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AUSTERE SUBMANIFOLDS OF DIMENSION FOUR:
EXAMPLES AND MAXIMAL TYPES

MARIANTY IONEL AND THOMAS IVEY

Abstract. Austere submanifolds in Euclidean space were in-
troduced by Harvey and Lawson in connection with their study

of calibrated geometries. The algebraic possibilities for second

fundamental forms of 4-dimensional austere submanifolds were
classified by Bryant, into three types which we label A, B and

C. In this paper, we show that type A submanifolds correspond

exactly to real Kähler submanifolds, we construct new examples

of such submanifolds in R
6 and R

10, and we obtain classifica-
tion results on submanifolds with second fundamental forms of
maximal type.

1. Introduction

Definitions and background. Recall that for an immersed submanifold
Mn ⊂ R

n+r with normal bundle N(M), the second fundamental form
II : TM ⊗ TM → N(M) is defined by

II(X,Y ) = πN ∇XY,

where X,Y are tangent vectors to M , ∇ is the Euclidean connection in R
n+r,

and πN is the orthogonal projection onto the normal bundle. Then M is
austere if, for any normal vector field ν, the eigenvalues of the quadratic form
IIν(X,Y ) := ν · II(X,Y ) with respect to the metric are at each point sym-
metrically arranged around zero on the real line (equivalently, all odd degree
symmetric polynomials in these eigenvalues vanish). When n = 2, this just
means that M is a minimal surface in R2+r. However, when n > 2 the austere
condition is stronger than minimality, and leads to a highly overdetermined
system of PDEs for the immersion. For example, because of nonlinearity of
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the higher degree symmetric polynomials, it does not suffice to impose the
eigenvalue condition on IIν when ν runs over a basis {νa}, 1 ≤ a ≤ r, for the
orthogonal complement of TpM ; rather, the eigenvalue condition applies to
all quadratic forms in the space | IIp | ⊂ S2T ∗

p M spanned by the νa · II.
The austere condition was introduced by Harvey and Lawson [6] in con-

nection with special Lagrangian submanifolds. A special Lagrangian subman-
ifold in C

n is a submanifold of real dimension n that is both Lagrangian and
minimal. The importance of special Lagrangian submanifolds lies mainly in
the fact that they are area-minimizing. (These submanifolds have also re-
ceived much recent attention because of their relation to mirror symmetry
[11].) Harvey and Lawson showed that the conormal bundle of an immersed
submanifold M ⊂ R

n is special Lagrangian in the cotangent bundle T ∗
R

n,
equipped with its canonical symplectic structure and metric, if and only if
M is an austere submanifold. This result was generalized by Karigiannis and
Min-Oo [8] to submanifolds in Sn, but with T ∗Sn carrying the Stenzel metric
and symplectic structure [10].

A systematic study and classification of austere submanifolds of dimen-
sion 3 in Euclidean space was first undertaken by Bryant [2], and generalized
by Dajczer and Florit [4] to austere submanifolds of arbitrary dimension whose
Gauss map has rank two. In studying the austere submanifolds of Euclidean
space, we are led first to an algebraic problem. Taking V = Rn with the
standard inner product, a linear subspace S ⊂ S2V ∗ is called austere if any
element of S has eigenvalues occurring in oppositely signed pairs. Since any
linear subspace of an austere subspace is also austere, and any isometry of V
carries one austere subspace to another, to classify austere subspaces it suf-
fices to find all maximal austere subspaces of S2V ∗ up to isometries. Bryant
classified these spaces for n = 3 and n = 4. For n = 3, he also described the
austere 3-folds while the case n = 4 was left open. We recall his results.

Theorem 1 (Bryant). Let V = R
3 and let S ⊂ S2V ∗ be a maximal austere

subspace. Then S is O(3)-conjugate to one of the following:

(a) SA =
{[

A 0
0 0

] ∣∣∣A is a traceless symmetric 2 × 2 matrix
}

,

(b) SB =
{[

0 b
tb 0

] ∣∣∣ b is a 1 × 2 row vector
}

.

Moreover, if M3 ⊂ R
n is an austere submanifold such that for every p in an

open subset of M the span | IIp | is two-dimensional and is O(3)-conjugate
to SA, then M is a product of a minimal surface in R

n−1 with a line, an
open subset of a cone or a twisted cone over a minimal surface in the sphere
Sn−1. Likewise, if | IIp | is conjugate to SB , then M is an open subset of a
generalized helicoid.
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In this context, a generalized helicoid Mn ⊂ R
2n−1 is the image of a parametriza-

tion

(x0, . . . , xn−1) �→ (x0, x1 cos(λ1x0), x1 sin(λ1x0), . . . ,
xs cos(λsx0), xs sin(λsx0), xs+1, . . . , xn−1),

where λ1, . . . , λs are positive constants and s < n. For the construction of the
twisted cone, see [2].

Theorem 2 (Bryant). Let V = R
4 and let S ⊂ S2V ∗ be a maximal austere

subspace. Then S is O(4)-conjugate to one of the following:

(a) QA =
{[

A B
B −A

] ∣∣∣A,B are symmetric 2 × 2 matrices
}

,

(b) QB =
{[

mI B
tB −mI

] ∣∣∣m ∈ R,B is a 2 × 2 matrix
}

,

(c) QC =

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

0 x1 x2 x3

x1 0 λ3x3 λ2x2

x2 λ3x3 0 λ1x1

x3 λ2x2 λ1x1 0

⎤
⎥⎥⎦

∣∣∣∣∣x1, x2, x3 ∈ R

⎫⎪⎪⎬
⎪⎪⎭ ,

where, in the last case, parameters λ1, λ2, λ3 satisfy

(1) λ1 ≥ λ2 ≥ 0 ≥ λ3, λ1λ2λ3 + λ1 + λ2 + λ3 = 0.

We will say that an austere submanifold M4 is of type A, B or C respec-
tively, if for every point p ∈ M the space | IIp | is O(4)-conjugate to a subspace
of the corresponding maximal austere subspace given in Theorem 2. (In the
case of type C, we allow the parameters λi to vary from point to point in M .)
It is possible for | IIp | to be conjugate to a subspace of more than one maximal
subspace (e.g., when M is a hypersurface), but we will assume that there is
one particular maximal subspace which applies at all points of M .

It is easy to give examples of austere 4-folds of types A and C. When
the codimension r is even, any holomorphic submanifold M4 ⊂ C

2+(r/2) is an
austere 4-fold of type A. To see this, let J be the complex structure, and note
that for any vector fields X,Y tangent to M

(2) νa · II(X,JY ) = νa · ∇XJY = νa · J(∇XY ) = −(Jνa) · ∇XY,

and therefore

(3) νa · II(X,JY ) = νa · II(JX,Y ).

Dajczer and Gromoll [5] defined a submanifold M to be circular if it carries
a parallel complex structure such that (3) holds, and they observed that this
condition implies that M is austere.

It follows from (3) that II is represented by matrices in QA when we choose
a moving frame e1, e2, e3, e4 along M such that Je1 = e3 and Je2 = e4. As for
austere 4-folds M of type C, another result of Bryant (see [2], Theorem 3.1)
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implies that M is a generalized helicoid in R
7 if and only if the parameters

λ1, λ2, λ3 are identically zero. On the other hand, we do not know if other
austere 4-folds of type C exist.

Our approach. Our goals in studying austere submanifolds are to obtain
new examples and, where possible, to classify austere 4-folds of a given type.
We employ the method of moving frames to generate exterior differential
systems (EDS) whose solutions correspond to austere 4-folds of a given type
and codimension. When such systems are involutive, Cartan–Kähler theory
(see [3]) gives us a measure of the size of the solution space, in the form
of what initial data may be chosen for a sequence of Cauchy problems that
determine every possible local solution. Studying the structure of the exterior
differential system can also enable us to establish global properties of solutions
(see, e.g., Proposition 5 and Proposition 14 below).

One could organize a classification scheme for austere 4-folds in Euclidean
space by type and the dimension δ of | II | (assumed constant over the sub-
manifold).1 However, we expect to obtain the strongest classification theorems
when the austere condition is strongest, that is, when δ is as large as possible
for a given type. Thus, like the earlier results of Bryant on 3-folds, the classi-
fication results in this paper are obtained assuming that | II | is conjugate to
one of QA, QB or QC . (In this case, we say M is of maximal type A, B, or
C, respectively.) Classifying austere 4-folds of M of nonmaximal type would
involve parametrizing the possible subspaces of a given dimension within QA,

QB or QC and analyzing the associated EDS. In many instances, the many
additional parameters involved make the EDS intractable, even with the as-
sistance of computer algebra systems.

To obtain new examples, an often successful strategy is to assume addi-
tional conditions. In the last part of this paper, we obtain new examples of
austere 4-folds of nonmaximal type A by assuming that δ = 2 and the space
| II | lies on a nonprincipal orbit of the action of the symmetry group of QA on
the Grassmannian of two-dimensional subspaces of QA. One can also carry
out this approach for type B with δ = 2, but this yields no new examples. The
approach is not feasible for type C because in that case the symmetry group
is discrete.

Outline and summary of results. In Section 2, we define the moving
frames and associated geometric structures we will use in the rest of the paper.
Because the exterior differential systems we use are tailored for submanifolds
in a specific codimension, we prove a preliminary result in Section 2.1 to the
effect that, when | II | satisfies certain algebraic criteria, then δ equals the

1 By duality, this δ is also the rank of II as a linear map into the normal bundle; hence,

we will often refer to it as the normal rank of M .
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effective codimension of M (i.e., the codimension of M within the smallest
totally geodesic submanifold containing it).

Section 3 is concerned with austere 4-folds of type A. Note that such sub-
manifolds carry a well-defined almost complex structure J satisfying (3). In
Section 3.1, we derive sufficient conditions on | II | for J to be parallel, imply-
ing that M is Kähler. (This gives a converse to Dajczer and Gromoll’s result.)
We show that the Kählerness conditions apply whenever | II | has dimension
at least two. The main result of Section 3.2 is the description of the gen-
erality of maximal type A austere 4-folds. We show that such submanifolds
in Rr+4 depend on a choice of 2(r − 1) functions of 2 variables, in the sense
of the Cartan–Kähler Theorem. We conclude that, generically, these austere
submanifolds of type A are not holomorphic submanifolds.

Section 4 is concerned with classifying austere 4-folds of maximal types B
and C. In Section 4.1, we show that austere 4-folds of maximal type B do not
exist. In Section 4.2, we prove two results about maximal type C. First, if
| II | is at each point conjugate to a fixed maximal austere subspace QC (i.e.,
the parameters λi are assumed to be constant over M ) then M must be a
generalized helicoid. Second, even without requiring the parameter values to
be fixed, we show that there is only a finite-dimensional family of submani-
folds of maximal type C. This follows from showing that, away from certain
exceptional parameter values, the characteristic variety of the relevant EDS is
empty; we also show that the parameters take value in the exceptional locus
on (at most) the complement of an open dense subset of M .

In Section 5, we give some interesting examples of austere 4-folds of non-
maximal type. As mentioned above, one approach is to assume that | II |,
as a point in the Grassmannian of the relevant maximal austere subspace, is
nongeneric for the action of the symmetry group (i.e., it lies along a nonprin-
cipal orbit). In Section 5, we use the symmetry group of QA to normalize
2-dimensional subspaces of QA, and identify the nongeneric subspaces. We
then classify the type A austere 4-folds for which | II | has dimension two and
is of fixed nongeneric type, assuming that the Gauss map is nondegenerate.
(One can show that if the Gauss map of austere 4-fold is degenerate, then it
must have rank at most 2. Austere submanifolds with rank 2 Gauss map were
classified by Dajczer and Florit [4].) These submanifolds, which all lie in a
totally geodesic R

6, turn out to be either holomorphic submanifolds, products
of minimal surfaces, or else 2-ruled submanifolds. The latter have the prop-
erty that the image of the map γ : M → G(2,6), taking point p ∈ M into the
subspace of R6 parallel to the ruling through p, is a holomorphic curve. Such
curves are not arbitrary, however; we also show how these ruled submanifolds
may be constructed by instead choosing a general holomorphic curve in CP

3.
We plan to carry out a full classification of 2-ruled austere 4-folds in our

next paper.
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2. Moving frames

In this section, we discuss the first applications of moving frames to the
geometry of austere 4-folds. In particular, we obtain upper bounds on the ef-
fective codimension of the submanifold, and show that adapted moving frames
correspond to integrals of a certain Pfaffian exterior differential system on the
appropriate frame bundle.

2.1. Codimension. Let M4 ⊂ R
r+4 be austere. For p ∈ M , let Np denote

the orthogonal complement of TpM in R
r+4. A first approximation to the

effective codimension of M is the dimension of its first normal space N1
p M ,

which is the image of the second fundamental form II : S2TpM → Np. Let
δ(p) denote the dimension of the first normal space, which we will refer to
as the normal rank of M at p. This is a lower semicontinuous function on
M , bounded above by the codimension of M . (For an austere submanifold
of a given type, δ(p) is also bounded above by the dimension of the maximal
austere subspace in which | IIp | lies.) Hence, δ(p) will be constant on an open
set in M , so without loss of generality we will assume that δ(p) is constant.

Proposition 3. Suppose that M ⊂ R
r+4 is type B or type C. Then the

effective codimension of M equals δ.

Proof. Let e1, . . . , e4, ν1, . . . , νr be a moving frame along M , such that at
each point p, e1, . . . , e4 span TpM , ν1, . . . , νδ span N1

p M , and νδ+1, . . . , νr are
orthogonal to TpM ⊕ N1

p M .
Let II(ei, ej) = Sa

ij(p)νa. These symmetric matrices span the subspace
| IIp |, when expressed in terms of the basis e1, . . . , e4. (We will use index
ranges 1 ≤ i, j, k ≤ 4, 1 ≤ a, b, c ≤ δ and δ < β ≤ r.) Let

(4) ∇eiνa(p) = T β
aiνβ(p) mod TpM ⊕ N1

p M.

(We will use summation convention from now on.) Differentiating

(5) ∇ej ei ≡ Sa
ijνa mod TpM

along the ek direction, skew-symmetrizing in j and k, and taking the compo-
nent in the direction of νβ gives

(6) T β
akSa

ij − T β
ajS

a
ik = 0.

Let V = TpM and let Q = | IIp | ⊂ V ∗ ⊗ V ∗. Define the prolongation of Q
as

(7) Q(1) := Q ⊗ V ∗ ∩ V ∗ ⊗ S2V ∗.

(This is a special case of the definition of the prolongation of a tableau Q ⊂
W ⊗ V ∗; see [7], Chapter 4.) Then the equation (6) implies that for each β

the tensor Uβ
ijk := T β

akSa
ij lies in the space Q(1).
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However, by Lemma 4 below, the space Q(1) has dimension zero. If all the
matrices Sa

ij are identically zero, then M is totally geodesic and the proposi-
tion is true with δ = 0. Otherwise, the second fundamental form is nonzero
on an open set in M , and it follows that T β

ak = 0. In that case, (4) and (5)
show that the span {e1, . . . , e4, ν1, . . . , νδ } is fixed as we move along M . Thus,
M lies in an affine linear subspace of dimension δ + 4. �

Lemma 4. Let Q ⊂ QB or Q ⊂ QC . Then Q(1), as defined by (7), has
dimension zero.

Proof. It suffices to verify that the prolongations of QB and QC have di-
mension zero.

It is convenient for us to compute the prolongation as the space of integral
elements for a linear Pfaffian system with independence condition. (See [7],
Chapters 4–5, or [3], Chapter 4 for more examples.) In the case of QB , the
2-forms of such a system would take the form

(8)

⎡
⎢⎢⎣

π0 0 π1 π2

0 π0 π3 π4

π1 π3 −π0 0
π2 π4 0 −π0

⎤
⎥⎥⎦ ∧

⎡
⎢⎢⎣

ω1

ω2

ω3

ω4

⎤
⎥⎥⎦ ,

where π0, . . . , π4, ω
1, . . . , ω4 are linearly independent 1-forms and ω1 ∧ ω2 ∧

ω3 ∧ ω4 �= 0 is the independence condition for integral elements. Thus, an
integral element satisfying this condition is described by setting πa = Pakωk

for some coefficients Pak such that the above 2-forms vanish. The possible
values for these coefficients give a parametrization of the space Q(1)

B , since the
prolongation is kernel of the composition

QB ⊗ V ∗ −→ S2V ∗ ⊗ V ∗ −→ V ∗ ⊗ Λ2V ∗,

where the first map is inclusion and the second skew-symmetization.
The vanishing of the first 2-form in (8) implies that π0, π1, π2 cannot contain

any ω2 terms. Applying the same idea to each of the other 2-forms implies,
in particular, that on any integral element π0 cannot contain terms involving
ω1, ω3 or ω4 either. Thus, π0 = 0 on any integral element. Then, examining
the first and third rows in (8) shows that, on any integral element, π1 must
lie in the intersection of spans {ω1, ω2} and {ω3, ω4}, and thus must be zero.
We similar find the π2, π3, π4 must vanish on any integral element, and the
prolongation space has dimension zero.

The proof that Q(1)
C = 0 is similar. �

The argument of Lemma 4 does not automatically apply to subspaces of
QA, because the prolongation of QA is nonzero. In fact, QA is easily seen
to be the space of symmetric matrices that anticommute with the complex
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structure represented by

(9) J =

⎡
⎢⎢⎣

0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

⎤
⎥⎥⎦ .

Thus, because −J = tJ , a quadratic form S on the tangent space represented
by a matrix in QA is J-linear, that is, S(X,JY ) = S(JX,Y ). The prolongation
of QA is the space of J -linear cubic forms, which is spanned by the real and
imaginary parts of complex-linear cubic forms in two complex variables, and
thus has real dimension 8.

Likewise, the conclusions of Proposition 3 do not apply to all austere 4-
folds of type A. For this, we may construct holomorphic submanifolds of
real dimension 4 inside C

N , for arbitrarily high N , which lie in no lower-
dimensional subspace. One example is the Segre embedding of the product
of CP

1 with a rational normal curve in CP
n, given in terms of homogeneous

coordinates [u, v] and [z,w] by

([u, v], [z,w]) �→ [zun,wun, zun−1v,wun−1v, . . . , zvn,wvn].

This embedding maps CP
1 × CP

1 into CP
2n+1, and we obtain an austere 4-

fold in C
2n+1 by intersecting with the domain of a standard chart in projective

space.

2.2. Moving frames and Pfaffian systems. Let F be the subbundle of
the general linear frame bundle of R

4+r whose fiber at a point p consists of
all bases (e1, . . . , e4, ν1, . . . , νr) for TpR

4+r such that the ei are orthonormal
and orthogonal to the νa. (Here, we use index ranges 1 ≤ i, j, k ≤ 4 and
1 ≤ a, b, c ≤ r.) We’ll refer to F as the semi-orthonormal frame bundle.

As in Section 2.1, along a submanifold M4 ⊂ R
4+r we may adapt a mov-

ing frame e1, . . . , e4, ν1, . . . , νr such that at each p ∈ M the frame vectors
e1(p), . . . , e4(p) are an orthonormal basis for TpM . (The reason we do not
also choose the νa to be orthonormal is that we will adapt them so that
the quadratic forms IIνa are represented by a particular basis for an austere
subspace.) Then our moving frame along M is a section of F|M . We will
characterize such sections in terms of the canonical and connection 1-forms
on F.

These 1-forms are defined in terms of the exterior derivatives of the base-
point p and the frame vectors, regarded as R

4+δ-valued functions on F. We
let

dp = eiω
i + νaθa,

dei = ejφ
j
i + νaηa

i ,(10)

dνa = ejξ
j
a + νbκ

b
a,
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define the canonical forms ωi, θa and connection forms φi
j , ηa

i , ξi
a and κa

b .
These 1-forms span the cotangent space of F at each point but are not linearly
independent; differentiating the equations ei · ej = δij and ei · νa = 0 yields the
relations

(11) φi
j = −φj

i , ξi
a = −ηb

i gba,

where gab = νa · νb. The exterior derivatives of the canonical forms satisfy
structure equations

(12) d

[
ω
θ

]
= −

[
φ −tηg
η κ

]
∧

[
ω
θ

]
,

where ω, θ,φ, η, κ denote vector and matrix-valued 1-forms with components
ωi, θa, φi

j , ηa
i , and κa

b respectively, and g has entries gab. Differentiating these
equations, and noting that R

4+δ is flat, gives the derivatives of the matrices
of connection forms as

dφ = −φ ∧ φ + tη ∧ gη,

dη = −η ∧ φ − κ ∧ η,(13)
dκ = η ∧ tηg − κ ∧ κ,

along with
dg = gκ + tκg.

We note the following fundamental fact relating adapted frames and sub-
manifolds of F:

A submanifold Σ4 ⊂ F is a section given by an adapted frame along some
submanifold M ⊂ R

4+δ if and only if ω1 ∧ ω2 ∧ ω3 ∧ ω4|Σ �= 0 and θa|Σ = 0.

(We adopt the convention that |Σ for a differential form denotes the pullback
to Σ of that form under the inclusion map.) The first of these conditions is
a nondegeneracy assumption called the independence condition. The second
condition implies, by differentiation, that

ηa
i |Σ = Sa

ijω
j

for some functions Sa
ij . These functions give the components of the second

fundamental form in this frame, that is,

(14) II(ei, ej) = Sa
ijνa.

The standard system. We will now describe a class of exterior differential sys-
tem (EDS), for later use, whose integral submanifolds are adapted frames
along austere submanifolds. (Being an integral submanifold of an EDS I
means that the pullback to the submanifold of any 1-forms in I is zero.) To
avoid tedious repetition, we will only consider integral submanifolds (and inte-
gral elements) satisfying the above independence condition. Unless otherwise
stated, we will limit our attention to austere submanifolds whose effective
codimension r equals the normal rank δ.
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First, suppose we wish to construct an austere submanifold M such that
at each point p, | IIp | is conjugate to a fixed austere subspace Q of dimension
δ (i.e, M is of type Q). Let symmetric matrices Ŝ1, . . . , Ŝδ be a fixed basis
for this subspace. Then any such submanifold can be locally equipped with
an adapted frame such that

(15) II(ei, ej) = Ŝa
ijνa

holds. Conversely, if submanifold Σ4 ⊂ F is such that

θa|Σ = 0, (ηa
i − Ŝa

ijω
j)|Σ = 0,

then it is the image of a section of F|M for some austere manifold M of type Q.
Thus, we may define on F a Pfaffian exterior differential system, the standard
system,

I = {θa, ηa
i − Ŝa

ijω
j }

whose integral submanifolds correspond to austere manifolds of this type.
We will also need to consider austere manifolds M where | II | is conjugate to

an austere subspace Qλ of fixed dimension δ but which depends on parameters
λ1, . . . , λ� which are allowed to vary along M . Suppose that a basis of this
subspace is given by symmetric matrices S1(λ), . . . , Sδ(λ), and the parameters
are allowed to range over an open set L ⊂ R

�. Then we may define the standard
system with parameters

I = {θa, ηa
i − Sa

ijω
j },

which is analogous to the above, but now defined on the product F × L.
Given any austere manifold M of this kind, we may construct an adapted
frame along M such that

II(ei, ej) = Sa
ij(λ)νa

for functions λ1, . . . , λ� on M . Then the image of the fibered product of the
mappings p �→ (p, ei(p), νa(p)) and p �→ (λ1(p), . . . , λ�(p)) will be an integral
submanifold of I. Conversely, any integral submanifold of I satisfying the
independence condition gives (by projecting onto the first factor in F × L) a
section of F|M which is an adapted frame for an austere manifold M .

For later use, we compute the 1-forms of I. We note that dθa ≡ 0 modulo
the 1-forms of I, so that the only algebraic generator 2-forms are obtained
from differentiating the 1-forms θa

i := ηa
i − Sa

ijω
j . Using (12) and (13), we

obtain

(16) dθa
i ≡ −(dSa

ij − Sa
kjφ

k
i − Sa

ikφk
j + κa

bSb
ij) ∧ ωj

modulo θa and θa
i . The 2-forms for the standard system without parameters

are obtained replacing Sa in (16) with a constant Ŝa.
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3. Austere submanifolds of type A

In this section, we classify maximal austere submanifolds of type A. Of
course, holomorphic submanifolds are of this type, but we will show that
general type A austere 4-folds are much more plentiful than holomorphic
submanifolds. Before specializing to submanifolds of maximal type A, we will
first characterize those type A submanifolds for which the metric is Kähler.

3.1. Real Kähler submanifolds. As mentioned in the Introduction, Da-
jczer and Gromoll [5] observed that a real Kähler submanifold (i.e., a subman-
ifold for which the metric inherited from ambient space is Kähler) is austere.
On the other hand, the maximal austere space QA may be characterized as
the set of symmetric matrices which anti-commute with a complex struc-
ture on R

4 represented by the matrix J given by (9). Thus, the subgroup
U(2)R ⊂ GL(4,R) of matrices that commute with J preserve QA. In general,
we can associate a well-defined almost complex structure2 to type A austere
4-folds M . Thus, it is natural to ask under what circumstances the metric on
M is Kähler.

Below, we will give a partial converse to Dajczer and Gromoll’s result. In
order to state our result precisely, we will need some algebraic preliminaries.

We split the space so(4) of skew-symmetric matrices as

so(4) = u(2)R ⊕ P ,

where u(2)R is the subspace of matrices that commute with J (which is iso-
morphic to the Lie algebra u(2)) and P is the subspace of matrices that
anticommute with J , which is spanned by the matrices

T =

⎡
⎢⎢⎣

0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0

⎤
⎥⎥⎦ , U = −JT =

⎡
⎢⎢⎣

0 0 0 1
0 0 −1 0
0 1 0 0

−1 0 0 0

⎤
⎥⎥⎦ .

Proposition 5. Let M be an austere 4-fold of type A, and for p ∈ M let
| IIp | be O(4)-conjugate to a subspace Q(p) ⊂ QA. Define the map

K : S �→ ([S,T ]|[S,U ])

from the space of 4 × 4 matrices S into the space of 4 × 8 matrices. Suppose
that for every p the image of Q(p) under K has the property that the common
nullspace of all matrices in the image is zero. Then M is Kähler with respect
to the complex structure defined by J .

2 In fact, for a generic two-dimensional subspace Q ⊂ QA the complex structure which

anticommutes with matrices in Q is uniquely defined up to a minus sign.
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Proof. Let Ŝ1, . . . , Ŝ6 be a fixed basis for QA. Let r be the effective codi-
mension of M , not assumed to be the same as the normal rank of M . Locally
on M , we may construct an adapted frame e1, . . . , e4, ν1, . . . , νr such that

II(ei, ej) = va
hŜh

ijνa,

where va
h are some functions on M and 1 ≤ h ≤ 6. Then the adapted frame

defines a local section f : M → F such that f ∗ωi span the cotangent space of
M and the image of f is an integral of the 1-forms θa and

θa
i := ηa

i − va
hŜh

ijω
j .

By specializing the computation (16) to the case where Sa
ij = va

hŜh
ij , we

obtain dθa
i ≡ −Ωa

i modulo the forms θa
i , where

(17) Ωa
i :=

(
(dva

h + κa
bvb

h)Ŝh
ij − va

h[Ŝh, φ]ij
)

∧ ωj

and [Ŝh, φ] denotes the commutator.
These 2-forms must vanish under pullback via f . Consider the 4-forms

Ξa
i := Ωa

i ∧ Uk�ω
k ∧ ω� − JimΩa

m ∧ Tk�ω
k ∧ ω�.

Using the fact that U = −JT , we can expand these as

Ξa
i = −(dva

h + κa
bvb

h) ∧
(
Ŝh

ij(JT )k� + JimŜh
mjTk�

)
∧ ωj ∧ ωk ∧ ω�

+ va
h

(
[Ŝh, φ]ij(JT )k� + Jim[Ŝh, φ]mjTk�

)
∧ ωj ∧ ωk ∧ ω�.

Next, write φ = φ̃ + ψ, where φ̃ takes value in u(2)R and ψ takes value in P .
Using the fact that the matrices Ŝh and [Ŝh, φ̃] anticommute with J while
[Ŝh, ψ] commutes with J , we have

Ξa
i =

(
(dva

h + κa
bvb

h) ∧ Ŝh
ij(−ω ∧ tωJ + Jω ∧ tω)jk

+ va
h

(
[Ŝh, φ̃]ij ∧ (−ω ∧ tωJ + Jω ∧ tω)jk

+ [Ŝh, ψ]ij ∧ (ω ∧ tωJ + Jω ∧ tω)jk

))
∧ Tk�ω

�.

It is easy to verify that (−ω ∧ tωJ + Jω ∧ tω) ∧ Tω = 0. Computing the
remaining terms gives

Ξa
i = −4va

h[Ŝh, ψ]ijUjk ∧ ω(k),

where ω(k) denotes the 3-form which is the wedge product of the ωi such that
ωj ∧ ω(k) = δj

kω1 ∧ ω2 ∧ ω3 ∧ ω4.
Write ψ = ψ1T +ψ2U , where ψ1 = 1

2 (φ2
1 − φ4

3) and ψ2 = 1
2 (φ3

2 − φ4
1). Suppose

that f ∗ψ1 = akf ∗ωk and f ∗ψ2 = bkf ∗ωk. Then the vanishing of Ξa
i and the

fact that f ∗(ω1 ∧ ω2 ∧ ω3 ∧ ω4) �= 0, implies that the ak and bk must satisfy

va
h([Ŝh, T ]ijUjkak + [Ŝh,U ]ijUjkbk) = 0.
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Thus, if Q(p) satisfies the given conditions, then ak and bk must vanish.
Therefore, the connection forms φ of M take value in u(2)R, the connected
component of the holonomy group of M lies in U(2)R, and it follows that M
is Kähler. �

Note that the vanishing of ψ implies the vanishing of additional polyno-
mials in the coefficients va

h. To express these, introduce the notation { · }P
for the projection of an so(4)-valued function (or differential form) into the
subspace P . By (13),

dψ ≡ {tη ∧ gη} P mod ψ.

Furthermore, the (i, j) entry of the matrix within braces is congruent, modulo
the θa

i , to the 2-form Y i
jk�ω

k ∧ ω�, where

Y i
jk� := gabv

a
hvb

h′ (Ŝh
ikŜh′

j� − Ŝh
i�Ŝ

h′

jk).

Then these additional conditions take the form

(18) Y 2
1k� = Y 4

3k�, Y 3
2k� = Y 4

1k�

for all k < �.

Proposition 6. The only 2-dimensional subspaces of QA which do not
satisfy the hypothesis of Proposition 5 are conjugate, via the action of U(2)R,
to the following:

Qx = {Sx, J̃Sx}, where Sx =

⎡
⎢⎢⎣

1 0 0 0
0 x 0 0
0 0 −1 0
0 0 0 −x

⎤
⎥⎥⎦ , J̃ =

⎡
⎢⎢⎣

0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0

⎤
⎥⎥⎦

and x is a real parameter.

Proof. Any nonzero matrix in QA can be diagonalized using U(2)R, and
scaled to be equal to Sx for some x ∈ R. The kernel of K(Sx) is a 4-dimensional
subspace of R

8. Requiring that a general element S ∈ QA, linearly indepen-
dent from Sx, has the property that the restriction of K(S) to kerK(Sx) is
singular, implies that S must be a multiple of J̃Sx. �

Corollary 7. All type A submanifolds with δ ≥ 2 are Kähler.

Proof. Because of Proposition 5, we need only check those submanifolds
such that | IIp | is at every point conjugate to a space of the form Qx defined in
Proposition 6. Note that matrices in Qx anticommute with J̃ , and J̃ = PJP −1

for a permutation matrix P . Thus, we may repeat the argument of the proof of
Proposition 5 with all matrices in so(4) replaced by their conjugates under P .
We conclude that the submanifold is Kähler with respect to the complex
structure defined by J̃ . �
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3.2. Maximal type A. In the rest of this section, we discuss austere sub-
manifolds of type A with δ = 6, that is, whose second fundamental forms span
the entire space QA. We fix the following basis for this space:

Ŝ1 =

⎡
⎢⎢⎣

1 0 0 0
0 0 0 0
0 0 −1 0
0 0 0 0

⎤
⎥⎥⎦ , Ŝ2 =

⎡
⎢⎢⎣

0 1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0

⎤
⎥⎥⎦ ,

Ŝ3 =

⎡
⎢⎢⎣

0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 −1

⎤
⎥⎥⎦ , Ŝ4 =

⎡
⎢⎢⎣

0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

⎤
⎥⎥⎦ ,

Ŝ5 =

⎡
⎢⎢⎣

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎤
⎥⎥⎦ , Ŝ6 =

⎡
⎢⎢⎣

0 0 0 0
0 0 0 1
0 0 0 0
0 1 0 0

⎤
⎥⎥⎦ .

Let M be an austere submanifold of this type; for the sake of simplicity, we
first assume that codM = δ = 6, that is, M lies in R

10. Let F be the bundle
of semi-orthonormal frames on R

10, as described Section 2.2. The manifold
F has dimension 10 + 24 + 36 + 6; referring to the structure equations (12),
we note that the components of ω, θ, η, κ, and the lower triangle of φ give a
coframe on F.

By hypothesis, along M there is a moving frame (e1, e2, e3, e4, ν1, . . . , ν6)
such that

(19) II(ei, ej) = Ŝa
ijνa.

(Here, we take the convention that indices i, j, k run between 1 and 4, while
indices a, b run between 1 and δ.) The image Σ ⊂ F is an integral of the
standard system I defined in Section 2.2. By (16), we see that the 2-forms of
I are given by πa

ij ∧ ωj where

πa
ij := κa

b Ŝb
ij − Ŝa

ikφk
j − Ŝa

jkφk
i .

Applying Propositions 5 and 6, we see that M must be Kähler; in partic-
ular, the differential forms ψ1 = 1

2 (φ2
1 − φ4

3) and ψ2 = 1
2 (φ3

2 − φ4
1) must also

vanish along Σ. Therefore, an adapted frame along an austere 4-fold of this
type will be an integral of the augmented Pfaffian system

I + = {θa, ηa
i − Ŝa

ijω
j , ψ1, ψ2}.

With the addition of the 1-forms ψ1, ψ2 come the additional integrability
conditions (18). In this case, these generate only two linearly independent
conditions,

(20) g13 − g22 − g46 + g55 = 0, g16 − 2g25 + g34 = 0.
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Since these conditions are constraints on how the normal vectors νa may
be arranged, they hold only on a codimension-two submanifold of the frame
bundle F. Let F′ ⊂ F denote this submanifold. We now apply Cartan’s test
for involutivity to the pullback of the Pfaffian system I + to F′.

Proposition 8. On F′, the system I + is involutive with Cartan characters
s1 = 24, s2 = 10.

Proof. As in the proof of Proposition 5, let φ̃ be the projection of φ into
u(2)R. Then

dθa
i ≡ π̃a

ij ∧ ωj mod θa, θa
i , ψ1, ψ2,

where we define
π̃a

ij := κa
b Ŝb

ij − Ŝa
ikφ̃k

j − Ŝa
jkφ̃k

i .

Next, let π̃a stand for the matrix-valued 1-form whose entries are π̃a
ij . On F,

the 36 1-forms κa
b are linearly independent. Because, for each a, π̃a takes

value in the 6-dimensional space QA, it follows that on F there are exactly
36 linearly independent forms among the π̃a

ij . Differentiating (20) shows that
two of these forms pull back to F′ to be linearly dependent on the others; for
example, one can solve for π4

22 and π4
24 in terms of the other πa

ij . It follows
that, when pulled back to F′, there are 24 linearly independent 1-forms among
the πa

1j and 10 further independent 1-forms among the πa
2j . This gives us the

claimed values for the Cartan characters.
To apply Cartan’s test, we need to calculate the fiber dimension of the

space of 4-dimensional integral elements at points on F′. Suppose that an
integral element is defined by

π̃a
ij = pa

ijkωk,

where pa
ijk is symmetric in i, j, k, and for any fixed a and k is in the space QA.

For each a, the space of symmetric tensors satisfying these conditions is iso-
morphic to the prolongation Q(1)

A , which has dimension 8. As a varies, we
obtain a 48-dimensional space of solutions pa

ijk. However, the corresponding
integral 4-planes must be tangent to the submanifold F′. This requirement im-
poses 4 additional linearly independent homogeneous conditions on the pa

ijk,
so we conclude that the fiber dimension of the space of integral elements tan-
gent to F′ is 44. Since this dimension coincides with s1 + 2s2, the system is
involutive. �

We now state the following theorem.

Theorem 9. Austere 4-folds in R10 of maximal type A exist and depend
locally on a choice of 10 functions of 2 variables. Each of them carries a
complex structure with respect to which the metric inherited from ambient
space is Kähler, but they are generically not complex submanifolds.
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Proof. The first assertion follows by applying the Cartan–Kähler theorem
(cf. Theorem 7.3.3 in [7]), given the fact that the system I + is involutive with
characters computed in Proposition 8. The second assertion follows from
Proposition 5. Evidence for the third assertion is provided by the fact that
holomorphic submanifolds of real dimension four in R

10 � C
5 are locally the

graphs of three holomorphic functions of two complex variables. The Cauchy–
Riemann system for one function of two complex variables is involutive with
Cartan character s2 = 2, so such submanifolds M depend locally on a choice
of 6 functions of 2 real variables. However, we will provide a more concrete
argument as to how the solutions of the above Pfaffian system fail, in general,
to be holomorphic submanifolds.

Suppose that M4 ⊂ C5 is a holomorphic submanifold with normal space of
real dimension 6, and let J denote the ambient complex structure. Adapt
a framing along M so that (19) holds. Then equation (2) implies that
II(ei,Jej) = −J II(ei, ej). Applying (19) to both sides and observing that
Ŝ1J = −Ŝ4, Ŝ2J = −Ŝ5, Ŝ3J = −Ŝ6 shows that

(21) Jν1 = ν4, Jν2 = ν5, Jν3 = ν6.

By abuse of notation, we can assume that J is a constant matrix. Differenti-
ating, for example, the equation Jν1 = ν4, and using (10), yields

J(ejξ
j
1 + νaκa

1) = ejξ
j
4 + νaκa

4 .

In particular, such framings satisfy κ1
1 = κ4

4, κ2
1 = κ5

4 and κ3
1 = κ6

4. More
generally, differentiating the equations (21) shows that the matrix κ of 1-
forms κa

b must commute with the matrix

L =
[

0 −I3×3

I3×3 0

]
.

Because La
b Ŝb = ŜaK, we must have κa+3

b+3 = κa
b and κa+3

b = −κa
b+3 for 1 ≤

a, b ≤ 3. It follows that the 36 1-forms π̃a
ij must satisfy

La
b π̃b

ij = π̃a
ikKk

j = π̃a
jkKk

i .

(In this equation, we revert to 1 ≤ a, b ≤ 6.) Because involutivity implies
that integral manifolds may be constructed passing through any given initial
integral element, we see that a generic solution will not satisfy these extra
necessary conditions. �

As noted in Section 2.1, space Q(1)
A has nonzero dimension, so austere 4-

folds of type A with δ = 6 may in fact have codimension r > 6. To see how
many of these there are, suppose that along such a submanifold M we adapt
moving frames, as in the proof of Proposition 3, so that ν1, . . . , ν6 span N1

p M ,
and ν7, . . . , νr are orthogonal to TpM ⊕ N1

p M . (As before, let indices a, b run
from 1 to 6, but now let indices α,β run between 7 and r.)
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Such moving frames, as sections of F, give integral submanifolds of the
following Pfaffian system:

I + = {θa, θβ , ψ1, ψ2, η
a
i − Ŝa

ijω
j , ηβ

i }.

Again, we restrict to the submanifold F′ where the integrability conditions
(20) hold. We compute

dηβ
i ≡ −κβ

b Ŝb
ij ∧ ωj

modulo the 1-forms in I +. For every fixed index β, the tableau component
given by κβ

b Ŝb
ij is isomorphic to QA, and is involutive with characters s1 =

4, s2 = 2. Combining this with the results of Proposition 8 we conclude that
the EDS I + is involutive with characters s1 = 24 + 4(r − 6) = 4r and s2 =
10 + 2(r − 6) = 2r − 2.

We conclude that type A austere 4-folds in R
4+r with maximal first normal

space (so that r ≥ 6) depend on a choice of 2(r − 1) functions of 2 variables.
By contrast, when r is even, holomorphic submanifolds of real dimension 4
depend on r functions of 2 variables.

4. Maximal types B and C

4.1. Submanifolds of maximal type B. Let M be an austere subman-
ifold of type B of normal rank δ. By hypothesis, there is a moving frame
(e1, e2, e3, e4, ν1, . . . , νδ) such that the ei are orthonormal and tangent to M ,
and in each normal direction νa the shape operator takes the form

νa · II =
[
maI Ba

tBa −maI

]
.(22)

We consider the standard system with parameters

I = {θa, ηa
i − Sa

ijω
j }

on F × R
5δ , where F is the semi-orthonormal frame bundle of M and II(ei,

ej) = Sa
ijνa for matrices Sa of the form (22). (For each a, the parameters are

the scalar ma and the entries of Ba.) The integral submanifolds of this EDS
correspond to austere submanifolds of type B. As in (16), we compute the
system 2-forms as

d(ηa
i − Sa

ijω
j) ≡ −(dSa

ij − [Sa, φ]ij + κa
bSb

ij) ∧ ωj

modulo the 1-forms of the ideal I, where [Sa, φ] denotes the commutator.
Hence, the tableau of the system is spanned by the 1-forms

πa
ij : = dSa

ij − [Sa, φ]ij + κa
bSb

ij .(23)
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The 5-dimensional space QB of type B second fundamental forms is spanned
symmetric matrices that anticommute with the reflection

R =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎤
⎥⎥⎦ ,

along with R itself. The space so(4) of skew-symmetric matrices splits as
a direct sum of two subspaces W1 and W2, where W1 = {[A1 0

0 A2
],A1,A2 ∈

so(2)} is the 2-dimensional subspace of matrices which commute with R and
W2 = {[ 0 B

−tB 0 ],B ∈ M2(R)} is the 4-dimensional subspace of matrices that
anticommute with R. We write the so(4)-valued connection form φ as φ =
φ0 + ψ, where φ0 takes value in W1 and ψ takes value in W2.

If S ∈ QB , then [S,φ0] anticommutes with the reflection R. To see this,
suppose S belongs to the subspace of matrices in QB that anticommute with
R. Then

[S,φ0]R = Sφ0R − φ0SR = SRφ0 + φ0RS = −RSφ0 + Rφ0S = −R[S,φ0].

On the other hand, if S is a multiple of R we can see easily that [S,φ0] again
anticommutes with R.

The following result gives an upper bound for the fiber dimension of the
set of integral elements of the Pfaffian system I. We point out that this result
is independent of the normal rank of the submanifold.

Proposition 10. The fiber dimension of the set of integral 4-planes (sat-
isfying the independence condition) of the Pfaffian system I is at most 16.

Proof. As the 2-forms of the system are πa
ij ∧ ωj , it follows that πa

ij = P a
ijkωk

on any integral element, where

P a
ijk = P a

ikj(24)

for every a, i, j, k. Moreover, an integral element at a point in F × R
5δ is

uniquely determined by these coefficients P a
ijk. We decompose the space of

symmetric 4 × 4 matrices as QB ⊕ U (where U is the orthogonal complement)
and write

P a
ijk = Qa

ijk + Ra
ijk,

where Qa
ijk,Ra

ijk take value in QB ⊗ R
4 and U ⊗ R

4 respectively, for every
index a. Then (24) is a set of linear equations satisfied by the Qa

ijk and Ra
ijk.

Since φ = φ0 + ψ and [Sa, φ0] ∈ QB , it follows that the projection of πa into
the space U is the projection of [Sa, ψ] onto U . Therefore, Ra

ijk is completely
determined by the value of the W2-valued 1-form ψ on the integral element.
Because W2 is 4-dimensional, these Ra

ijk depend on at most 16 parameters.
Now rewrite (24) as a nonhomogeneous linear system for Qa

ijk:

Qa
ijk − Qa

jik = −Ra
ijk + Ra

jik.(25)
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The dimension of the solution space of this system is the same for any set of
values for the Ra

ijk. In particular, when Ra
ijk is zero, (25) implies that Qa

ijk

takes value in Q(1)
B , which by Lemma 4 is zero-dimensional. Therefore, the

values of Qa
ijk satisfying (25) are uniquely determined by the parameters that

give the Ra
ijk. �

The next result shows that there are no type B austere 4-folds of maximal
normal rank.

Proposition 11. A type B austere submanifold M4 cannot have first nor-
mal space of dimension δ = 5.

Proof. If δ = 5, then at each point the second fundamental form spans all
of QB . We can therefore choose smooth, linearly independent normal vector
fields ν1, . . . , ν5 so that m1, . . . ,m4 are identically zero, B1 through B4 are
given by

(26) B1 =
[
1 0
0 0

]
, B2 =

[
0 1
0 0

]
, B3 =

[
0 0
1 0

]
, B4 =

[
0 0
0 1

]

and m5 = 1, B5 = 0. The system 2-forms, which we denote by

Ωa
i := πa

ij ∧ ωj

are simplified considerably. Moreover, addition 1-forms, not in the ideal, are
forced to vanish on all integral 4-planes. Such 1-forms may be determined
by examining the tableau of the Pfaffian system. For example, the system
2-forms Ω5

i may be written in matrix-vector form as follows⎡
⎢⎢⎢⎣

Ω5
1

Ω5
2

Ω5
3

Ω5
4

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

κ5
5 0 κ5

1 + 2φ3
1 κ5

2 + 2φ4
1

0 κ5
5 κ5

3 + 2φ3
2 κ5

4 + 2φ4
2

κ5
1 + 2φ3

1 κ5
3 + 2φ3

2 −κ5
5 0

κ5
2 + 2φ4

1 κ5
4 + 2φ4

2 0 −κ5
5

⎤
⎥⎥⎥⎦ ∧

⎡
⎢⎢⎢⎣

ω1

ω2

ω3

ω4

⎤
⎥⎥⎥⎦ .

This piece of the tableau allows us to deduce that κ5
5 must vanish on any

integral 4-plane E: for, the vanishing of the 2-forms Ω5
1 and Ω5

2 implies that
κ5

5 restricts to E to be a linear combination of ω3 and ω4, while the van-
ishing of Ω5

3 and Ω5
4 implies that κ5

5 restricts to be a linear combination
of ω1 and ω2. Thus, κ5

5 = 0 on any such integral element. (See the proof
of Proposition 13 below for a more subtle example of this kind of calcula-
tion.)

In all, the additional 1-forms that vanish on all integral elements are

ψ1 = κ5
1 + 2φ3

1, ψ6 = κ1
2 − κ4

3 + 2φ4
3,

ψ2 = κ5
2 + 2φ4

1, ψ7 = κ1
3 − κ4

2 + 2φ2
1,

ψ3 = κ5
3 + 2φ3

2, ψ8 = κ2
1 − κ3

4 − 2φ4
3,



732 M. IONEL AND T. IVEY

ψ4 = κ5
4 + 2φ4

2, ψ9 = κ3
1 − κ2

4 − 2φ2
1,

ψ5 = κ5
5, ψ10 = κ1

1 − κ2
2 − κ3

3 + κ4
4,

ψ11 = κ1
4 + κ2

3 + κ3
2 + κ4

1.

Thus, any integral 4-fold of the EDS I will also be an integral of the 1-
forms ψ1, . . . , ψ11. Let J be the differential ideal resulting from adding these
1-forms to I. The exterior derivatives of the ψ’s, modulo the 1-forms of J,
are linear combinations of wedge products of the κ’s with each other, and
with the φ’s. Thus, J is a nonlinear Pfaffian system. In particular, if we
substitute the values given by πa

ij = P a
ijkωk into the new 2-forms, and take co-

efficients with respect to the 2-forms ω1 ∧ ω2, ω1 ∧ ω3, ω1 ∧ ω4, ω2 ∧ ω3,
ω2 ∧ ω4, ω3 ∧ ω4, we obtain 66 quadratic polynomials in the P a

ijk which
must vanish in order for an integral element of I to be an integral element
of J. Eliminating the P a

ijk from these polynomials yields integrability con-
ditions in terms of the gab which include g11 + g55 = g22 + g44 = 0. Since
this is impossible for components of a positive definite metric, we conclude
that the set of integral 4-planes of J satisfying the independence condition is
empty. �

4.2. Submanifolds of maximal type C. We begin by noting that the
space QC of quadratic forms is invariant under conjugation by a discrete sub-
group of O(4) that simultaneously permutes x1, x2, x3 and λ1, λ2, λ3. These
permutations will, of course, preserve the equation in (1) satisfied by the λ’s,
but will not preserve the inequalities in (1).

We now discuss submanifolds of type C whose first normal space is of
dimension δ = 3. These submanifolds lie in R

7 as seen in Proposition 3. As
was the case with submanifolds of type B whose second fundamental form
had maximal span, we can choose an orthonormal frame e1, e2, e3, e4 for the
tangent space and a basis ν1, ν2, ν3 for the first normal space with respect to
which the second fundamental form is represented by any basis for the space
QC we choose. Accordingly, let F be the bundle of such frames on R7 and
use the basis matrices

S1 =

⎡
⎢⎢⎣

0 1 0 0
1 0 0 0
0 0 0 λ1

0 0 λ1 0

⎤
⎥⎥⎦ , S2 =

⎡
⎢⎢⎣

0 0 1 0
0 0 0 λ2

1 0 0 0
0 λ2 0 0

⎤
⎥⎥⎦ ,

(27)

S3 =

⎡
⎢⎢⎣

0 0 0 1
0 0 λ3 0
0 λ3 0 0
1 0 0 0

⎤
⎥⎥⎦ ,

where we assume that

(28) λ1λ2λ3 + λ1 + λ2 + λ3 = 0.
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Choosing a moving frame so that the second fundamental form in the di-
rection of νa is represented by matrix Sa means that Sa gives the components
of the 1-forms ηa

i in terms of the ωj . So, the moving frame will be an integral
of the standard system with parameters:

I = {θa, θa
i }, θa

i := ηa
i − Sa

ijω
j ,(29)

where 1 ≤ i, j, k ≤ 4 and 1 ≤ a, b ≤ 3.
This Pfaffian system is defined on F × L, where L ⊂ R3 is the smooth affine

algebraic variety defined by (28), minus the origin. (We assume that not all
the λ’s are zero, at least on an open set in the submanifold; otherwise, the
submanifold must be a generalized helicoid.) Using the permutation symme-
try of L, we may assume without loss of generality that λ1 ≥ λ2 ≥ 0, and thus
we may solve (28) for λ3 in terms of λ1 and λ2.

The 2-forms of this EDS are given by (16). Let πa
ij = πa

ji be the 1-forms
defined as in (23). These 30 1-forms are not all independent; in fact, they
are linear combinations of the 17 independent 1-forms dλ1, dλ2, φi

j and κa
b .

The span of the components πa
ij within the cotangent space of F × L will

be the same as the span of these 17 1-forms, provided that λ2 is nonzero.
(Otherwise, nontrivial Cauchy characteristics will be present.) Let L0 denote
the open subset of L where λ1 ≥ λ2 > 0. At each point of F × L0, the set
of integral 4-planes of I has dimension 8, while the Cartan characters of the
system are s1 = 12 (for the 12 independent 1-forms πa

1j , for example) and
s2 = 5. Since 8 < s1 + 2s2, the system fails to be involutive.

Without prolongation, we can obtain more information about the system
by calculating its characteristics.

Proposition 12. At points of F × L0 where neither of λ1 or λ2 is equal
to 1, the characteristic variety of I is empty. At points where λ1 = 1 or λ2 = 1,
the characteristic variety consists of a pair of complex lines.

Consequently (using Theorem V.3.12 in [3]), the set of integral 4-folds
which lie in the open subset satisfying λ1 �= 1 and λ2 �= 1 is at most finite-
dimensional.

Proof of Proposition 12. Let E be an integral 4-plane annihilated by the
πa

ij . (Because the Pfaffian system I is linear, the characteristic variety is the
same for every integral element at a point.) Let ξ = ξiω

i be a nonzero element
of E∗, and let ξ⊥ ⊂ E be the hyperplane annihilated by ξ. Then the polar
equations of ξ⊥ are generated by the 1-forms of I and the 1-forms πa

ijξk −
πa

ikξj for j < k. By definition, a point [ξ] ∈ P(E∗ ⊗ C) is in the characteristic
variety of E if these equations fail to have full rank, that is, the 72 1-forms
πa

ijξk − πa
ikξj have rank less than 17.

Expressing these 1-forms terms of the 1-forms dλ1, dλ2, φi
j and κa

b yields a
72-by-17 matrix whose entries are linear functions of the ξi with coefficients
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which are rational functions of λ1 and λ2. We find that, for any nonzero ξ,
the matrix has full rank at points where neither λ1 nor λ2 is equal to one, for
any nonzero ξ. On the other hand, the matrix drops rank to 16 when λ1 = 1
and ξ lies on one of the two lines described by

ξ1ξ4 + ξ2ξ3 = 0, ξ3 = ±iξ1.

Similarly, it drops rank to 16 when λ2 = 1 and ξ lies on one of the lines given
by

ξ1ξ3 − ξ2ξ4 = 0, ξ2 = ±iξ1. �

It turns out that in the case when λ1 = 1 or λ2 = 1, there are no integral
submanifolds.

Proposition 13. A type C austere submanifold M4 cannot have normal
rank δ = 3 and either λ1 or λ2 identically equal to 1.

Proof. Suppose λ1 = 1. Equation (28) forces λ2 = −1 or λ3 = −1. Without
loss of generality, we take the case where λ3 = −1. Denote the remaining
parameter λ2 by λ.

The Pfaffian system (29) is defined on F × R and its 2-forms are given by
(16). The 1-forms (23) are linear combinations of the 16 independent 1-forms
dλ,φj

i and κb
a. The Cartan characters of I are computed to be s1 = 12 and

s2 = 4. At each point of F × R, the set of integral 4-planes of I has fiber
dimension 12. Since 12 < s1 + 2s2, the system fails to be in involution. It
turns out that there are four additional 1-forms that vanish on all integral 4-
planes and should be added to the ideal (29). These are obtained by studying
the tableau πa

ij of the Pfaffian system.
For example, if we consider the first four lines of the tableau (given by

a = 1), the 2-forms obtained can be written in matrix form as⎡
⎢⎢⎢⎣

Ω1

Ω2

Ω3

Ω4

⎤
⎥⎥⎥⎦ :=

⎡
⎢⎢⎢⎣

2φ1
2 −κ1

1 φ4
1 − κ1

2 − φ3
2 −φ4

2 − κ1
3 + φ3

1

−κ1
1 −2φ2

1 φ4
2 + κ1

3 − φ3
1 φ3

2 − φ4
1 − λκ1

2

φ4
1 − κ1

2 − φ3
2 φ4

2 + κ1
3 − φ3

1 2φ4
3 −κ1

1

−φ4
2 − κ1

3 + φ3
1 φ3

2 − φ4
1 − λκ1

2 −κ1
1 −2φ4

3

⎤
⎥⎥⎥⎦

∧

⎡
⎢⎢⎣

ω1

ω2

ω3

ω4

⎤
⎥⎥⎦ .

We calculate that

Ω1 ∧ ω3 ∧ ω4 + Ω3 ∧ ω4 ∧ ω1 + Ω4 ∧ ω2 ∧ ω4(30)

=
1
2
(φ2

1 + φ4
3) ∧ ω1 ∧ ω3 ∧ ω4,
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Ω1 ∧ ω2 ∧ ω3 + Ω2 ∧ ω4 ∧ ω2 + Ω3 ∧ ω1 ∧ ω2

=
1
2
(φ2

1 + φ4
3) ∧ ω1 ∧ ω2 ∧ ω3,

Ω2 ∧ ω3 ∧ ω4 + Ω3 ∧ ω3 ∧ ω1 + Ω4 ∧ ω2 ∧ ω3

=
1
2
(φ2

1 + φ4
3) ∧ ω3 ∧ ω2 ∧ ω4,

Ω1 ∧ ω1 ∧ ω3 + Ω2 ∧ ω4 ∧ ω1 + Ω4 ∧ ω1 ∧ ω2

=
1
2
(φ2

1 + φ4
3) ∧ ω2 ∧ ω1 ∧ ω4.

Because the 2-forms Ωi vanish on any integral 4-plane E, the same is true for
the 4-forms on the right. Then, since φ2

1 +φ4
3 must restrict to E to be a linear

combination of the ωi, the simultaneous vanishing of the 4-forms on the right
in (30) implies that this linear combination must be zero.

Similarly, one can use the other pieces of the tableau to show that there are
three more 1-forms that must vanish on the integral elements. In all, these
additional forms are

ψ1 = φ2
1 + φ4

3, ψ3 =
4

λ − 1
φ4

1 + κ1
2,

ψ2 = φ4
1 + φ3

2, ψ4 =
4

λ + 1
φ2

1 + κ3
2,

where we now assume that λ �= 1 and λ �= −1. (We will consider the case
where λ = ±1 below.) Let J be the differential ideal obtained by adding the
above four 1-forms to I. This yields a nonlinear Pfaffian system, since the
exterior derivatives of the new added forms will contain linear combinations
of wedges of the πa

ij . Computing dψ1 modulo, the 1-forms of J gives

dψ1 = −λω3 ∧ ω4 − λω1 ∧ ω2.

Thus, integral elements exist only on the submanifold where λ = 0.
We restrict J to the submanifold where λ = 0. The integral 4-planes will

be defined by the equations

πa
ij = sa

ijkωk,(31)

where now only 15 of the 1-forms πa
ij are linearly independent, as linear com-

binations of φj
i and κb

a. Now we substitute the values in (31) into the new
2-forms dψi, i = 1, . . . ,4. For each of these, the coefficients with respect to
ωi ∧ ωj for i < j should all be zero. From these conditions, we get 12 quadratic
polynomials in the sa

ij which must vanish on any integral submanifold of J.
A Gröbner basis calculation shows that these polynomials have no common
zero, so the set of 4-integral elements of J is empty.

If λ = 1 or λ = −1, the conclusion is the same. It turns out that in this case
there are 7 more 1-forms that vanish on any integral element of I and which
have to be added to the ideal. Among the 1-forms of the augmented ideal J
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is φ3
2; when we compute the derivative of this 1-form modulo the 1-forms of J

we get
dφ3

2 = 2ω3 ∧ ω2,

which can never vanish on integral elements satisfying the independence con-
dition. �

The following result shows that in maximal codimension δ = 3 and when
all parameters λi are constant (i.e., the austere subspace does not vary from
point to point), the λ’s are all forced to be equal to zero. This means that
the second fundamental forms in various normal directions are rank one, and
contain a common linear factor; in Bryant’s terminology, M is called simple.
By Bryant’s Theorem 3.1 in [2] it is congruent to a generalized helicoid.

Proposition 14. An austere 4-fold M of type C, with first normal space
of dimension δ = 3 and such that the parameters λ1, λ2, λ3 are constant, must
be a generalized helicoid.

Proof. First, assume that none of the parameters λi are zero. Because of
Proposition 13, we can also assume that none of them are equal to ±1. We
take the standard system I on F with basis matrices S1, S2, S3 given by (27),
and calculate the system 2-forms Ωa

i := πa
ij ∧ ωj , where

πa
ij = −[Sa, φ]ij + κa

bSb
ij .

The components of πa
ij are linear combinations of the 15 linearly independent

forms φi
j and κa

b . We claim that all of these forms must vanish on any integral
element of I. For, substituting φi

j = si
jkωk and κa

b = tabkωk in the 2-forms, and
equating the coefficients of the 6 2-forms ωi ∧ ωj to zero yields a system of 72
homogeneous linear equations for the 60 variables si

jk and tabk. By a permu-
tation of rows and columns, the matrix for this linear system is equivalent to
one with four nonzero 15 × 15 blocks, each of which is nonsingular under our
assumptions about the values of the λi. In particular, the connection forms
φi

j must vanish identically on any integral submanifold of I, implying that
the corresponding submanifold M4 ⊂ R

7 is totally geodesic. This contradicts
our assumption that δ = 3.

Next, we assume that exactly one of the parameters is identically zero.
Without loss of generality, we may assume that λ3 = 0 and λ2 = −λ1 �= 0.
Then the fiber of the space of integral elements of I has dimension two, but
then the following additional 1-forms vanish on all integral elements:

φ2
1 − λ1φ

4
3, φ3

1 + λ1φ
4
2, κ1

2 + κ2
1,(32)

κ2
2 − κ1

1, κ3
1 − φ4

2, κ3
2 − φ4

3, κ3
3.

We adjoin these 1-forms to obtain a larger Pfaffian system J. However, taking
the exterior derivatives of the first two 1-forms in (32) implies that g11 = g22 =
0, which is impossible for components of the metric on the normal bundle.
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Thus, we conclude that the only possible solutions with parameters λi all
constant are those for which all these parameters are zero. �

5. Examples

In this section, we examine some interesting examples of austere subman-
ifolds whose normal rank δ is not maximal. In particular, we describe some
nongeneric austere 4-folds of type A with δ = 2. More precisely, we normalize
the 2-dimensional subspaces of QA which lie on nonprincipal orbits of the
symmetry group, and classify the corresponding austere 4-folds.

As stated in Section 3.1, the symmetry group of QA is U(2)R = {M ∈
SO(4)|JM = MJ }, with J given by (9), and its action on QA is M · S =
MS tM. This group is isomorphic to the usual group U(2) of 2 × 2 unitary
matrices, which acts in a similar way on the space V of 2 × 2 complex matrices.
In fact, we can define an isomorphism ρ : U(2)R → U(2) that intertwines these
actions: if we let

ρ :
[

E F
−F E

]
�→ E + iF, ρ :

[
A B
B −A

]
�→ A − iB,

then ρ(M · S) = ρ(M) · ρ(S). In what follows, we will use this action to
normalize real subspaces of V .

Let Q ⊂ V be a subspace of real dimension 2, and let S,T span Q. We first
consider the following special cases:

1. S,T are linearly dependent over C. In this case, we can use U(2) to
simultaneously diagonalize S and T . Using linear combinations with real
coefficients, we can arrange that

(33) S =
[
1 0
0 x + iy

]
, T = iS, x, y ∈ R.

We distinguish two subcases:
(a) every matrix in Q has full rank, so that x, y are not both zero; and
(b) the matrices S and T are singular (i.e., x = y = 0).
2. S,T are linearly independent over C. We first note that there must be

a singular matrix in the complex span of S and T , that is,

(34) det(T − λS) = 0.

We distinguish several subcases:
(a) Q contains a singular matrix (i.e., λ ∈ R). In this case, we can linearly

combine S and T so that T has rank 1. Using U(2), we can arrange that kerT
is spanned by t[1,0]; then using the diagonal subgroup U(1) × U(1) and real
scale factors, we can assume that

(35) S =
[

1 x + iy
x + iy iu

]
, T =

[
0 0
0 1

]
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for real parameters u,x, y.
(b) Quadrics in Q have a common nullspace. Assuming that the previous

cases do not apply, in this case we can arrange that S and T have the form

(36) S =
[
0 1
1 ix

]
, T =

[
0 i
i y − x

]
for positive real parameters x, y.

(c) S and T commute. Assuming the previous cases do not apply, in this
case we can arrange that

S =
[
1 0
0 iy

]
, T =

[
i 0
0 p − y

]
for nonzero real parameters p, y.
Finally, we have the

(d) Generic case. When none of the above hold, we may arrange that

S =
[
1 u
u x + iy

]
, T =

[
i iu
iu p − y + ix

]
for real parameters p,u,x, y with u, p nonzero. We now classify the austere
4-folds corresponding to the nongeneric cases above.

Theorem 15. Let M ⊂ R
4+r be an austere submanifold of type A, with

δ = 2, such that | II | is of fixed nongeneric type on an open dense subset of
M , and the Gauss map of M is nondegenerate. Then M lies in a totally
geodesic R

6. Furthermore,
(i) if | II | is of type 1(a) or 2(c), then M is holomorphic submanifold with

respect to a complex structure on R
6 given by a constant matrix Ĵ ;

(ii) if | II | is of type 2(a), then M = Σ1 × Σ2 for minimal surfaces Σ1,Σ2

in R
3;

(iii) if | II | is of type 2(b), then M is 2-ruled, and the image of the map
γ : M → G(2,6) assigning to each point p ∈ M the subspace of R

6 parallel to
the ruling through p is a holomorphic curve.

Note that the Grassmannian G(2,6) is endowed with a complex structure
that enables us to identify it with the standard quadric in CP

5 (see [9], Chap-
ter XI, Example 10.6). Note also that if the Gauss map of M is degenerate,
then it falls into case 1(b) and the Gauss map has rank 2. Austere manifolds
with Gauss map rank 2, and δ ≥ 2, were classified by Dajczer and Florit [4].
For submanifolds of this type, the prolongation | II |(1) is nonzero, so we can-
not conclude that they lie in a totally geodesic R

6; in fact, the examples of
Dajczer and Florit exist in arbitrarily high effective codimension.

Proof of Theorem 15. For each case, let S and T be the normalized basis
matrices for the subspace, let SR, T R denote their inverse images under the
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map ρ, and let Q be the span of SR and T R. It is easy to check that Q(1) = 0 in
each case, so by the argument of Proposition 3, M lies in a totally geodesic R

6.
(i) Assume that | II | is of type 1(a); then Q is parametrized by x, y. Taking

SR and T R [where S and T are given by (33)] as basis matrices, let I be the
standard system with parameters, defined on F × L where L = R

2 minus the
origin. By Proposition 6, any austere manifold of this type will be Kähler
with respect to the complex structure given by (9). Thus, the connection
1-forms must satisfy φ2

1 = φ4
3 and φ3

2 = φ4
1 for any adapted frame that makes

| II | conjugate to Q. Therefore, such adapted frames give integrals of the
augmented system

(37) I + = {θ1, θ2, η1
i − SR

ijω
j , η2

i − T R

ijω
j , φ2

1 − φ4
3, φ

3
2 − φ4

1}.

Taking exterior derivatives of the last two 1-forms modulo the algebraic
ideal generated by forms in I + shows that integral submanifolds exist only at
points where

(38) g11 = g22, g12 = 0.

In other words, it is necessary that the frame vectors ν1, ν2 be orthogonal
and have the same length. We pull back the system I + to the submanifold
V ⊂ F × L where these conditions hold. (Pulled back to V , the connection
forms satisfy the additional relations κ1

1 = κ2
2 and κ2

1 = −κ1
2.) On V , the system

is involutive with Cartan characters s1 = 4, s2 = 2.
To see that the corresponding austere submanifolds are holomorphic, we

need to endow R
6 with the appropriate complex structure J which restricts to

J on M . Because T R = SRJ , equation (2) implies that this ambient complex
structure must satisfy Jν1 = −ν2. Thus, if we let F be a matrix whose columns
are the vectors e1, . . . , e4, ν1, ν2, then J must satisfy

(39) JF = FC, C :=
[
J 0
0 0 1

−1 0

]
.

If J is to be the standard complex structure on R
6, then it must be given by

a constant matrix. By (39), this matrix must equal FCF −1. Thus, we have
only to show that, for any integral of I +, this matrix is a constant.

The structure equations (12) imply that dF = FΦ, where Φ is the 6 × 6
matrix of connection forms:

Φ =
[
φ −tηg
η κ

]
.

Using this, we compute that dJ = F [Φ,C]F −1. Then, it is easy to verify
that, for any integral of I +|V , the values of the connection forms imply that
[Φ,C] = 0.

The argument in the case that | II | is conjugate to a space of type 2(c)
is similar, save that in that case M is Kähler with respect to the complex
structure represented by J̃ .
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(ii) We again set up the standard system with basis matrices SR and T R

(where S,T are given by (35), and parameters u,x, y range over all of L = R
3).

The metric on M is Kähler with respect to J , so we pass to the augmented
system I + as in (37). Again, differentiating the last two 1-forms in I + yield
integrability conditions, which in this case are

u = 2xy, g12 = (x2 − y2)g11.

Let V ⊂ F × L be the submanifold on which these conditions hold. The
pullback of I + to V fails to be involutive, In fact, integral elements exist only
on the submanifold V ′ defined by u = x = y = 0 and g12 = 0. The pullback
of I + to this submanifold is involutive after one prolongation, with character
s1 = 4.

On V ′, we compute [using the structure equations (10)] that

d
(
e1

∧
e3

)
≡

(
ν1

∧
e3

)
ω1 +

(
ν1

∧
e1

)
ω3 mod I +,

ν1

∧
dν1 ≡ g11

((
ν1

∧
e3

)
ω3 −

(
ν1

∧
e1

)
ω1

)
mod I +,

where
∧

is the exterior product on R
6. This shows that, for the framed austere

manifold corresponding to any solution of this EDS, the 3-plane through the
origin in R6 spanned by e1, e3, ν1 is fixed, and the orthogonal projection of
M onto this 3-plane is a rank 2 mapping. The same is true for the 3-plane
spanned by e2, e4, ν2. Thus, M is the product of surfaces in these two copies
of R

3. The austere condition implies that these must be minimal surfaces.
(iii) We set up the standard system with S,T given by (36) for positive

parameters x, y; let L ⊂ R
2 be the first quadrant. The derivatives of the last

two 1-forms in I + yield integrability conditions which are the same as (38).
The restriction of I + to the submanifold V ⊂ F × L where these conditions
hold is involutive, with character s1 = 8.

To see that the corresponding austere manifolds are ruled, we compute the
system 2-forms

d
(
η1
1 − η2

3 − (SR

1j − T R

3j)ω
j
)

≡ y(φ4
3 ∧ ω2 − φ4

1 ∧ ω4) mod I +
1 ,

d
(
η1
3 + η2

1 − (SR

3j + T R

1j)ω
j
)

≡ y(φ4
1 ∧ ω2 + φ4

3 ∧ ω4) mod I +
1 ,

where I +
1 denotes the algebraic ideal generated by the 1-forms of I +. It

follows that on any solution there are functions u1, u2 such that

(40) φ2
1 = φ4

3 = u1ω
2 + u2ω

4, φ3
2 = φ4

1 = u1ω
4 − u2ω

2.

Thus, we have

de1 = e3φ
3
1 + (u1e2 + u2e4 + ν1)ω2 + (u1e4 − u2e2 + ν2)ω4,

de3 = e1φ
1
3 + (u1e4 − u2e2 + ν2)ω2 − (u1e2 + u2e4 + ν1)ω4.

These equations show that, as we move along directions tangent to the e1–e3

plane in TpM (i.e., directions annihilated by ω2, ω4) the span of e1, e3 is fixed.
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Thus, the map γ : M → G(2,6) has rank two. To see that the image is a
holomorphic curve, we must examine the complex structure on G(2,6).

As in ([9], loc. cit.), we think of G(2,6) as SO(6)/SO(2) × SO(4). Differen-
tial forms on G(2,6)—in particular, (1,0)-forms for the complex structure—
may be lifted up to the group SO(6). In this case, we use a lifting of the
map γ to a map Γ : M → SO(6) defined by

(41) Γ : p �→ (e1(p), e3(p), e2(p), e4(p), e5(p), e6(p)), e5 =
1
r
ν1, e6 =

1
r
ν2,

where r =
√

g11. (Note the change in order, chosen so that the vectors tangent
to the ruling at p are the first two columns of Γ(p).) Let Ψ = G−1 dG be the
Maurer–Cartan form on SO(6), with components ψi

j = −ψj
i . Then the forms

ψm
1 , ψm

2 for 3 ≤ m ≤ 6 are semibasic for the quotient map q : SO(6) → G(2,6),
which sends G to the 2-plane spanned by its first two columns. Moreover, the
complex span of the 1-forms ψm

1 − iψm
2 is well defined on the quotient, and

spans the space of (1,0)-forms on G(2,6). Note also that by comparing the
Maurer–Cartan equation dG = GΨ with the defining properties (10) of the
connection forms shows that

(42) Γ∗ψi
j = φ

σ(i)
σ(j), Γ∗ψ5

j = rη1
σ(j), Γ∗ψ6

j = rη2
σ(j),

for 1 ≤ i, j ≤ 4, where σ is the permutation that exchanges indices 2 and 3.
To show holomorphicity of γ, we have to show that the pullback under

γ = q ◦ Γ of the (1,0)-forms on G(2,6) are (1,0)-forms on M , that is, in the
span of ω1 + iω3 and ω2 + iω4. (Note that it is equivalent to show this for the
pullbacks under Γ for the forms ψm

1 − iψm
2 .) Using (40) and (42), we compute

Γ∗(ψ3
1 − iψ3

2) = φ2
1 − iφ2

3 = (u1 − iu2)(ω2 + iω4),
Γ∗(ψ4

1 − iψ4
2) = φ4

1 − iφ4
3 = −(u2 + iu1)(ω2 + iω4),

(43)
Γ∗(ψ5

1 − iψ5
2) = r(η1

1 − iη1
3) = r(ω2 + iω4),

Γ∗(ψ6
1 − iψ6

2) = r(η2
1 − iη2

3) = ir(ω2 + iω4).

Notice that the holomorphic curve in G(2,6) is not generic; indeed, if M were
determined by specifying an arbitrary holomorphic curve in the Grassmannian
as the image γ(M), then one would expect the Cartan character s1 of I + to
be 6. Instead, as we will see below, M is (in part) determined by a general
holomorphic curve in a different Hermitian symmetric space. �

For the rest of this subsection, we will focus on 2-ruled austere submanifolds
in R

6 with δ = 2, the last type discussed in Theorem 15. As in the proof of
that theorem, an adapted frame along such a submanifold M defines the
map Γ : M → SO(6) given by (41). Now let π : SO(6) → SO(6)/U(3) be the
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quotient map, where U(3) is the intersection of SO(6) with

GL(3,C)R = {M ∈ GL(6,R)|MĴ = ĴM }, Ĵ :=

⎡
⎢⎢⎢⎢⎢⎢⎣

0 −1 0 0 0 0
1 0 0 0 0 0
0 0 0 −1 0 0
0 0 1 0 0 0
0 0 0 0 0 −1
0 0 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

.

On SO(6), define the complex-valued 1-forms

β1 = ψ4
1 − iψ4

2 + i(ψ3
1 − iψ3

2),
β2 = ψ6

1 − iψ6
2 + i(ψ5

1 − iψ5
2),

β3 = ψ6
3 − iψ6

4 + i(ψ5
3 − iψ5

4).

The quotient SO(6)/U(3) has real dimension 6, and the space of semibasic
forms for the projection π is spanned by the real and imaginary parts of the
β� for 1 ≤ � ≤ 3. (These forms annihilate the left-invariant vector fields in the
subalgebra u(3), which span tangent spaces of the fibres of π.) The forms βi

satisfy

(44) d

⎡
⎣β1

β2

β3

⎤
⎦ = Υ ∧

⎡
⎢⎣β1

β2

β3

⎤
⎥⎦ ,

where

Υ :=
1
2

⎡
⎢⎣ 2i(ψ2

1 + ψ4
3) ψ5

3 − iψ5
4 + ψ6

4 + iψ6
3

−ψ5
3 − iψ5

4 − ψ6
4 + iψ6

3 2i(ψ2
1 + ψ6

5)
ψ5

1 + iψ5
2 − iψ6

1 + ψ6
2 −(ψ3

1 + iψ3
2 − iψ4

1 + ψ4
2)

−(ψ5
1 − iψ5

2 + iψ6
1 + ψ6

2)
ψ3

1 − iψ3
2 + iψ4

1 + ψ4
2

2i(ψ4
3 + ψ6

5)

⎤
⎥⎦ ,

indicating that the complex span of the β� is a pullback of a well-defined
Pfaffian system on SO(6)/U(3), and these are the (1,0)-forms of an invariant
(integrable) complex structure on the quotient.

It is evident from (43) that Γ∗β1 = Γ∗β2 = 0. Moreover,

(45) Γ∗β3 = r
(
φ6

2 + φ5
4 + i(φ5

2 − φ6
4)

)
≡ yr(ω2 + iω4) mod I +,

indicating that the map π ◦ Γ : M → SO(6)/U(3) has rank 2, and is holomor-
phic.

In general, the space SO(2n)/U(n) may be identified with the set of or-
thogonal complex structures on R

2n; in this case, with n = 3, it may also
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be identified with CP
3, in the following way.3 Let V = C

4 with the stan-
dard Hermitian metric, and let W = R

6 with the Euclidean metric. Then
Λ2V = C

6 = W ⊗ C, and each complex structure J on W corresponds (by as-
sociating to J its +i eigenspace) to a totally isotropic subspace E ⊂ W ⊗ C.
Each such subspace E is of the form Eu = {u

∧
v|v ∈ V } for some vector

u ∈ C
4. The map J �→ Eu �→ u is well-defined up to complex multiple, and

identifies SO(6)/U(3) with CP
3. Moreover, the standard Kähler form on CP

3

pulls back to β1 ∧ β1 + β2 ∧ β2 + β3 ∧ β3 on SO(6), and SO(6) may be iden-
tified with the unitary frame bundle of CP

3, with connection forms given by
the components of Υ.

The following result shows that the association of M with a holomorphic
curve in CP

3 is surjective but not 1-to-1.

Theorem 16. Let C be a holomorphic curve in CP
3. Given a nonplanar

point p ∈ C, there is an open neighborhood U ⊂ C containing p and a 2-ruled
austere manifold M ⊂ R

6 such that π ◦ Γ(M) = U . Such manifolds M depend
on a choice of 4 functions of 1 variable.

Proof. The proof of Theorem 15 part (iii) shows that along M there is
an orthonormal frame (e1, . . . , e4, ν1, ν2) such that ν1 · II(ei, ej) = S1

ij and ν2 ·
II(ei, ei) = S2

ij for matrices

S1 = r

⎡
⎢⎢⎣

0 1 0 0
1 0 0 x
0 0 0 −1
0 x −1 0

⎤
⎥⎥⎦ , S2 = r

⎡
⎢⎢⎣

0 0 0 1
0 y − x 1 0
0 1 0 0
1 0 0 x − y

⎤
⎥⎥⎦

and some positive functions r, x, y along M . To construct M , we will set up
a Pfaffian system, similar to the augmented standard system I +, satisfied by
the orthonormal frame.

Let Fo be the orthonormal frame bundle of R
6; in terms of the bundle F

of semi-orthonormal frames defined in Section 2.2, Fo is the subbundle of F

on which

(46) g11 = g22 = 1, g12 = 0

hold. The structure equations of Fo are the same as those given by equa-
tions (10) through (12), but with the specialization (46) taken into account,
κ is skew-symmetric and ξ = −tη.

We adjoin r, x, y as new variables, taking value in the positive octant
L ⊂ R

3, and define our Pfaffian system J on Fo × L to be generated by

θ1, θ2, ηa
i − Sa

ijω
j , φ4

3 − φ2
1, φ4

1 − φ3
2.

As in (41), we define a map Γ : Fo × L → SO(6), whose value is the matrix
with columns (e1, e2, e3, e4, ν1, ν2). We will now show how, given an arbitrary

3 We learned this identification in a paper of Abbena, Garbiero and Salamon [1].
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holomorphic curve C ⊂ CP
3, we construct an integral manifold of J whose

image, under π ◦ Γ, is an open neighborhood of p ∈ C.
Let N = π−1(C), a codimension-4 submanifold of SO(6). We begin by con-

structing an integral of the 1-forms β1, β2 within N . On N , the complex span
of the 1-forms β� is one-dimensional at each point. If z is a local holomorphic
coordinate on C near p, then there will be complex functions f � such that
β� = f �π∗ dz on N . Substituting this in (44) gives

(47) df � ≡ Υ�
mfm mod dz.

Let F be a fiber of π : N → CP
3. Since such fibers are left cosets of U(3) ⊂

SO(6), U(3) acts simply transitively on them by right multiplication. This
action is generated infinitesimally by the left-invariant vector fields on SO(6)
that are tangent to subalgebra u(3) at the identity. Thus, such vector fields
give a frame field tangent to F . Because Υ is u(3)-valued, (47) shows that
as the action of U(3) moves points along F , the corresponding action on the
vector with components f � is isomorphic to the standard action of U(3) on C

3.
Thus, in each fiber there is a subset where f1 = f2 = 0, and the union of these
subsets is a smooth submanifold N ′ ⊂ N of codimension 4 within N . (Note
that the construction of N ′ does not depend on the choice of p or the local
coordinate on C.)

Because β1 = β2 = 0, then Υ1
3 = −ψ5

1 + iψ5
2 and Υ2

3 = ψ3
1 − iψ3

2 . Thus, the
restriction of (44) to N ′ implies that there are complex-valued functions f, k
on N ′ such that

(48) ψ3
1 − iψ3

2 = fβ3, ψ5
1 − iψ5

2 = kβ3.

Besides β1 = β2 = 0, these are the only linearly dependencies among the left-
invariant 1-forms of SO(6) when restricted to N ′; thus, the 1-forms ψ2

1 , ψ4
3 , ψ

5
3 ,

ψ5
4 , ψ

6
3 , ψ6

4 , ψ
6
5 (which include the real and imaginary parts of β3) form a

coframe on N ′.
Computing

Γ∗(ψ5
1 − iψ5

2) = η1
1 − iη1

3 ≡ r(ω2 + iω4) mod J

and comparing with (45) shows that on the image under Γ of a solution of J,
we must have k equal to 1/y. Thus, in order to construct a candidate for
such an image, we need to restrict to the subset N ′ ′ ⊂ N ′ where k is real and
positive. Differentiating (48) gives

(49) dk = ik(ψ2
1 − ψ4

3 − 2ψ6
5) − f(ψ6

4 + iψ6
3) + wβ3

for some complex function w on N ′. This equation shows that the subgroup
of U(3) stabilizing N ′ can be used to make k real and positive, provided that
f and k are not both identically zero along a fiber. Since f, k give the com-
ponents of the second fundamental form of C as a holomorphic submanifold
of CP

3, then f = k = 0 along the fiber above p means that p is a planar point
of C. Thus, we will restrict to nonplanar points of C. Then, in each fiber of N ′
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there is a subset where k > 0, and the union N ′ ′ of these subsets is a smooth
codimension-one submanifold of N ′.

If we let f = g + ih and w = u + iv for real functions g,h,u, v, then taking
the real and imaginary parts of (49) gives

(50) dk = −vψ5
3 + uψ5

4 + (h + u)ψ6
3 + (g − v)ψ6

4

and k(ψ2
1 − ψ4

3 − 2ψ6
5)+uψ5

3 +vψ5
4 − (g − v)ψ6

3 − (h+u)ψ6
4 = 0 on N ′ ′. Because

of the last equation, we may use the restrictions of the 1-forms ψ4
3 , ψ5

1 , ψ
5
2 , ψ

5
3 ,

ψ5
4 , ψ

6
5 as a coframe on N ′ ′.

Let Σ be the smooth hypersurface in Γ−1(N ′ ′) defined by y = 1/k. Because
the fibers of Γ have dimension 9, Σ has dimension 14, with coframe given by
ω1, . . . , ω4, θ1, θ2, φ4

2, η1
1 , η1

2 , η1
3 , η1

4 , κ2
1, dx and dr. From (50) we deduce that

(51) dy = y2(gη1
2 + hη1

4) − y3
(
(u + h)η1

1 + (v − g)η1
3

)
on Σ. The 1-forms in J pull back to Σ to give a rank 6 system generated by
θ1, θ2 and

α1 = η1
1 − rω2,

α2 = η1
2 + rω4,

α3 = η1
3 − r(ω1 + xω4),

α4 = η1
4 + r(ω3 − xω2).

On Σ, there are 1-forms π1, π2, π3, π4 which are linearly independent com-
binations of φ4

2, κ
2
1, dx, dr modulo ω1, . . . , ω4, such that

d

⎡
⎢⎢⎣

α1

α2

α3

α4

⎤
⎥⎥⎦ ≡

⎡
⎢⎢⎣

0 π1 0 π2

0 π2 0 −π1

π1 (y − 2x)π4 π2 π3

π2 π3 −π1 −(y − 2x)π4

⎤
⎥⎥⎦ ∧

⎡
⎢⎢⎣
ω1

ω2

ω3

ω4

⎤
⎥⎥⎦ mod α1, . . . , α4.

This indicates that, at points where x �= y/2, the system J|Σ is involutive with
terminal Cartan character s1 = 4. Local existence of solutions then follows by
applying the Cartan–Kähler Theorem at such points. �

Note that the construction of M is global up to the point where Cartan–
Kähler is applied; that is, the construction of Σ does not depend on the choice
of p, and Σ covers all of the nonplanar points of C. It is possible that this last
step might be refined so as to enable one to deduce global information about
M from properties of C.
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