerical semigroups whose semigroup ring is Gorenstein (see [4]). As
a result of the study in [6], we have that the family of numerical semigroups
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given by Proposition 3.2 is precisely the family of all symmetric M-semigroups
with embedding dimension equal to three.

Before showing the third family of M-semigroups, we need some lemmas.
Firstly, we remember that, if a, b are two positive integers, then we denote by
a | b that a divides b.

Lemma 3.3. Let a1, a2, b1, b2 be positive integers such that gcd{a1, b1} =
gcd{a2, b2} = 1, b1

a1
< b2

a2
, and a1b2 − a2b1 = q. Let t be a positive integer. If

gcd{b1, b2} = 1 and q | (tb1 + b2), then q | (ta1 + a2).

Proof. If q | (tb1 + b2), then there exists a positive integer k such that
tb1 + b2 = kq. Therefore, t = kq−b2

b1
, and consequently ta1 + a2 = q(ka1−1)

b1
.

Because gcd{b1, q} = gcd{b1, a1b2 − a2b1} = gcd{b1, a1b2} = gcd{b1, b2} = 1
and q(ka1−1)

b1
is an integer, then b1 | (ka1 − 1). Now we conclude that q |

(ta1 + a2). �

Let us observe that the previous lemma is not true in general if gcd{b1,
b2} �= 1. In fact, if we consider 8

5 < 10
3 , then q = 26, 26 | (2 ∗ 8 + 10), and

26 � | (2 ∗ 5 + 3).

Lemma 3.4. Let m1,m2 be positive integers such that gcd{m1,m2} = 1.
Let q be a divisor of gcd{m2 − 1,m1 + m2}. Then S = 〈m1,

m1+m2
q ,m2〉 is an

M-semigroup.

Proof. Let us have b = m2−1
q m1. Since gcd{m1,m2} = 1, then there exist

s, t ∈ N \ {0} such that sm2 − tm1 = q. So, let us have a = m2−1
q s. In order

to finish the proof, we will show that S = S([ b
a , b

a−1 ]).
In fact, by Lemma 3.3 and an easy computation, it is clear that m1

s <
(m1+m2)/q

(s+t)/q < m2
t < b

a−1 is a Bézout sequence. Moreover, b
a = m1

s . By Lem-
ma 2.2, we deduce that S = S([ b

a , b
a−1 ]).

Finally, by Lemma 2.1, S is an M-semigroup. �

In the next result, we will see for what values of q the M-semigroups de-
scribed in the previous lemma have embedding dimension equal to three.

Lemma 3.5. Let m1,m2 be positive integers such that gcd{m1,m2} = 1.
Let q be a divisor of gcd{m2 − 1,m1 + m2}. Then S = 〈m1,

m1+m2
q ,m2〉 has

embedding dimension equal to three if and only if 2 ≤ q < min{m1,m2}.

Proof. (Necessity) We have that q ≥ 2. Let us suppose that q ≥ min{m1,
m2}. Because q | (m2 − 1), then q < m2. Moreover, gcd{m2 − 1,m1 + m2} =
gcd{m2 − 1,m1 + 1}. Therefore, q = m1 + 1. Consequently, there exists k ∈
N \ {0} such that m2 = k(m1 +1)+1. Thus S = 〈m1, k +1,m2〉 = 〈m1, k +1〉,
which is a contradiction to the fact that e(S) = 3.
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(Sufficiency) Let us have s, t as in the proof of the previous lemma. Then
m1
s < (m1+m2)/q

(s+t)/q < m2
t is a Bézout sequence with adjacent ends. By Lem-

ma 2.4, we conclude that e(S) = 3. �

As an immediate consequence of Lemmas 3.4 and 3.5, we have the last
result of this section.

Proposition 3.6. Let m1,m2 be positive integers such that gcd{m1,
m2} = 1. Let q be a divisor of gcd{m2 − 1,m1 + m2} such that 2 ≤ q <
min{m1,m2}. Then S = 〈m1,

m1+m2
q ,m2〉 is an M-semigroup with embedding

dimension equal to three.

4. All M-semigroups with embedding dimension equal to three

In this section, we will see that every M-semigroup with embedding dimen-
sion equal to three belongs to one of the families described in Propositions 3.1,
3.2 and 3.6.

Let us remember (see Lemma 2.1) that a numerical semigroup S is an M-
semigroup if and only if there exist two integers a, b (2 ≤ a < b) such that S =
S([ b

a , b
a−1 ]). We begin with Proposition 4.6, where we prove that, if gcd{a, b} =

gcd{a − 1, b} = 1 and e(S) = 3, then S is one of the M-semigroups described
in Proposition 3.1.

Let us denote by ]α,β[= {x ∈ Q | α < x < β}, that is, the opened interval
with ends α and β. From [12, Proposition 8, Theorems 11 and 20], we deduce
the following result.

Lemma 4.1. Let a, b be integers such that 2 ≤ a < b and gcd{a, b} = gcd{a −
1, b} = 1. Then

(1) S(] b
a , b

a−1 [) = S([ b
a , b

a−1 ]) \ {b}.
(2) b is the Frobenius number of S(] b

a , b
a−1 [).

(3) S(] b
a , b

a−1 [) is a symmetric numerical semigroup.

The next result is a consequence of [10, Proposition 29].

Lemma 4.2. Let a, b be integers such that 2 ≤ a < b and gcd{a, b} = gcd{a −
1, b} = 1. Then b is the largest minimal generator of S = S([ b

a , b
a−1 ]). More-

over, b = F(S) + m(S).

If S is a numerical semigroup and n ∈ S \ {0}, then the Apéry set of n in S
(see [1]) is the set Ap(S,n) = {s ∈ S | s − n /∈ S}. It is well known (see [7], [8])
that Ap(S,n) = {ω(0) = 0, ω(1), . . . , ω(n)}, where ω(i) is the least element in
S congruent to i modulo n. It is evident that max{Ap(S,n)} = F(S) + n and
that, if m1 < m2 < · · · < mp is the minimal system of generators of S, then

{m2, . . . ,mp} ⊆ Ap(S,m1).
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Lemma 4.3. Let S be a symmetric numerical semigroup with m(S) ≥ 3
and let {m1 < m2 < · · · < mp} be its minimal system of generators. Then
mp < F(S).

Proof. Let us have ω ∈ Ap(S,m1). Then ω − m(S) = ω − m1 /∈ S. Because
S is symmetric, then F(S) − ω + m1 ∈ S. Moreover, since (F(S) − ω + m1) −
m1 = F(S) − ω /∈ S, then ω′ = F(S) − ω + m1 ∈ Ap(S,m1).

Now, let us have ω = mp. Then F(S) − mp + m1 = ω′ ∈ Ap(S,m1). If
ω′ �= 0, we have the conclusion. In other case, mp = F(S) + m1 and F(S) −
m2 + m1 = mp − m2 ∈ Ap(S,m1), which is a contradiction to the fact that
{m1,m2, . . . ,mp} is a minimal system of generators. �

From this result it follows the next lemma.

Lemma 4.4. Let S be a numerical semigroup with minimal system of gen-
erators given by m1 < m2 < · · · < mp. If p ≥ 3, mp = F(S)+m1, and S \ {mp}
is symmetric, then S \ {mp} = 〈m1, . . . ,mp−1〉.

Proof. Let us observe that F(S \ {mp}) = mp. Moreover, it is obvious that
〈m1, . . . ,mp−1〉 ⊆ S \ {mp}. Let us suppose that there exists x ∈ S \ {mp}
such that x /∈ 〈m1, . . . ,mp−1〉. Then, by Lemma 4.3, x < mp. Therefore, such
x must be a minimal generator of S, in contradiction with the hypothesis. �

The next one is a classic result by Sylvester [13].

Lemma 4.5. Let m1,m2 be positive integers such that gcd{m1,m2} = 1.
Then F(〈m1,m2〉) = m1m2 − m1 − m2.

We are now ready to prove the announced result.

Proposition 4.6. Let S = S([ b
a , b

a−1 ]) be a numerical semigroup such that
gcd{a, b} = gcd{a − 1, b} = 1 and e(S) = 3. Then there exist two integers
m1,m2 greater than or equal to three such that gcd{m1,m2} = 1 and S =
〈m1,m2,m1m2 − m1 − m2〉.

Proof. By Lemma 4.2, we deduce that there exist two integers m1,m2

greater than or equal to three such that m1 < m2 < b is the minimal system of
generators of S. By Lemma 4.1, we know that S \ {b} is symmetric. Therefore,
by Lemma 4.4, we have that S \ {b} = 〈m1,m2〉 and, by Lemma 4.1 again,
that b = F(〈m1,m2〉). We finish the proof using Lemma 4.5. �

Our next aim will be Proposition 4.9, where we prove that, if gcd{a, b} �=
1, gcd{a − 1, b} �= 1, and e(S) = 3, then S = S([ b

a , b
a−1 ]) is one of the M-

semigroups described in Proposition 3.2.
The following result is [11, Lemma 4].

Lemma 4.7. Let a1, a2, b1, b2, x, y be positive integers such that b1
a1

< b2
a2

.
Then b1

a1
< x

y < b2
a2

if and only if x
y = λb1+μb2

λa1+μa2
for some λ,μ ∈ N \ {0}.
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Lemma 4.8. Let b1
a1

< b2
a2

< b3
a3

be a proper Bézout sequence. If q = a1b3 −
a3b1, then a2 = a1+a3

q and b2 = b1+b3
q .

Proof. By Lemma 4.7, there exist three positive integers λ,μ, t such that
a2 = λa1+μa3

t and b2 = λb1+μb3
t . Because b1

a1
< b2

a2
and b2

a2
< b3

a3
are Bézout

sequences, then μq = t and λq = t. Therefore, λ = μ and the conclusion is
obvious. �

Now, we can prove the above mentioned result.

Proposition 4.9. Let S = S([ b
a , b

a−1 ]) be a numerical semigroup such that
gcd{a, b} = d �= 1, gcd{a − 1, b} = d′ �= 1, and e(S) = 3. Then there exists
an integer λ greater than or equal to two such that S = 〈λd, d + d′, λd′ 〉 and
gcd{d, d′ } = gcd{λ,d + d′ } = 1.

Proof. By straightforward computations, b/d
a/d < b/d′

(a−1)/d′ are adjacent frac-

tions and a
d

b
d′ − a−1

d′
b
d = b

dd′ . Since S = S([ b/d
a/d , b/d′

(a−1)/d′ ]) and e(S) = 3, we
apply Lemma 2.2 to deduce that b

dd′ �= 1. Moreover, by Lemmas 2.3 and
2.4, there exist two positive integers x, y such that b/d

a/d < x
y < b/d′

(a−1)/d′ is a
proper Bézout sequence. By Lemma 4.8, it follows that x = d + d′. Finally,
by Lemma 2.2, if λ = b

dd′ , then S = 〈λd, d + d′, λd′ 〉. �

In the following proposition we show that, if gcd{a, b} �= 1, gcd{a − 1, b} = 1,
and e(S) = 3, then S = S([ b

a , b
a−1 ]) is one of the M-semigroups described in

Proposition 3.6. Before this, we remember [11, Lemma 17].

Lemma 4.10. Let b1
a1

< b2
a2

< · · · <
bp

ap
be a proper Bézout sequence. Then

max{b1, b2, . . . , bp} = max{b1, bp}.

Proposition 4.11. Let S = S([ b
a , b

a−1 ]) be a numerical semigroup such
that gcd{a, b} = d �= 1, gcd{a − 1, b} = 1, and e(S) = 3. Then there exist
three positive integers m1,m2, q such that gcd{m1,m2} = 1, q is a divisor
of gcd{m2 − 1,m1 + m2}, 2 ≤ q < min{m1,m2}, and S = 〈m1,

m1+m2
q ,m2〉.

Proof. Firstly, by Lemma 4.10, if b/d
a/d < b1

a1
< · · · < be

ae
< b

a−1 is a proper
Bézout sequence, then be ≤ b. Consequently, by an easy computation, we have
that b/d

a/d < b1
a1

< · · · < be

ae
is a proper Bézout sequence with adjacent ends.

From this observation, Lemmas 2.2, 2.3, 2.4, and that e(S) = 3, we deduce
that there exists a proper Bézout sequence of the form b/d

a/d < b1
a1

< b2
a2

< b
a−1 .

Because b2
a
d − a2

b
d = 1

d (b2 + (a − 1)b2 − a2b) = b2−1
d , by Lemma 4.8, we have

that b1 = b/d+b2
(b2−1)/d . Therefore, by Lemma 2.2, S = 〈 b

d , b/d+b2
(b2−1)/d , b2〉. Finally,

since gcd{b2, b} = 1, then gcd{b2,
b
d } = 1 and, taking q = b2−1

d , we finish the
proof using Lemma 3.5. �
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By [10, Lemma 3], we know that S([ b
a , b

a−1 ]) = S([ b
b+1−a , b

b−a ]). It is obvious
that gcd{a, b} = gcd{b − a, b} and gcd{a − 1, b} = gcd{b+1 − a, b}. Therefore,
if S = S([ b

a , b
a−1 ]) is a numerical semigroup such that gcd{a, b} = 1, gcd{a −

1, b} = d �= 1, and e(S) = 3, and if a′ = b + 1 − a, then S = S([ b
a′ ,

b
a′ −1 ]) with

gcd{a′, b} = d �= 1, gcd{a′ − 1, b} = 1, and e(S) = 3. In consequence, S is one
of the M-semigroups described in Proposition 3.6 too.

We summarize the results of Section 3 and Section 4 in the next theorem.

Theorem 4.12. S is an M-semigroup with e(S) = 3 if and only if it is one
of the following types.
(T1) S = 〈m1,m2,m1m2 − m1 − m2〉 where m1,m2 are integers greater than

or equal to three such that gcd{m1,m2} = 1.
(T2) S = 〈λd, d + d′, λd′ 〉 where λ,d, d′ are integers greater than or equal to

two such that gcd{d, d′ } = gcd{λ,d + d′ } = 1.
(T3) S = 〈m1,

m1+m2
q ,m2〉 where m1,m2, q are positive integers such that

gcd{m1,m2} = 1, q is a divisor of gcd{m2 − 1,m1 + m2}, and 2 ≤ q <
min{m1,m2}.

A natural question that arises after Theorem 4.12 is whether the three
types are disjoint. Let us see the answer.
(1) If we take m1 = m′

1m
′
2 − m′

1 − m′
2, m2 = m′

2, and q = m′
2 − 1 in the third

type, then we obtain the first one.
(2) If gcd{m1,m2} = 1, it is clear that gcd{m1,m1m2 − m1 − m2} = gcd{m2,

m1m2 − m1 − m2} = 1. Therefore, there is not any relation between the
first two types.

(3) Let us suppose, without loss of generality, that d < d′ and m1 < m2.
Then λd < d + d′ < λd′ or d + d′ < λd < λd′ in the second type, and
m1 < m1+m2

q < m2 or m1+m2
q < m1 < m2 in the third one.

If we consider m1 = λd and m2 = λd′, then gcd{m1,m2} = λ. On
the other hand, if we consider m1+m2

q = λd and m2 = λd′, then m1 =
λ(qd − d′), and consequently λ | gcd{m1,m2}. Because gcd{m1,m2} = 1,
we conclude that there is no relation between the last two types.

Therefore, S is an M-semigroup with embedding dimension equal to three if
and only if it is (T2) or (T3). Moreover, this is a disjoint classification.

5. Multiplicity and ratio fixed

Let {n1 < n2 < n3} be the minimal system of generators of a numerical
semigroup S. The aim of this section is to describe all M-semigroups with
embedding dimension equal to three when we fix the multiplicity and the ratio
of S, that is, when n1 and n2 are fixed. In what follows, we will suppose that
n1, n2 are integers such that 3 ≤ n1 < n2 and gcd{n1, n2} = 1. Moreover, to
simplify the notation we will use the following sets:
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∗ A(n1) = {2, . . . , n1 − 1};
∗ A(n1, n2) = {� 2n2

n1

, . . . , n2 − 1};

∗ D(n) = {k ∈ N such that k | n}.
Here, if q ∈ Q, then �q
 = min{z ∈ Z | q ≤ z}.

Since an M-semigroup is a PM-semigroup, by Lemma 1.1, we have two
cases.
(1) S = 〈n1, n2, n3〉 such that n1 < n2 < n3 and (n1 + n3) ≡ 0modn2. Since

e(S) = 3, then n3 = kn2 − n1 with k ∈ A(n1).
(2) S = 〈n1, n2, n3〉 such that n1 < n2 < n3 and (n2 + n3) ≡ 0modn1. Since

e(S) = 3, then n3 = tn1 − n2 with t ∈ A(n1, n2).

Remark 5.1. It is easy to show that S is a PM-semigroup such that e(S) =
3 if and only if it has a minimal system of generators given by one of the
previous cases. Moreover, both of these cases coincide if and only if k = n1 − 1
and t = n2 − 1, that is, when we consider the M-semigroup of type (T1) given
by S = 〈n1, n2, n1n2 − n1 − n2〉.

The main result of this section is Theorem 5.6. We need some preliminary
lemmas in order to prove it.

Lemma 5.2. Let S = 〈n1, n2, kn2 − n1〉 be a numerical semigroup such that
k ∈ A(n1). Then S is (T2) if and only if k | n1.

Proof. If k | n1, then S is (T2) for d = n1
k , d′ = n2 − n1

k , and λ = k.
For the opposite implication, let us suppose, without loss of generality,

that d < d′. Then we have two possibilities to relate (n1, n2, kn2 − n1) and
(λ,d, d′). The first one is given by n1 = λd, n2 = d + d′, and kn2 − n1 = λd′.
This election is valid if k(d + d′) − λd = λd′, and consequently if λ = k. We
conclude that k | n1.

The second choice is n1 = d+d′, n2 = λd, and kn2 − n1 = λd′. In this case,
kλd − (d + d′) = λd, and then d + d′ = λ(kd − d′). But this is not possible
because we need that gcd{λ,d + d′ } = 1. �

Lemma 5.3. Let S = 〈n1, n2, kn2 − n1〉 be a numerical semigroup such that
k ∈ A(n1) \ {n1 − 1}. Then S is (T3) if and only if k | (n1 − 1) or k | (n1 +1).

Proof. On the one hand, if k | (n1 − 1), then S is (T3) for m1 = kn2 − n1,
m2 = n1, and q = k. On the other hand, if k | (n1 + 1), then S is (T3) for
m1 = n1, m2 = kn2 − n1, and q = k.

For the opposite implication, let us suppose, without loss of generality,
that m1 < m2, but we accept that q | (m1 − 1) or q | (m2 − 1). Then we have
two possibilities to relate (n1, n2, kn2 − n1) and (m1,m2, q). The first one is
given by n1 = m1, n2 = m1+m2

q , and kn2 − n1 = m2. This option is valid if
k m1+m2

q − m1 = m2, and consequently if q = k. If q | gcd{m2 − 1,m1 + m2},
since gcd{m2 − 1,m1 +m2} = gcd{n1 +1, kn2}, we conclude that k | (n1 +1).
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If q | gcd{m1 − 1,m1 + m2}, since gcd{m1 − 1,m1 + m2} = gcd{n1 − 1, kn2},
we conclude that k | (n1 − 1).

The second choice is n1 = m1+m2
q , n2 = m1, and kn2 − n1 = m2. But then

we have q = (k+1)n2
n1

− 1, which is not possible because gcd{n1, n2} = 1 and
k ≤ n1 − 2. �

Using similar arguments to those of Lemmas 5.2 and 5.3, we have the next
two lemmas.

Lemma 5.4. Let S = 〈n1, n2, tn1 − n2〉 be a numerical semigroup such that
t ∈ A(n1, n2). Then S is (T2) if and only if t | n2.

Lemma 5.5. Let S = 〈n1, n2, tn1 − n2〉 be a numerical semigroup such that
t ∈ A(n1, n2) \ {n2 − 1}. Then S is (T3) if and only if t | (n2 − 1) or t | (n2 +1).

From Remark 5.1 and Lemmas 5.2, 5.3, 5.4, and 5.5, we deduce the an-
nounced theorem.

Theorem 5.6. Let n1, n2, n3 be integers such that 3 ≤ n1 < n2 < n3,
gcd{n1, n2} = 1, and n3 /∈ 〈n1, n2〉. Then 〈n1, n2, n3〉 is an M-semigroup if
and only if n3 belongs to one of the following sets.
(1) B1 = {kn2 − n1 | k ∈ A(n1) ∩ [D(n1 − 1) ∪ D(n1) ∪ D(n1 + 1)]}.
(2) B2 = {tn1 − n2 | t ∈ A(n1, n2) ∩ [D(n2 − 1) ∪ D(n2) ∪ D(n2 + 1)]}.
Moreover, B1 ∩ B2 = {n1n2 − n1 − n2}.
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