
COVERING OF MANIFOLDS WITH OPEN CELLS

BY

1. Introduction

We prove a fundamental theorem for manifolds.

TEOEM 1. A connected n-dimensional topological (piecewise linear, differ-
entiable manifold without boundary can be covered with n -- 1 open topological
(piecewise linear, differentiable cells.

It is well known tbat a manifold can be covered with n 1 coordinate
systems [4].
Applying engulfing theorems, we can strengthen Theorem 1. If x is a real

number, let (x} denote the least integer greater than or equal to x.

THEOREM 2. Let tc

_
n- 3. A -connected n-dimensional topological

(piecewise linear, differentiable manifold without boundary can be covered with
((n + 1 )/(t 1)} open topological (piecewise linear, differentiable) cells.
The statement of Theorem 2 for the cases n 3,/ 1 and n 4, k 2 is

for closed manifolds equivalent to the topological (piecewise linear, differenti-
able) version of the Poincard conjecture in dimensions n 3 and n 4 re-
spectively. The case n 2, ] 1 is well known: A 1-connected 2-dimen-
sional topological (piecewise linear, differentiable) manifold without boundary
is homeomorphic (piecewise linearly homeomorphic, diffeomorphic) to the
2-sphere if it is compact, and to the 2-dimensional euclidean space if it is not
compact [7].
Theorem 1 and 2 hold also for analytic manifolds and coverings with open

analytic cells. This follows from Theorem B of [6].
The theorems are proved by a certain technique which was motivated by

the proof of the topological Poincar conjecture in dimensions n >_ 5 in [5].
Our arguments apply simultaneously to topological, piecewise linear, and
differentiable manifolds. The differentiable version of the theorems can also
be obtained directly from the piecewise linear results in the fashion of [1],
introducing smooth triangulations and approximating piecewise linear homeo-
morphisms by diffeomorphisms.
Theorem 2 also improves a result in [10].
I would like to thank the referee for his comment and Mr. MacLean for a

remark.

2. Preliminaries

By an n-dimensional topological manifold M without boundary, we mean a
separable Hausdorff space such that each point of M has an open neighbor-
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hood homeomorphic to an open subset of the n-dimensional euclidean spce
Rn. An n-dimensional piecewise linear mnifold without boundary is
countable simplicil complex such that the link of ech vertex is piecewise
linear (n 1)-sphere. And, an n-dimensional differentible mnifold with-
out boundary is an n-dimensional topological mnifold without boundary with
fixed differentible structure.
The image f( R of t.n, where f" R -- M is a homeomorphism (piecewise

linear homeomorphism, diffeomorphism) into the n-dimensional topological
(piecewise liner, differentiable) manifold Mn, is called a open topological
(piecewise linear, differentible) n-cell ia M.
A topological spce X is sid to be/-connected, / >_ 0, if it is path con-

nected and if the homotopy groups ri(X) 0 for 1

_
i /.

For the proof of Theorem 1, the following lemm will be sufficient.

LEMMA 1. Let M be a connected n-dimensional topological (piecewise linear,
differentiable manifold without boundary. Let V M be an open subset, and
consider points pl "", p e M. Then there is a homeomorphism (piecewise
linear homeomorphism, diffeomorphism h ofM onto itself with {pl ..., pv}
h( V and such that h is the identity on M Cfor some compact subset C M’.

Proof. Not hard. For the differentible cse, compare for example [3].

To prove Theorem 2, the following special cse of more general engulfing
theorem will be needed. (See [5] for topological, [9] for piecewise linear, and
[1] for differentible manifolds. Or, the engulfing theorem in [5] holds ctually
in all three ctegories of topological, piecewise linear, and differentible mni-
folds [2].

LEMMA 2. Let M be an n-dimensional topological (piecewise linear, differ-
entiable) manifold without boundary, let U R be an open subset, and let
g" U -- M be a homeomorphism (piecewise linear homeomorphism, diffeo-
morphism into M. Suppose that P U is an at most k-dimensional (not
necessarily finite!) polyhedron in R with g(P closed in M. Let V M be
an open subset with g(P V compact. Assume that M is It-connected, V is
(to 1)-connected, and that lc

_
n 3. Then there is a homeomorphism (piece-

wise linear homeomorphism, diffeomorphism) h of M onto itself with g(P)
h( V and such that h is the identity on M Cfor some compact subset C

Finally, the following lemma will be applied. If K is simplicil complex,
K denotes the underlying point set. The complementary complex of sub-
complex of a simplicial complex is the set of ll those simplexes of the sim-
plicial complex which do not have fce in the subcomplex.

LEMMA 3. Let H be the simplicial complex determined by a simplicial sub-
division of R’, let K be a finite subcomplex of a subdivision H’ of H, and let
A R be a closed subset with A n KI is empty. Let L be a full subcomplex
of K and let L be the complementary complex of L in K. Suppose that U and
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V are open subsets of R with ILl c U and L V. Then there exists a
piecewise linear "stretching" homeomorphism ("stretching" diffeomorphism s of
R onto iself such that

(1) [KI s(U) o V,
(2) s moves each point of R only within a simplex of H, and
(3) s is the identity on A.

Proof. We omit the proof of the differentiable version. It can be found
in [2]. If dim (L) 0--which is used to prove Theorem lthe proof sim-
plifies essentially.

First, we consider the simplicial complex K. Since L is full in K, each
point x of [K[ ([ L[ o [L[) lies in a uniquely determined segment [a, b]
contained in a simplex of K, where a e L nd b e L I. There is a stretch-
ing homeomorphism s’ of [K[ onto itself defined by mpping each segment
piecewise linearly onto itself such that [K s’(U [K[) o (V K[).

Next, we extend s’ to a homeomorphism s of R onto itself such that the
required properties hold. Consider the mth, m >_ 1, barycentric subdivision
fl(H’) of H’ relative to K such that for all simplexes X of (H’) with X n K
is not empty, then A n A is empty. We note that K is full in B(H’). The
extension s of s’ is defined as follows Let x e We distinguish three
c&ses"

(a) If x A, e (H’) with A n K[ is empty, then s(x) x.
(b) If x e A, Ae K, then s(x) d(x).
(c) If xe iX, /x e/(H’) with A Ao ZX. where zXeK, /.e/:(H’) with

A: n [K[ is empty, x X, and x &, then x has the unique representation
x oa + (1 X) ob, aeA,beA,and0 <: 1. We defines(x)
X os’(a) + (1 X) ob.

It is easily verified that s is well defined. By construction, s has the required
properties.

3. Proof of Theorems and 2
For convenience of notation, we state the proof for topological manifolds

only. Clearly, the arguments hold also in the piecewise linear and in the
differentiable case.
We may assume in the following that dimension n > 2.
LetCp {x (xl,-.- x)e with x] _< p,i 1,. ,n}-bethe

cube in R with side length 2p and with the origin as centre, and let

intCp {x (xl,...,x)e with xl < p, i= 1,.--,n}

(A) Let M be a k-connected n-dimensional topological manifold without
boundary and let tc <_ n- 3 if k > O. Suppose that g" R ----) M",
i 1,...,m, wherem ((n + 1)/(k + 1)),and g" R’---M"arehomeo-
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morphisms into the manifold M. Let a,/, and , be such that a > 0 and / >
O. Then there are homeomorphisms h of M’* onto itself, i 1, m,

such that
(1) g(C] c tl h o g(C. ), and
(2) h is the identity on g(C), i 1, m.

Proof. We choose a ) with < <: /. Let H be the simplicial complex
determined by a simplicial subdivision of R" such that

(a) C, forms the set of points of a subcomplex K of H, and
C(b) if g(A) n g( is not empty for a simplex A of H, then g(h) c g(C ),

i-- 1,...,m.
Let

K0 {AK" g(A) ng(C)isemptyforeachi 1,...,m}.

If K0 is not n-dimensional, then g(C:) t= g(C) by property (b) of the
simplicial complex H, and we define h to be the identity on M, i 1,
m, in this case. We assume now that K0 is an n-dimensional simplicial com-
plex. We construct inductively sequences K, K_ and L, L_
of simplicial complexes as follows. Suppose that K_, i >_ 1, is defined. Let
L be the first barycentric subdivision of the k-skeleton of K_, and let K
be the complementary complex of L in the first barycentric subdivision of
K’_l,i= 1,-.-,m-- 1. It follows that

dim(K) n-io(/q- 1).

g(I L, I) h’ o g (int C ), i= 1,...,m.

Hence dim(K_) _< k if n (i- 1)o(/ q- 1) _< /, or if
i >_ (n q- 1)/(/ q- 1). Thus dim (K_) _</.

Define L K_. We consider the simplicil complexes L,-.- L
in R. Let M. M g(C). The n-dimensional topological mnifold
M without boundary is gin k-connected. (Nmely, if/ > 0 it is simply
connected by wn Kmpen’s Theorem for example, the singular homology
groups re trivial in dimensions j 1, k, nd therefore =-(M) 0 for
j 1,---, / by the Hurewicz Isomorphism Theorem. Alternatively,
direct proof cn be given by "pushing out" homotopies from the cell g(C ).
The open subset V g (int C Ci*) of M’ is obviously (lc 1)-con-
nected. Let P LI g-l(g(C)). Then P is n open subset of
LI nd therefore k-dimensional polyhedron in the open subset U
R g-l(g(C )) of R, g(P) is closed in M nd g(P) V is compact.
Lemm 2 (or 1 respectively) cn be pplied. There is homeomorphism
h’ of M onto itself with g(P) h(V) nd such that h is the identity on
M C for some compact subset C M. The homeomorphism h can
be extended to a homeomorphism h’ of M onto itself by defining h to be the
identity on g(C). We conclude that
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Now letW g-l(hog (int C)),i 1, -..,m. Then W is an open
s,bset of R" with LI W, i 1, m. Applying Lemm 3, we con-
sruct inductively sequence of stretching homeomorphisms s,,_i of R" onto
itself, i 1, m 1, such that

(1) K_ s_(W_) u W,
Km_3 8m_2(Wm-2) 8m-l(Wm-1)

Ko s(W) u u s,_(W_) u W,

(2) s,_ moves each point of R only within a simplex of H, and
(3) s,_ is the identity on (R" int C g-.+) (e(c)).

We lift the homeomorphisms s onto the munifold M defing s’ M M
M Rbys(p) gos(g-(p))forpeg(R)ands(p) pforp e --g( i=

1, -... m 1. It follows that

We claim further that

g(C) a s h (C u u s,_ h_ o g_(C u h o g(C ).

Nmely, consider x e C K . If x e K0 [, then g(x) is a point of the set
t the right side by the preceding. If x K01, then x
g(A) n g0 (C) is not empty for some i0 by definition of K0. Coequently,
g(A) g0(C) by property (b) of the simplicil complex H. It follows from
property (2) of s that s (A) A. Hence g(x) e s o he0 o 0(C).

Finully, leth= soh,, 1,-.-,m-- 1,ndleth h. Properties
1 and (2) are satisfied.

(B) If M is compact, Theorems 1 and 2 follow immediately from (A);
one simply chooses finitely many homeomorphisms g" R M" such that
{g(C )} covers M", and pplies (A) a finite number of times to make the
first m of these cubes engulf the remaining ones. If M is not compact, the
same method still works.

Consider homeomorphisms g" R M, j 1, 2, ..., such that
{g(C)} covers M. We construct inductively m sequences {f.}0,

R M Mi 1, m, of homeomorphisms f. into with f.0 g,
i 1, m, such that

m+j(1) u= g(C u=fi,(C+), nd
(2) f,.l c f._ ?, i , ..., n, j .

Suppose that f,_, i 1, m, j 1, ure constructed. We apply (A).
There are homeomorphisms he of M onto itself, i 1, m, such that

g+(C a uh o A.;-(C’+
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and
h is the identity on f,_(C), i 1, m.

Then f, h o f,._, i 1, m, satisfy the required properties.
Finally, we pass to the limit and define maps f R --* M, i 1, m,

by f(x) lim. f.(x). It follows from property (2) that each map f
is well defined and a homeomorphism onto an open subset of M". The
images of f(R), f(R) are open n-cells in M and cover M" by con-
struction.

4. Some consequences of Theorem 2
If x is a real number, let [x] denote the greatest integer less than or equal to x.

COROLRV 1. If n >_ 5 every [n/2]-connected n-dimensional topological
(piecewise linear, differentiable manifold without boundary can be covered with
two open topological (piecewise linear, differentiable cells.

COROLLARY 2. A simply connected 4-dimensional topological (piecewise
linear, differentiable) manifold without boundary can be covered with three open
topological (piecewise linear, differentiable) cells.
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