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DIVISIBLE OPERATORS IN VON NEUMANN ALGEBRAS

DAVID SHERMAN

Abstract. Relativizing an idea from multiplicity theory, we say
that an element of a von Neumann algebra M is n-divisible if it

commutes with a type In subfactor. We decide the density of the

n-divisible operators, for various n, M, and operator topologies.

The most sensitive case is σ-strong density in II1 factors, which

is closely related to the McDuff property. We also make use

of Voiculescu’s noncommutative Weyl–von Neumann theorem to

obtain several descriptions of the norm closure of the n-divisible

operators in B(�2). Here are two consequences: (1) in contrast

to the larger class of reducible operators, the divisible operators

are nowhere dense; (2) if an operator is a norm limit of divisible

operators, it is actually a norm limit of unitary conjugates of

a single divisible operator. The following application is new even

for B(�2): if an element of a von Neumann algebra belongs to

the norm closure of the ℵ0-divisible operators, then the weak*
closure of its unitary orbit is convex.

1. Introduction

Let B(H) be the algebra of bounded linear operators on a Hilbert space H,
and let x ∈ B(H). The operator x ⊕ x ∈ B(H ⊕ H), which applies x to each
summand simultaneously, may be thought of as the “double” of x. Now
the latter algebra is just M2(B(H)), the 2 × 2 matrices over B(H), and it
suggests how to double an operator x in an unrepresented von Neumann
algebra M: let x ⊕ x ∈ M2(M) be the matrix with x on the diagonal and
zeroes elsewhere. Similarly, one may take larger (even infinite) multiples of x.
For any cardinal n, we employ Ernest’s notation [21] and set

(1.1) n©x
def= 1 ⊗ x ∈ Mn ⊗ M.
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Here we write Mn for the factor of type In, even when n is infinite. Note that
a multiple of x ∈ M belongs to an algebra that may not be isomorphic to M.

We will want to know when a given x ∈ M can be written as n©y for some y.
In other words, when are there an algebra N and an isomorphism

(1.2) π : M ∼→ Mn ⊗ N , π(x) ∈ 1 ⊗ N ?

Clearly, this would imply that the relative commutant W ∗(x)′ ∩ M unitally
contains Mn. And the converse is also valid, since the existence of such an
Mn guarantees an “internal” isomorphism

(1.3) π : M ∼→ Mn ⊗ (M′
n ∩ M), π(x) ∈ 1 ⊗ (M′

n ∩ M)

([46, Lemma 6.6.3 and Example 11.2.2]). We introduce the following terms.

Definition 1.1. Let n be a cardinal greater than 1, and let M be a von
Neumann algebra. For x ∈ M, we say that x is n-divisible if the relative
commutant W ∗(x)′ ∩ M unitally contains Mn. Similarly, for a C∗-algebra
A, we say that a *-homomorphism ρ : A → M is n-divisible if the relative
commutant ρ(A)′ ∩ M unitally contains Mn. We also say that such an x or
ρ is divisible if it is n-divisible for some n.

One visualizes such an x as
⎛
⎜⎜⎝

y 0 . . .

0 y . . .
.
.
.

.

.

.
. . .

⎞
⎟⎟⎠; these are the elements that can

be “divided by n.” But there is no hope of defining an operator quotient: if
π solves (1.2), so does (id ⊗ α) ◦ π for any α ∈ Aut(N ). Unlike multiplication,
division of von Neumann algebras and their elements necessarily involves iso-
morphism classes. This “quotient theory” is not difficult, however, and the
base cases go back to Murray and von Neumann [59, Section 2.6] and Kadison
and Singer [47]. For the unfamiliar reader, we have outlined the main points
in the Appendix.

Let us describe the main results of the paper. A basic goal is to deter-
mine when the divisible operators are dense, for different algebras and topolo-
gies. Table 1 summarizes our findings, which are scattered through Sections 2
and 3, and are only complete for the operator topologies (not the norm topol-
ogy). The primary tools are central sequence algebras and Voiculescu’s non-
commutative Weyl–von Neumann theorem. The latter facilitates several de-
scriptions of the norm closure of the divisible operators in B(�2) (Theorems 3.8
and 3.9) and shows that they are nowhere dense (Theorem 3.16). We also de-
duce that a norm limit of divisible operators must actually be a norm limit
of unitary conjugates of a single divisible operator (Theorem 3.14). Then in
Section 4 we show that if an element of a von Neumann algebra belongs to
the norm closure of the ℵ0-divisible operators, the weak* closure of its unitary
orbit is convex (Theorem 4.2). This seems to be new even for B(�2).

We want to place these results in context. The following consequence of
the basic structure theory of von Neumann algebras will be used repeatedly.
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Table 1. Density of the n-divisible operators for different
topologies and types of von Neumann algebras, 2 ≤ n ≤ ℵ0.
Where two answers are present, the first refers to n finite and
the second to n = ℵ0

Type Norm σ-strong or σ-strong* σ-weak
Ik, k < ℵ0 N N sometimes/N
I∞ N Y Y
II1 ?/N sometimes/N Y/N
II∞ ?/N Y Y
III ? Y Y

Lemma 1.2 ([46, Lemma 6.5.6 and Section 6.6]). For 2 ≤ n < ℵ0, a von
Neumann algebra unitally contains Mn unless it has a type Ik summand for
some k not divisible by n. A von Neumann algebra is properly infinite if and
only if it contains B(�2) unitally.

Divisibility is really just a variant of multiplicity. Recall that a Hilbert
space operator x is said to have (uniform) multiplicity n (or be homogeneous
of order n) if the commutant W ∗(x)′ is a type In algebra. See [3, 21, 38, 43]
for some characterizations, extensions to representations, and applications,
especially in regard to the problem of unitary equivalence. While not every
Hilbert space operator has a multiplicity, the type decomposition of the von
Neumann algebra W ∗(x)′ allows us to write x as a direct sum of operators that
do, plus an additional term whose commutant has no type I summand. This
readily generalizes to operators in von Neumann algebras by considering the
relative commutant W ∗(x)′ ∩ M. (One loss is that W ∗(x) and W ∗(x)′ ∩ M
may have different types. Multiplicity theory solves the problem of unitary
equivalence for normal operators in B(H), but it is insufficient for analogous
questions in general von Neumann algebras. See [69, Section 8] for more dis-
cussion of this, or [10] for a study of multiplicity as an (incomplete) invariant
for abelian subalgebras of von Neumann algebras.) At least for n finite, then,
n-divisibility of x is equivalent to saying that W ∗(x)′ ∩ M lacks a Ik summand
for all k indivisible by n.

Consider some basic questions about the size of the set of n-divisible op-
erators in M. Can it be empty? Yes, if M has a nonzero type Ik summand
for some cardinal k that is not a multiple of n (by Lemma 1.2). The con-
verse is also true, since otherwise the identity is n-divisible. Can it be all of
M? It cannot if M has separable predual, because then any maximal abelian
*-subalgebra is generated by a single operator [60], and such an operator is not
n-divisible. But there are large von Neumann algebras in which all elements
are n-divisible; examples arise in Corollary 2.6. When is it dense in M with
respect to the various topologies? This is a primary focus of the paper.
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Divisibility may also be considered a variant of reducibility. Recall that
a Hilbert space operator is said to be reducible if it has a reducing subspace,
that is, if it can be written as y ⊕ z. This amounts to requiring that W ∗(x)′

contain a nontrivial projection, or by the double commutant theorem, that
W ∗(x) �= B(H). The eighth of Halmos’s ten famous operator theory prob-
lems from 1970 [40] asked whether the reducible operators in B(�2) are norm
dense. The affirmative answer is a consequence of Voiculescu’s noncommu-
tative Weyl–von Neumann theorem ([78], see Theorem 3.5 below). Divisible
operators are apparently reducible—we have slightly upgraded our request
of W ∗(x)′, from nontriviality to the containment of matrix units. And this
upgrade makes a difference, as now Voiculescu’s theorem can be used to show
that the divisible operators in B(�2) are nowhere dense in the norm topology.
We derive this from more general statements, but its essence is simple: in
any open ball in B(�2), there is an element y such that C∗(y) contains a rank
one projection; this projection is not a norm limit of divisible operators, so y
cannot be either.

Unfortunately, we have made little headway on similar problems in other
von Neumann algebras, where we lack an adequate substitute for Voiculescu’s
theorem. (Giordano and Ng recently proved that a certain form of Voiculescu’s
theorem is true only in injective algebras [28]. This interesting result has not
yet appeared in final form, and it seems not to have any direct implications
for the questions of the present paper.) But if we work instead with the
σ-strong*, σ-strong, or σ-weak topologies, our answers are rather complete
and mostly determined by the type of the algebra. The most delicate case
is σ-strong density in a II1 algebra, which is closely related to the McDuff
property (Theorem 2.8). This leads to a fairly simple (but poorly understood)
numerical invariant that measures the “McDuffness” of a singly-generated II1
factor (Remark 2.12).

Seemingly unrelated is the following question.

Question 1.3. When is the σ-weakly closed unitary orbit of an element
in a von Neumann algebra convex?

For B(H), the answer is frequently no, even for self-adjoint operators [2].
But nonatomic factors exhibit different behavior: the answer is yes for all
self-adjoint operators, and we know no operator for which the answer is no.
One may view an affirmative answer as a noncommutative Lyapunov-type
theorem [1], so it is not surprising that noncommutative atomic measures are
recalcitrant.

As mentioned, we show in Section 4 that Question 1.3 has an affirmative
answer whenever the element belongs to the norm closure of the ℵ0-divisible
operators. Since the ℵ0-divisible operators are not norm dense in a von Neu-
mann algebra with a semifinite summand (Corollary 3.4), this does not give
a full answer to Question 1.3. However, at present we do not know if they are
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dense in a type III algebra; if so, Question 1.3 has an affirmative answer for
all operators in type III algebras. In fact this was our motivation for studying
divisible operators in the first place.

Let us review some of our assumptions and notations. All C∗-algebras,
*-homomorphisms, and inclusions are assumed to be unital. Generic von
Neumann algebras are denoted by M and N , and like the C∗-algebras of this
paper, they are not assumed to be represented on a Hilbert space. For this
reason, we use only intrinsic topologies: the norm, σ-strong*, σ-strong, and
σ-weak topologies are symbolized by ‖ ‖, σ − s∗, σ − s, and σ − w respectively.
(We frequently use that the σ-strong and σ-strong* topologies agree on finite
algebras [74, Exercise V.2.5].) We write Z(M) for the center and U (M) for
the unitary group. As already mentioned, Mn stands for a factor of type In,
but we prefer to write B(�2) for Mℵ0 . We let Fn be the free group on n
generators, and L(G) be the von Neumann algebra generated by the left
regular representation of the group G. The hyperfinite II1 factor is denoted
by R.

We write the normalized trace on a finite type I factor as “Tr”. For
any faithful normal tracial state τ on a finite algebra M, the Hilbert space
L2(M, τ) is obtained by endowing M with the inner product 〈x|y〉 = τ(y∗x)
and completing in the induced norm ‖x‖2 =

√
τ(x∗x). It is easy to check that

L2(M, τ) is a contractive M − M bimodule: ‖xyz‖2 ≤ ‖x‖‖y‖2‖z‖. This
leads to the useful fact that on bounded subsets of M, the L2 norm deter-
mines the σ-strong topology [7, Proposition III.2.2.17].

For x ∈ M, the left (resp. right) support projection s�(x) (resp. sr(x)) is
defined to be the support of xx∗ (resp. x∗x). The unitary orbit is U (x) =
{uxu∗ | u ∈ U (M)}. If x is normal and E ⊆ C is Borel, the corresponding
spectral projection is χE(x).

An isomorphism between operators in algebras (x ∈ M) ∼= (y ∈ N ) means
a *-isomorphism of algebras taking one operator to the other. The algebras
may be omitted when they are understood or irrelevant. For M ∼= N ∼= B(H),
this is unitary equivalence, but in general it is a weaker equivalence relation.

The following lemma collects some basic observations about divisibility.

Lemma 1.4. Let n,p, r be cardinals satisfying np = r, and let x, y, z be
elements of von Neumann algebras, with z a central projection in the same
algebra as x.
(1) x ∼= y ⇒ n©x ∼= n©y.
(2) n©( p©x) ∼= r©x. (So r-divisibility implies n-divisibility.)
(3) If x is n-divisible, so is every element of W ∗(x).
(4) In any of the topologies under discussion, if x is a limit of n-divisible (or

divisible) operators, so is zx.
(5) If x is a norm limit of n-divisible (or divisible) operators, so is every

element of C∗(x).
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(6) If x is a σ-strong* limit of n-divisible (or divisible) operators, then it is
a σ-strong* limit of a uniformly bounded net of n-divisible (or divisible)
operators.

(7) If x is a σ-strong* limit of n-divisible (or divisible) operators, so is every
element of W ∗(x).

Proof. We prove only the last two statements.
Part (6) goes by the technique of the Kaplansky density theorem, as fol-

lows. Suppose {xα} converges σ-strong* to x ∈ M, with xα nα-divisible and
{eα

ij }1≤i,j≤nα matrix units in the relative commutant. Then
{(

0
x∗

α

xα

0

)}
con-

verges σ-strongly to
(

0
x∗

x
0

)
. Consider the continuous truncation function

f : R → [−‖x‖, ‖x‖]; t �→

⎧⎪⎨
⎪⎩

−‖x‖, t ≤ −‖x‖;
t, −‖x‖ ≤ t ≤ ‖x‖;
‖x‖, ‖x‖ ≤ t.

Being continuous and bounded, this function is σ-strongly continuous from
Msa to the self-adjoint part of the closed ball of radius ‖x‖, which it fixes
pointwise. (This is already contained in Kaplansky’s original paper [50]; note
that the strong and σ-strong topologies agree for a suitable representation of
M.) Thus,

f

((
0 xα

x∗
α 0

))
σ−s→ f

((
0 x
x∗ 0

))
=

(
0 x
x∗ 0

)
.

This implies that the 1,2-entries of f
((

0
x∗

α

xα

0

))
converge σ-strong* to x.

These entries are bounded in norm by
∥∥∥f

((
0

x∗
α

xα

0

))∥∥∥, which is less than
‖x‖ by construction. To finish the proof, it suffices to note that these entries
are nα-divisible, and that follows from the calculation{

f

((
0 xα

x∗
α 0

))}′
⊇

{(
0 xα

x∗
α 0

)}′
⊇ {I2 ⊗ eα

ij }.

For (7), suppose that {xα} is a bounded net of divisible operators con-
verging σ-strong* to x. Since multiplication is jointly σ-strong* continuous
on bounded sets, for any noncommutative polynomial p(x,x∗) we have that
{p(xα, x∗

α)} is a net of divisible operators converging σ-strong* to p(x,x∗).
But these last are σ-strong* dense in W ∗(x). �

One would not expect that statement (5) can be strengthened to include all
elements of W ∗(x), and in fact it cannot. The relevant example is postponed
to Remark 3.10.

We end this Introduction by pointing out some other relations to the liter-
ature.
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In the proofs of Theorem 2.4(1,2), Proposition 2.5, and Theorem 3.6 below,
we use the fact (valid in the circumstances of these theorems, not in general)
that an element is a limit of n-divisible operators if and only if it commutes
arbitrarily well with some system of n × n matrix units. This is mentioned here
for two reasons. First, it suggests central sequences, which are a key tool in
Section 2. And second, it has a variant that has proved useful in the K-theory
of C∗-algebras: a C∗-algebra is approximately divisible if any finite set of
elements commutes arbitrarily well (in norm) with the unit ball of some finite-
dimensional C∗-subalgebra having no abelian summand [9, Definition 1.2].
Our Theorem 2.8 is in the same vein as [9, Example 4.8].

Halpern [41] considered elements x ∈ M for which W ∗(x)′ ∩ M contains two
complementary projections that are equivalent in M, not necessarily equiva-
lent in W ∗(x)′ ∩ M. This weaker condition is a form of 2-diagonalizability, not
2-divisibility. Actually, Halpern’s condition is satisfied by every self-adjoint
operator in a von Neumann algebra lacking finite type I2k+1 summands [41,
Remark p. 134]. His results were later extended by Kadison [44] and Kaftal
[49]. The C∗-version is subtler [29].

The reader may wonder about a connection to the perturbation theory of
operator algebras. The typical setup, as introduced in [45], has the unit balls
of two operator algebras uniformly close (i.e., small Hausdorff distance); one
may often deduce structural similarities between the algebras. This is too
strong a hypothesis for the present paper, but the weaker notion of conver-
gence in the Effros–Maréchal topology [19] has some relevance. We mention
only that in the language of Haagerup–Winsløw [30, Definition 2.1], x ∈ M is
a σ-strong* limit of n-divisible operators if and only if W ∗(x) is contained in
the “lim inf” of a net of subalgebras of M whose relative commutants contain
Mn.

Density questions for divisible operators in matrices were carefully studied
in a long paper by von Neumann [61]. Since this work seems to have gotten
little attention for many years and is now being rediscovered by the free prob-
ability community, we state a version of its main result: There is ε > 0 such
that for every r ∈ N there is a contraction xr ∈ Mr that is at least ε away
from the set of divisible operators in the L2(Mr,Tr) norm. (This follows from
taking δ = 1

4 in [61, equation (9.5)], as explained in the surrounding text.) In
other words, divisible operators do not get arbitrarily dense in the L2 topol-
ogy as the size of the matrix algebra grows. Other questions raised in [61]
still remain open.

2. Closures in operator topologies

In this section we determine whether the n-divisible operators are dense
in the operator topologies (σ-weak, σ-strong, σ-strong*), for various algebras
and n.
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Proposition 2.1. In a properly infinite algebra M, the ℵ0-divisible oper-
ators are σ-strong* dense.

Proof. Let x ∈ M. Informally, we produce an ℵ0-divisible approximant by
taking a big corner of x and copying it down the diagonal ℵ0 times.

Choose a sequence of projections {pn} increasing to 1, with pn ∼ (1 − pn).
Each pn is a minimal projection in some copy of B(�2) unitally included in
M, so as in (1.3) there is an isomorphism θn from B(�2)⊗pnMpn to M such
that

θn(e11 ⊗ y) = y, ∀y ∈ pnMpn ⊂ M.

Note that
θn(e⊥

11 ⊗ pn) = p⊥
n

σ−s∗
→ 0.

Now θn(1 ⊗ pnxpn) is ℵ0-divisible, since 1 ⊗ pnxpn is. We compute

x − θn(1 ⊗ pnxpn) = x − θn(e11 ⊗ pnxpn) − θn(e⊥
11 ⊗ pnxpn)

= x − pnxpn − θn(e⊥
11 ⊗ pnxpn)

= p⊥
n x + xp⊥

n − p⊥
n xp⊥

n − p⊥
n θn(1 ⊗ pnxpn)p⊥

n ,

and each term in the last expression converges σ-strong* to zero. �

Lemma 2.2. All normal operators in a type II (resp. III) algebra belong to
the norm closure of the n-divisible operators, for any n < ℵ0 (resp. n ≤ ℵ0).

Proof. We say that x ∈ M is a simple operator if x =
∑n

j=1 λjpj , where
{λj } are distinct scalars and {pj } are projections adding to 1. In this case, it is
easy to check that W ∗(x)′ ∩ M =

∑⊕
pj Mpj . It then follows from Lemma 1.2

that a simple operator in a type II (resp. III) algebra is n-divisible for any
n < ℵ0 (resp. n ≤ ℵ0).

The spectral theorem guarantees that any normal operator is well-approxi-
mated in norm by simple operators, finishing the proof. �

Proposition 2.3. For n < ℵ0, the n-divisible operators are σ-weakly dense
in any II1 von Neumann algebra.

Proof. From Lemma 2.2, we know that any normal operator is norm-
approximated by n-divisible operators. The conclusion follows from the fact
that unitaries are σ-weakly dense in the unit ball of any nonatomic von Neu-
mann algebra [18, Theorem 1]. �

Halmos [39, Proposition 1] gave an elementary proof that the reducible
operators are not dense in a finite type I factor, so the smaller set of n-divisible
operators is not dense either. Of course this also follows from the difficult von
Neumann result stated at the end of the Introduction. The next theorem
(plus Proposition 2.1) handles all density questions for type I algebras.
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Theorem 2.4. Let 2 ≤ n < ℵ0.
(1) The n-divisible operators are not σ-strongly dense in a finite type I algebra.
(2) The n-divisible operators are not norm dense in a type I algebra.
(3) The n-divisible operators are σ-weakly dense in a finite type I algebra if

and only if it is nonatomic and only has type Ik summands for k in some
subset of {2n,3n,4n, . . . }.

Proof. (1) Given a finite type I algebra M, let τ be a normal tracial state
with (central) support z. Recall that the L2-norm ‖x‖2 =

√
τ(x∗x) deter-

mines the σ-strong topology on bounded subsets of zM. In the next para-
graph, we work entirely inside zM and show that the n-divisibles are not
σ-strongly dense, which is sufficient by Lemma 1.4(4).

Let p be a nonzero abelian projection, and suppose {xα} were n-divisibles
converging σ-strongly to p. By Lemma 1.4(6), we may assume that {xα} are
uniformly bounded. Let {eα

ij }1≤i,j≤n be matrix units commuting with xα.
Then

‖[p, eα
ij ]‖2 = ‖[p − xα, eα

ij ]‖2 ≤ 2‖p − xα‖2 → 0
for any fixed i and j. Using the fact that p is abelian, we compute for any
i �= j,

peα
iip = peα

ije
α
jje

α
jip

∼ (peα
ijp)(peα

jjp)(peα
jip)

= (peα
ijp)(peα

jip)(peα
jjp)

∼ peα
ije

α
jie

α
jjp

= 0.

Here “∼” represents an L2 approximation that gets better as α increases; we
conclude peα

iip → 0 σ-strongly for any i. But then

p = p

(
n∑

i=1

eα
ii

)
p =

n∑
i=1

(peα
iip) σ−s→ 0,

a contradiction.
(2) The argument in the second paragraph of the proof of (1) also estab-

lishes (2), except that one uses the uniform norm instead of the L2/σ-strong
topology.

(3) For the necessity, we again appeal to Lemma 1.4(4), as follows. An
algebra that fails to be nonatomic has a finite matrix algebra as a direct
summand, and as mentioned before the theorem, the n-divisible operators
are not dense in this summand. In a summand of type Ik, k indivisible
by n, there are no n-divisible operators at all. In a type In summand, the n-
divisible operators coincide with the center, which is already σ-weakly closed.
It remains to establish sufficiency, that is, σ-weak density of the n-divisibles
in Mmn ⊗ L∞(X,μ) for any m ≥ 2 and nonatomic (X,μ).
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We explain some reductions. It will be enough to show that any simple
function

∑
(xj ⊗ χEj ) is a σ-weak limit of n-divisibles, as the simple functions

are σ-weakly (even norm) dense. It will also be enough to show that any x ⊗ 1
is a σ-weak limit, since this argument can then be applied to the sub-measure
spaces (Ej , μ|Ej ) occurring in a simple function. Finally, note that L∞(X,μ)
can be written as the direct sum of L∞ algebras based on nonatomic probabil-
ity spaces. (For details, see [74, Proof of (iii) ⇒ (i) in Theorem III.1.18]. Any
finite measure can be rescaled to be a probability measure without changing
the associated L∞ algebra.) It then suffices to work in N = Mmn ⊗ L∞(X,μ),
where (X,μ) is a nonatomic probability space.

Next, we claim that the linear span of the n-divisibles in Mmn is all of
Mmn. There are many ways to do this; here is a relatively short one. Let p
be a projection of rank n, and consider the linear span L of the unitary orbit
U (p). According to a result of Marcoux and Murphy [56, Theorem 3.3], such
a unitarily-invariant linear space is either contained in the center or contains
all commutators. Since p is not central, L contains all commutators. Now
write any y ∈ Mmn as (y − Tr(y)1) + Tr(y)1. The first summand has trace
zero and so is a commutator [73]. The second summand is a multiple of the
identity, which is a sum of m orthogonal conjugates of p. We conclude that
both, and also y, belong to L. This establishes that L = Mmn. But L is
contained in the linear span of the n-divisibles, which is therefore also all of
Mmn.

We return to the goal of finding n-divisibles in N converging σ-weakly
to x ⊗ 1. Since n-divisibles are closed under scalar multiplication, by the
preceding paragraph we can write x as the average of some finite set of n-
divisibles: x = 1

J

∑J −1
j=0 xj . The idea of our remaining step is to “spread the

xj evenly” over (X,μ) so as to converge weakly to their average. For this,
we need to divide X up into finer and finer pieces. Using the symbol “�”
for disjoint union, recursively find subsets of X indexed by finite strings in
{0,1, . . . , J − 1}, as follows:

E∅ = X;
Ej1j2···j�−1 = Ej1j2···j�−10 � Ej1j2···j�−11 � · · · � Ej1j2···j�−1(J −1),

μ(Ej1j2···j�−1j) = J −� (1 ≤ j ≤ J).

Define

y� =
J −1∑
j=0

xj ⊗ χH�
j
,

where H�
j is the disjoint union of all sets E labeled by strings of length �

ending in j. (To illustrate the idea, assume that (X,μ) is ([0,1],m). Then
one may take Ej1j2···j�

to be the set of numbers whose expansion in base J
begins with the string j1j2 · · · j�, so that H�

j is the set of numbers whose �th
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digit is j. Numbers in [0,1] with nonunique expansion constitute a null set
and may be distributed arbitrarily.) Note that y� is n-divisible. We assert
that {y�} converges σ-weakly to x ⊗ 1.

To prove this assertion, consider the trace τ = Tr ⊗ (
∫

· dμ). In L2(N , τ)
one can verify the following equalities, assuming � �= �′:

〈y�, y�′ 〉 = 〈y�, x ⊗ 1〉 = 〈x ⊗ 1, x ⊗ 1〉 =
1
J2

∑
i,j

Tr(x∗
i xj);

〈y�, y�〉 =
1
J

∑
j

Tr(x∗
jxj).

It follows from these that {y� − (x ⊗ 1)} is an orthogonal sequence of con-
stant norm and thus converges weakly to 0 in the Hilbert space L2(N , τ). In
particular, for h ∈ N ⊂ L2(N , τ),

(2.1) 〈y� − (x ⊗ 1), h〉 → 0 and so 〈y�, h〉 → 〈x ⊗ 1, h〉.

Since functionals of the form { 〈·, h〉 | h ∈ N } are norm dense in N∗ [74, The-
orem V.2.18], (2.1) establishes the σ-weak convergence y� → x ⊗ 1, finishing
the proof. �

In the rest of this section, M is a II1 factor with separable predual and
trace τ , 2 ≤ n < ℵ0, and ω is a free ultrafilter on N.

We recall the construction of the tracial ultrapower Mω , essentially due to
Wright ([80, Theorems 2.6 and 4.1]; see [71] for comments on the historical
record). Let Iω ⊂ �∞(M) be the two-sided ideal of sequences (xk) with xk

converging σ-strongly to 0 as k → ω. We define Mω to be the quotient
�∞(M)/Iω , shown to be a II1 factor by Sakai [68, Section II.7].

Proposition 2.5. For x ∈ M, the following conditions are equivalent:

(1) x is a σ-strong limit of n-divisible operators;
(2) π(x) ∈ Mω is n-divisible.

Proof. (1) ⇒ (2): Appealing to Lemma 1.4(6) and the L2(M, τ) topol-
ogy, there is a bounded sequence {xk } of n-divisible operators converging
σ-strongly to x. Then each xk commutes with a system of matrix units
{ek

ij }1≤i,j≤n. It is immediate that {(ek
ij)k }1≤i,j≤n are matrix units in Mω .

A straightforward computation shows that they commute with π(x):

(2.2) ‖[x, ek
ij ]‖2 = ‖[x − xk, ek

ij ]‖2 ≤ 2‖ek
ij ‖‖x − xk ‖2

k→ω−→ 0.

(2) ⇒ (1): Suppose that π(x) commutes with matrix units in Mω , and let
the ij-unit have representing sequence (fk

ij)k. For each k, the set {fk
ij }1≤i,j≤n

need not consist of matrix units in M, but one may apply an argument
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of McDuff [58, Lemma 8] to find true matrix units {ek
ij }1≤i,j≤n such that

(fk
ij)k = (ek

ij)k for each 1 ≤ i, j ≤ n.
Now set

(2.3) xk =
n∑

m=1

ek
m1xek

1m.

It is easy to check that xk converges to x σ-strongly as k → ω:

‖x − xk ‖2 =
∥∥∥∑xek

m1e
k
1m −

∑
ek

m1xek
1m

∥∥∥
2
=

∥∥∥∑[x, ek
m1]e

k
1m

∥∥∥
2

→ 0.

(Compare [58, Proof of Lemma 1].) By construction, xk commutes with
{ek

ij }1≤i,j≤n and so is n-divisible. �

The next result produces large von Neumann algebras in which every ele-
ment is n-divisible, as promised in the Introduction. (The condition on M is
neither universal nor impossible, as we will see momentarily.)

Corollary 2.6. The following conditions are equivalent for M:

(1) the n-divisible operators are σ-strongly dense in M;
(2) every element of π(M) is n-divisible in Mω ;
(3) every element of Mω is n-divisible.

Proof. Proposition 2.5 gives the equivalence of (1) and (2), and (3) is clearly
stronger than (2). So let us assume (1) and show (3).

Let (xk) represent an element of Mω . For a fixed k, xk is a σ-strong limit
of n-divisible operators, so as in (2.2) we may find matrix units {ek

ij } with

‖[xk, ek
ij ]‖2 <

1
k

∀1 ≤ i, j ≤ n.

Then {(ek
ij)}1≤i,j≤n are matrix units in Mω that commute with (xk). �

We need to review some more terminology. A generator of a von Neumann
algebra is x ∈ N satisfying N = W ∗(x). The generator problem asks if every
von Neumann algebra with separable predual has a generator; the only un-
resolved cases are certain II1 factors, including in particular L(F3). A recent
survey of the generator problem is [27].

We say that a II1 factor M is McDuff if M ∼= M ⊗ R. The main result of
[58] can then be formulated as follows.

Theorem 2.7 ([58, Theorem 3 and Lemma 7]). M is McDuff if and only
if π(M)′ ∩ Mω is noncommutative, and in this case π(M)′ ∩ Mω is type II1.

Theorem 2.8. Let 2 ≤ n < ℵ0. If M is McDuff, the n-divisible operators
are σ-strongly dense. For singly-generated M, the converse holds as well.
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Proof. If M is McDuff, we know from Theorem 2.7 that π(M)′ ∩ Mω is
type II1. Then for any x ∈ M,

W ∗(π(x))′ ∩ Mω ⊇ π(M)′ ∩ Mω ⊃ Mn,

and the conclusion follows from Proposition 2.5.
If M = W ∗(x) and x is a σ-strong limit of n-divisibles, then Proposition 2.5

again implies
π(M)′ ∩ Mω = W ∗(π(x))′ ∩ Mω ⊃ Mn.

By Theorem 2.7, the noncommutativity of π(M)′ ∩ Mω implies that M is
McDuff. �

Remark 2.9. Here, is another way to see that n-divisible operators are
σ-strongly dense in a McDuff factor M. Let Mk = M ⊗ M2k ⊂ M ⊗ R ∼= M
be a sequence of increasing subfactors with σ-strongly dense union. Note that
each Mk has relative commutant ∼= R, so they consist entirely of n-divisible
operators. Let Ek be the trace-preserving conditional expectation from M
onto Mk. A simple martingale theorem (first proved in [77, Corollary 2.1])
shows that Ek(x) σ−s→ x, for any x ∈ M.

The reader will admit the existence of McDuff factors: tensor any finite
factor with R. It may be less clear that there are II1 factors in which the
n-divisibles (2 ≤ n < ℵ0) are not σ-strongly dense, so we now provide a variety
of examples. Note that this is not intended as a complete list. The reader is
referred to the sources for explanation of undefined terms.

Corollary 2.10. For any n > 1, the n-divisible operators are not
σ-strongly dense in any of the following II1 factors:
(1) L(SL(k,Z)) (k ≥ 3 and odd) and L(PSL(k,Z)) (k ≥ 4 and even);
(2) tensor products of two II1 factors, neither McDuff and one with prop-

erty T ;
(3) L∞(X,μ)�G, where (X,μ) is a nonatomic probability space, G is a count-

able discrete non-inner amenable group, and the action is free, ergodic,
and measure-preserving;

(4) factors that have Γ but are not McDuff;
(5) L(Fm) (m ≥ 2).

Proof. For the first four classes, we simply explain why the factor is singly-
generated and not McDuff. The conclusion then follows from Theorem 2.8.

(1) They have property T and so are not McDuff by [12, 13]. They are
singly-generated by [26].

(2) They are not McDuff by [57, Corollary 3.7]. Any tensor product of II1
factors is singly-generated by [25].

(3) They are not McDuff by [57, Proposition 3.9]. Any II1 factor with
a Cartan subalgebra is singly-generated by [65].
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(4) Factors with Γ are singly-generated by [25]. The first example of a non-
McDuff factor with Γ was constructed in [17, Proposition 22].

(5) L(Fm) is not known to be singly-generated for m ≥ 3, so we use Propo-
sition 2.5 instead. Let Fm have generators {gj }m

j=1, so that L(Fm) has gen-
erators {λgj }. Murray and von Neumann showed that these factors do not
have Γ and so are not isomorphic to R [59, Section VI.6.2]. Their original
estimates can be adapted to show that for a unitary u ∈ L(Fm),

(2.4) ‖u − τ(u)1‖2 ≤ 14max{ ‖[x,λg1 ]‖2, ‖[x,λg2 ]‖2}.

(See [75, Equation XIV(3.3)].) This implies that any sequence of unitaries that
asymptotically commutes with λg1 and λg2 must be equivalent to a sequence
of scalars. Note that iLog(λgj ) is self-adjoint, and set

x = iLog(λg1) + Log(λg2).

We then have

W ∗(π(x))′ ∩ L(Fm)ω = W ∗(π(λg1), π(λg2))
′ ∩ L(Fm)ω = C � Mn. �

Let 2 ≤ n < ℵ0, and consider the following conditions on a II1 factor M
with separable predual:
(1) M is McDuff;
(2) for every singly-generated subalgebra N ⊆ M, π(N )′ ∩ Mω is type II1;

(3n) for every singly-generated subalgebra N ⊆ M, π(N )′ ∩ Mω unitally con-
tains Mn.

Each of these conditions implies its successor, and the last is equivalent to
σ-strong density of the n-divisible operators in M. It seems natural to call
condition (2) “locally McDuff.”

Problem 2.11. Is either of the implications (2) ⇒ (1), (3n) ⇒ (2) valid?

Both of these implications would follow from an affirmative answer to the
generator problem. This means that to disprove one of them, one would have
to establish the existence of a von Neumann algebra with separable predual
that is not singly-generated. In posing this problem, we are really asking if
either implication can be proved directly, without resolution of the generator
problem.

For N ⊂ M, the algebra π(N )′ ∩ Mω has received occasional attention in
the literature; see [11, Lemma 2.6], [57, Theorem 3.5], [66, Lemma 3.3.2], and
[22, Theorems 3.5 and 4.7]. It should not be confused with π(M)′ ∩ N ω , which
was studied by Bisch [8]. For N a factor, he showed that the latter algebra is
noncommutative exactly when [N ⊂ M] ∼= [N ⊗ R ⊂ M ⊗ R]; in this case the
inclusion is said to be McDuff.

Remark 2.12. Let M be a singly-generated II1 factor with separable pred-
ual. By Theorem 2.8, M is McDuff if and only if the 2-divisible operators are
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σ-strongly dense. There are a variety of ways to quantify this and so obtain
a numerical invariant that measures “how far M is from being McDuff.”

One way would be to find the supremum of distances (in the ‖‖2-metric)
from x to the 2-divisible operators, where x runs over the unit ball. Here is
a related approach. As shown in the proof of Proposition 2.5, if x is strongly
approximated by 2-divisible operators, then approximants may be “built out
of x” in the sense of (2.3). So we may instead ask for the distance to operators
of the form v∗vxv∗v+vxv∗, with v a partial isometry satisfying v∗v+vv∗ = 1.
This gives the invariant

(2.5) sup
x∈M1

inf
v=vv∗v

v∗v+vv∗=1

‖x − (vxv∗ + v∗vxv∗v)‖2,

which is zero if and only if M is McDuff. At this point, the author knows
nothing interesting about this quantity when it is nonzero. One may define
similar invariants based on n-divisibles for other n; the author also does not
know how these numbers depend on n.

3. Closures in the norm topology

The ostensible goal of this section is to describe the norm closure of the
n-divisible operators in various von Neumann algebras, but our results are
rather incomplete for algebras other than B(H). To some extent, this defi-
ciency is due to the lack of a generalization of Voiculescu’s theorem—see [15,
35, 69, 71] for discussion and partial results. In B(H), at least, we arrive
at clean descriptions and ultimately show that the n-divisibles are nowhere
dense.

A first hope might be to imitate the techniques of the previous section.
There we saw that for singly-generated II1-factors, σ-strong density of n-
divisibles (2 ≤ n < ℵ0) is equivalent to the existence of noncommuting central
sequences. Central sequences of matrix units give a “universal formula” for
producing n-divisible σ-strong approximants out of any element, as in (2.3).
Can a similar construction work in the norm topology?

The simplest setup is this. For M a von Neumann algebra, the quotient
(�∞(M)/c0(M)) is a C∗-algebra. Let σ : M ↪→ (�∞(M)/c0(M)) be the inclu-
sion as (cosets of) constant sequences. Then the “central sequence algebra” is
σ(M)′ ∩ (�∞(M)/c0(M)). If it were to contain Mn unitally, one could mimic
(2.3) and use the matrix units to build n-divisible norm approximants for
any operator. Unfortunately, this sort of central sequence algebra is always
commutative.

Proposition 3.1. Let M be a von Neumann algebra and σ : M ↪→
(�∞(M)/c0(M)) be the inclusion as (cosets of) constant sequences. Then

σ(M)′ ∩
(
�∞(M)/c0(M)

)
= �∞(Z(M))/c0(Z(M)).
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Proof. If (xn) represents an element of the left-hand side, then

‖(adxn)(y)‖ = ‖[xn, y]‖ → 0 ∀y ∈ M.

By [20, Theorem 3.4], a sequence of derivations converges in the point-norm
topology only if it converges in the norm topology, so ‖ adxn‖ → 0. We also
have that ‖ adxn‖ = 2 dist(xn, Z(M)) (proved independently in [24] and [81]).
Therefore, (xn) can also be represented by a sequence from Z(M). �

Remark 3.2. A finer approach would be to look for a copy of Mn in
the relative commutant of M inside one of its C∗-ultrapowers, mimicking
Section 2. This is complicated by the fact that the structure of the relative
commutant generally depends on set theoretic assumptions and the choice of
ultrafilter [23].

Since infinite-dimensional von Neumann algebras are not norm separable
and therefore never singly-generated (or even countably-generated) as C∗-
algebras, Proposition 3.1 cannot be used to preclude the density of n-divisibles
in the manner of Theorem 2.8.

The symbol K will denote the norm-closed *-ideal generated by the finite
projections in any von Neumann algebra under discussion.

Proposition 3.3. Let M be a properly infinite semifinite von Neumann
algebra and k ∈ K. Then the distance from k to the ℵ0-divisible operators is

‖k‖
2 . In particular, if k is a norm limit of ℵ0-divisible operators, then k = 0.

Proof. Let y be ℵ0-divisible, and fix ε > 0. Then p = χ[‖y‖ −ε,‖y‖](|y|) is also
ℵ0-divisible and therefore infinite. In order to mesh cleanly with the paper
[48], represent M faithfully on a Hilbert space H. By [48, Theorem 1.3(d)],
k is not bounded below on pH, so there is a unit vector ξ ∈ pH with ‖kξ‖ < ε.
Since y is bounded below on pH by ‖y‖ − ε,

‖(y − k)ξ‖ ≥ ‖yξ‖ − ‖kξ‖ > ‖y‖ − 2ε.

Now ε is arbitrary, so ‖y − k‖ ≥ ‖y‖. Then

‖y − k‖ ≥ ‖y‖ ≥ ‖k‖ − ‖y − k‖ ⇒ ‖y − k‖ ≥ ‖k‖
2

.

This shows that the distance from k to the ℵ0-divisibles is ≥ ‖k‖
2 .

For the opposite inequality, take any ε > 0. By definition, k is approximated
within ε by an operator f whose supports are finite; let q = s�(f) ∨ sr(f)
(which is finite). Then

‖k − qkq‖ ≤ ‖k − f ‖ + ‖f − qkq‖ = ‖k − f ‖ + ‖q(k − f)q‖ < 2ε.

By the finiteness of q, we can find a projection r ≥ q such that r ∼ r⊥. Note
that

‖k − rkr‖ = ‖k − qkq + r(qkq − k)r‖ ≤ ‖k − qkq‖ + ‖r(qkq − k)r‖ ≤ 4ε.
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Write 1 =
∑∞

j=1 rj , with r = r1. Let {vj } be partial isometries with v1 = r1

and vjv
∗
j = rj , v∗

j vj = r1 for j ≥ 2. Finally, consider the ℵ0-divisible operator∑ vjkv∗
j

2 . We have∥∥∥∥k −
(∑ vjkv∗

j

2

)∥∥∥∥ ≤ ‖k − rkr‖ +
∥∥∥∥rkr −

(∑ vjkv∗
j

2

)∥∥∥∥
≤ 4ε +

∥∥∥∥∥rkr

2
−

( ∞∑
j=2

vj

(
rkr

2

)
v∗

j

)∥∥∥∥∥
(∗)
= 4ε +

‖rkr‖
2

≤ 4ε +
‖rkr − k‖ + ‖k‖

2

≤ 6ε +
‖k‖
2

.

(The equality (∗) is justified by noting that the summation in the previous
expression is an orthogonal sum of operators unitarily conjugate to rkr

2 .) �

Since there are no ℵ0-divisible operators in a finite algebra, we deduce the
following corollary.

Corollary 3.4. The ℵ0-divisible operators are not norm dense in any
semifinite algebra.

At this point, all entries of Table 1 have been justified. We next obtain
much more specific information for infinite type I factors, writing 0∞ for the
zero operator on �2.

We need to recall Voiculescu’s theorem and the relevant terminology. Two
operators x, y are said to be approximately equivalent when there is a se-
quence of unitaries {un} with unxu∗

n → y in norm. (Sometimes this term
implies also that the differences unxu∗

n − y are compact, but we do not make
this requirement here.) Similarly, two nondegenerate representations ρ,σ of
a C∗-algebra A are approximately equivalent when there is a net of unitaries

{uα} with (Ad uα) ◦ ρ → σ in the point-norm topology. We denote approxi-
mate equivalence by ∼a.e.. It is clear that an approximate equivalence can be
multiplied by an arbitrary cardinal, in the sense of Lemma 1.4(1). Note that
when A = C∗(x),

(3.1) ρ ∼a.e. σ ⇐⇒ ρ(x) ∼a.e. σ(x).

Notation. Let ρ : A → B(H) be a representation of a separable C∗-algebra
on a separable Hilbert space. The set

Iρ
def= ρ−1

(
ρ(A) ∩ K

)
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is an ideal of A. This allows us to write ρ = ρ1 ⊕ ρ2, where ρ1 is the restriction
of ρ to the reducing subspace ρ(Iρ)H, sometimes called the essential part of
ρ ([4, p. 341]). Of course ρ1 or ρ2 may be absent from this decomposition.

Theorem 3.5 ([78, Theorem 1.5]). Let ρj (j = 1,2) be representations of
a separable C∗-algebra A on a separable Hilbert space H. Then ρ1 ∼a.e. ρ2 if
and only if:
(i) kerρ1 = kerρ2,
(ii) Iρ1 = Iρ2 , and
(iii) ρ1

1 and ρ1
2 are unitarily equivalent when restricted to this ideal.

Theorem 3.6. Let H be an infinite-dimensional Hilbert space, n < ℵ0, and
k ∈ K ⊂ B(H). Then k is a norm limit of n-divisibles if and only if k ⊕ 0∞ is
n-divisible.

Proof. Assume that k is a norm limit of n-divisibles, and let k ⊕ 0∞ =
Re(k ⊕ 0∞)+ i Im(k ⊕ 0∞) be the decomposition into real and imaginary parts.
Each is self-adjoint and compact, so we may list their (finitely or infinitely
many) nonzero eigenvalues as follows, including multiplicity.

Re(k ⊕ 0∞) : λ−1 ≤ λ−2 ≤ · · · < 0 < · · · ≤ λ2 ≤ λ1,

Im(k ⊕ 0∞) : μ−1 ≤ μ−2 ≤ · · · < 0 < · · · ≤ μ2 ≤ μ1.

We further set

pj = χ{λj }
(
Re(k ⊕ 0∞)

)
; qj = χ{μj }

(
Im(k ⊕ 0∞)

)
.

We also have that k ⊕ 0∞ is a norm limit of n-divisibles. (Just add the
summand 0∞ onto the n-divisible operators converging to k.) Let {e

(m)
ij }n

i,j=i

be matrix units commuting with the mth operator in the sequence. It follows
as in (2.2) that ‖[e(m)

ij , k ⊕ 0∞]‖ → 0. By repeated use of the triangle equality,

‖[e(m)
ij , x]‖ → 0 for every x ∈ C∗(k ⊕ 0∞), in particular the pj and qj considered

above.
For each m, {p1e

(m)
ij p1} is an n2-tuple in the unit ball of the finite dimen-

sional space p1B(H)p1. Pick a convergent subsequence, still denoted by m.
Because ‖[e(m)

ij , p1]‖ m→∞→ 0,(
lim
m

p1e
(m)
ij p1

)(
lim
m

p1e
(m)
kl p1

)
= δjk

(
lim
m

p1e
(m)
il p1

)
.

Therefore, {limp1e
(m)
ij p1}n

i,j=1 is a set of matrix units in p1B(�2)p1.

Now refine the subsequence so that {p−1e
(m)
ij p−1} is a convergent m-tuple

in p−1B(H)p−1 (with matrix units as limits). One may continue refining
for q1, then q−1, then p2, p−2, q2, q−2, etc. Extract a diagonal subsequence,
still calling the index m.

Let r be the supremum of all pj and qj , so that r⊥ is the infinite-rank
projection onto the nullspace ker(k ⊕ 0∞) ∩ ker(k∗ ⊕ 0∞). For each i and j,
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the strong limit of re
(m)
ij r exists by the previous paragraph, and these limits

form matrix units for rB(H)r. They fix all nonzero eigenspaces of Re(k ⊕
0∞) and Im(k ⊕ 0∞), so they commute with r(k ⊕ 0∞)r and r(k ⊕ 0∞)∗r.
It follows that r(k ⊕ 0∞)r is n-divisible. Now choose any matrix units for
r⊥ B(H ⊕ �2)r⊥, and add them to the corresponding matrix units for rB(H)r
constructed above. This produces matrix units for B(H ⊕ �2) that commute
with k ⊕ 0∞, completing the proof of the forward implication.

The opposite implication is trivial when H has uncountable dimension, as
then k and k ⊕ 0∞ are unitarily equivalent. (Remember that k is compact.)
For separable H, we claim k ∼a.e. k ⊕ 0∞, so that k is a norm limit of n-divisible
unitary conjugates of k ⊕ 0∞. To prove the claim, let σ be the representation
of C∗(k) on �2 with σ(1) = 1 and σ(k) = 0. Apply Voiculescu’s theorem to
conclude id ∼a.e. id ⊕ σ as representations of C∗(k). Then use (3.1). �

Remark 3.7. There is no variation of Theorem 3.6 for nonatomic factors
that is both useful and true. Here are examples that show that the compact-
ness of k is indispensible for both its implications.
• Take k to be a (noncompact) projection of corank 1 in B(�2), so that k ⊕ 0∞

is n-divisible. If k were a norm limit of n-divisibles, then 1 − k would be, too.
(Just subtract the approximating sequence from 1.) But 1 − k is compact
and is shown not to be a norm limit of n-divisibles by the theorem.

• Take k ∈ B(�2(Z)) to be the (noncompact) bilateral shift. It generates
a maximal abelian *-subalgebra, so k ⊕ 0∞ is not n-divisible. But the
argument in Proposition 2.2 shows that k is a norm limit of n-divisibles, as
k can be approximated by simple operators whose spectral projections are
all infinite.

Theorem 3.8. Let x ∈ B(�2), n < ℵ0, and id be the identity representation
of C∗(x). The following conditions are equivalent:
(1) x is a norm limit of n-divisible operators;
(2) C∗(x ⊕ 0∞) ∩ K consists of n-divisible operators;
(3) id1 is n-divisible;
(4) x is approximately equivalent to an n-divisible operator.

Proof. (4) ⇒ (1): The hypothesis implies x is a norm limit of unitary
conjugates of a fixed n-divisible operator.

(1) ⇒ (2): If x is a norm limit of n-divisible operators, the same holds for
every element of C∗(x). Now C∗(x ⊕ 0∞) ∩ K = (C∗(x) ∩ K) ⊕ 0∞, and the
conclusion follows from Theorem 3.6.

(2) ⇒ (3): We have

C∗(x ⊕ 0∞) ∩ K = id1(Iid) ⊕ id2(0) ⊕ 0∞.

Restricted to Iid, id1 is a direct sum of irreducible representations, the image
of each being isomorphic to K or a matrix factor. Condition (2) says that these
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representations all occur with multiplicities divisible by n. But an irreducible
representation of an ideal uniquely induces an irreducible representation of
the ambient algebra [3, Theorem 1.3.4]. So on all of C∗(x), id1 is a direct sum
of irreducible representations, each with multiplicity divisible by n.

(Always id1(x) is a direct sum of irreducible operators, each occurring with
finite multiplicity. Hadwin [31] calls these irreducible operators the isolated
reducing operator-eigenvalues with finite multiplicity, written Σ00(x). Con-
dition (3) says exactly that every element of Σ00(x) has (finite) multiplicity
divisible by n.)

(3) ⇒ (4): Write id1 = n©ρ for some representation ρ. By Voiculescu’s
theorem,

id = id1 ⊕ id2 = ( n©ρ) ⊕ id2 ∼a.e. ( n©ρ) ⊕ ( n©id2) = n©(ρ ⊕ id2).

Plugging in x as in (3.1), x ∼a.e. n©(ρ(x) ⊕ id2(x)). �

Theorem 3.9. Let x ∈ B(�2) and id be the identity representation of C∗(x).
The following conditions are equivalent:
(1) x is a norm limit of ℵ0-divisible operators;
(2) C∗(x) ∩ K = {0};
(3) id1 is void;
(4) x is approximately equivalent to an ℵ0-divisible operator;
(5) x ∼a.e. n©x for some (hence any) 2 ≤ n ≤ ℵ0.

Proof. The equivalence of conditions (1)–(4) is proved as in Theorem 3.8,
with Proposition 3.3 used in place of Theorem 3.6.

To see (4) ⇒ (5), let 2 ≤ n ≤ ℵ0 and compute

(3.2) x ∼a.e. ℵ0©y ⇒ n©x ∼a.e. n© ℵ0©y ∼= ℵ0©y ∼a.e. x.

In [33, Proof of Corollary 4.3], Hadwin mentions that for n = 2, the impli-
cation (5) ⇒ (2) is a consequence of Voiculescu’s theorem. For the reader’s
convenience, we explicitly prove (5) ⇒ (3). Seeking a contradiction, suppose
that x ∼a.e. n©x for some 2 ≤ n ≤ ℵ0, and that id1 is not void. Then

x ∼a.e. n©x ∼a.e. n©( n©x) . . . ,

so by (4) ⇒ (3) of Theorem 3.8, id1 is nk-divisible for arbitrarily large inte-
ger k. But this is impossible, as the range of id1 contains nonzero finite rank
operators. �

Remark 3.10. We now give an example that shows that if x is a norm
limit of n-divisibles, the same need not be true for elements of W ∗(x). This
was mentioned after Lemma 1.4.

Let x be a diagonal operator on �2 whose eigenvalues are simple and dense
in [0,1], so that W ∗(x) contains a rank one projection p. Since C∗(x) ∩ K = {0}
and C∗(p) ∩ K � p, it follows from Theorem 3.8 (2 ≤ n < ℵ0) or 3.9 (n = ℵ0)
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that x, but not p, is a norm limit of n-divisible operators. (It is not hard to
argue this directly.)

Corollary 3.11. In B(�2), we have

(3.3) { ℵ0-divisible operators} =
⋂

n<ℵ0

{n-divisible operators}.

On the other hand

(3.4) { ℵ0-divisible operators} �
⋂

n<ℵ0

{n-divisible operators},

although this inclusion is dense.

Proof. Equation (3.3) follows from the second conditions in Theorems 3.8
and 3.9, plus the fact that no compact operator is n-divisible for all finite n.
The inequality in (3.4) results from considering x ∈ B(�2) with W ∗(x)′ of
type II1, while density follows from (3.3). �

Although we will not need Corollary 3.11 in the sequel, we will use

Proposition 3.12. In B(�2), we have

(3.5)
⋃

n≤ ℵ0

{n-divisible operators} =
⋃

n≤ ℵ0

{n-divisible operators}.

Proof. We only need to show the inclusion “⊆” of (3.5).
Let x ∈ B(�2), and let id be the identity representation of C∗(x). If id1

is absent, then C∗(x) ∩ K = {0}. By Theorem 3.9, x is a norm limit of ℵ0-
divisible operators and so belongs to both sides of (3.5). In the remainder of
the proof we assume that id1 is not absent. This entails that C∗(x) contains
a finite rank projection q, say of rank m.

Suppose x belongs to the left-hand side of (3.5). Since closure commutes
with finite unions,

(3.6) x ∈ {2-divs} ∪ {3-divs} ∪ · · · ∪ {m-divs} ∪
⋃

n>m

{n-divs}.

Seeking a contradiction, assume that x does not belong to the right-hand side
of (3.5). Then it would have to belong to the union at the far right of (3.6),
and because q ∈ C∗(x), q would belong to this union as well (by a variant of
Lemma 1.4(5)). In particular, there must be an operator d, n-divisible for
some n > m, with ‖d − q‖ = δ < 1

2 . By considering the real part, we may
assume that d is self-adjoint.

From elementary invertibility considerations sp(d) ⊆ [−δ, δ] ∪ [1 − δ,1 + δ].
Setting p = χ[1−δ,1+δ](d), we compute

(3.7) ‖p − qp‖ ≤ ‖p − q‖ ‖p‖ = ‖p − q‖ ≤ ‖p − d‖ + ‖d − q‖ ≤ 2δ < 1.
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Now ‖p − q‖ < 1 implies that p �= 0. Together with the n-divisibility of p
(because p ∈ C∗(d)) and n > m, this gives

rank(qp) ≤ rank(q) = m < rank(p),

so that qp must have nontrivial kernel in p�2. Thus, ‖p − qp‖ = 1, contradicting
(3.7).

In passing, we note that the distance from q to the n-divisible operators
(n > m) is exactly 1

2 ; consider the n-divisible operator 1
2I . �

Remark 3.13. It is typically nontrivial to calculate the exact distance from
a given x to the n-divisible operators. For x compact and n = ℵ0, we solved
this in Proposition 3.3. For x self-adjoint, an answer can be deduced from the
main results of [6], but we have no need to present such an expression here.

In the proof of Proposition 3.12, we determined that x could not belong to
the closure of the n-divisible operators, but we did not obtain any estimate
of the distance. Lower bounds are available, at least in theory, by using the
“noncommutative continuous functions” introduced by Hadwin. These are
appropriate limits of noncommutative polynomials; see [32, 36]. Revisiting
the proof in this light, we have that q ∈ C∗(x) implies q = ϕ(x) for some
noncommutative continuous function ϕ. Continuity means that there is δ > 0
such that for all y ∈ B(�2),

‖y − x‖ < δ ⇒ ‖ϕ(y) − q‖ = ‖ϕ(y) − ϕ(x)‖ <
1
2
.

Still assuming n > m, for ‖y − x‖ < δ we have

dist(ϕ(y), n-divs) ≥ dist(q,n-divs) − ‖ϕ(y) − q‖ =
1
2

− ‖ϕ(y) − q‖ > 0,

which implies as before that y cannot be a norm limit of n-divisibles. Thus,
the distance from x to the n-divisibles is at least δ.

The preceding paragraph bears some resemblance to the proof of [31, The-
orem 2.10].

Putting Proposition 3.12 together with the implication (1) ⇒ (4) in The-
orems 3.8 and 3.9, we obtain the following theorem.

Theorem 3.14. If an operator x ∈ B(�2) is a norm limit of divisible opera-
tors, then it is a norm limit of unitary conjugates of a single divisible operator.

The skeptical reader may wonder if this is part of a larger and simpler
truth, namely that norm limits of unitarily invariant sets in B(�2) must be
approximately equivalent to a member of the set. A counterexample is given
by the irreducible operators, which are norm dense ([39] or the one-page pa-
per [67]). It is easy to check that no irreducible operator is approximately
equivalent to a rank one projection. (Voiculescu’s theorem implies that if x is
approximately equivalent to an irreducible operator, C∗(x) ∩ K is either {0}
or K.)
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Theorem 2.4(2) already ruled out the norm density of the n-divisible oper-
ators in B(�2), for any n. After a lemma, we will establish a stronger result.

Lemma 3.15. For any x ∈ B(�2) and ε > 0, there is y such that ‖y − x‖ < ε
and C∗(y) contains a rank one projection.

Proof. It goes back to Weyl [79] that any self-adjoint operator can be per-
turbed by an arbitrarily small self-adjoint compact operator to become diag-
onal. Apply this to x1, the real part of x, finding k such that ‖k‖ < ε

2 and
x1 + k is diagonal.

Now choose any eigenvalue λ for x1 + k and let p be a rank one projection
under χ{λ}(x1 + k). The operator

y = x + k +
ε

2
[
χ(λ−(ε/4),λ+(ε/4))(x1 + k) − p

]
has the property that p = χ(λ−(ε/4),λ+(ε/4))(Re y) ∈ C∗(y). Furthermore,

‖y − x‖ ≤ ‖k‖ +
∥∥∥∥ε

2
[
χ(λ−(ε/4),λ+(ε/4))(x1 + k) − p

]∥∥∥∥ ≤ ε

2
+

ε

2
= ε. �

Theorem 3.16. The set of divisible operators in B(�2) is nowhere dense
in the norm topology.

Proof. By Lemma 3.15, any open ball contains an element y such that
C∗(y) contains a rank one projection. According to Theorems 3.8 and 3.9, y
is not in the closure of the n-divisible operators for any n. By Proposition 3.12,
y is not in the closure of all the divisible operators. �

What about norm density of the n-divisible operators in von Neumann
algebras of types II and III? The results of Section 2 show that in some II1
factors, the n-divisible operators are not even σ-strongly dense, but this is
all we can say at this point. It would be interesting to decide the norm
density of the n-divisible operators in R. Similarly to Remark 2.9, one can
apply a martingale theorem [14, Theorem 8] to any McDuff factor (M, τ) and
conclude that any operator in M is the almost uniform limit of n-divisible
operators. (This means that for any ε > 0, there is a projection p ∈ M and
n-divisible operators {xn} with τ(p) < ε and ‖(x − xn)p‖ → 0.)

For any von Neumann algebra, one may measure the size of the norm
closure by an invariant analogous to (2.5): just replace ‖ · ‖2 with the operator
norm. All the previous comments (including the author’s ignorance) apply to
this variation.

Many approximation problems from operator theory are unexplored in the
larger context of von Neumann algebras. Techniques and answers may lend in-
sight into the local structure of the algebras themselves, as in Theorem 2.8, or
even provide useful invariants. What can one say topologically about the set of
generators, or the (typically larger) set of irreducible elements, or the comple-
ments of these? Here we only point out that any factor with separable predual
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does contain an irreducible operator, since it contains a (singly-generated) hy-
perfinite subfactor with trivial relative commutant ([63, Corollary 4.1], [55,
Theorem 5.1], [64, Theorem 2]).

4. Convexity of σ-weakly closed unitary orbits

In this section, we study the possible convexity of U (x)
σ−w

, where x ∈ M.
(We remind the reader that the σ-weak topology is the weak* topology on M.
Actually the Banach space weak topology is also covered by the results below;
see Remark 4.4.) For M = B(�2), there are some descriptions of U (x)

σ−w
in

the literature, probably the most notable being Hadwin’s characterization as
the set of approximate compressions of x [34, Theorem 4.4(3)]:

(4.1) U (x)
σ−w

= {v∗xv | v∗v = 1}‖ ‖
.

It also follows from [34, Proposition 3.1(3) and Theorem 2.4] and [37, Theo-
rem 2(1)] that

U (x)
σ−w

= {ϕ(x) | ϕ : C∗(x) → B(�2) unital, completely(4.2)
positive, and completely rank-nonincreasing}.

(The map ϕ is completely rank-nonincreasing if

idn ⊗ ϕ : Mn ⊗ C∗(x) → Mn ⊗ B(H)

is rank-nonincreasing for all finite n.) In another direction, Kutkut [53, The-
orem 1.1] showed that if x is a contraction whose spectrum contains the unit
circle, then U (x)

σ−w
is the closed unit ball of B(�2). He later extended this

to certain operators with convex spectral sets [54]. Note that the closed unit
disk is a spectral set for any contraction, by von Neumann’s inequality.

In general von Neumann algebras most of the attention has focused on the
closed convex hull conv(U (x))

‖ ‖
. From among the substantial literature, we

only mention two results here. Dixmier’s averaging theorem [16] establishes

that conv(U (x))
‖ ‖

always intersects the center of M. And assuming that x is
self-adjoint and M has separable predual, Hiai and Nakamura characterized
conv(U (x))

‖ ‖
spectrally and proved that it equals conv(U (x))

σ−w
[42]. So in

some cases where we can verify the convexity of U (x)
σ−w

, we may actually
deduce

U (x)
σ−w

= conv(U (x))
σ−w

= conv(U (x))
‖ ‖

.

This means, for example, that one can do “Dixmier averaging” without any
averaging. . . if one is content to approximate in the σ-weak topology. One
might compare this with [69, Corollary 6.6], where it is shown that U (x)

σ−s

(but not necessarily U (x)
σ−s∗

) intersects the center whenever M is properly
infinite.
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Outside of B(H) the only descriptions we know of U (x)
σ−w

were obtained
in recent work with Akemann [2], and they apply exclusively to self-adjoint x.
They do show that appropriate generalizations of (4.1) and (4.2), replacing
“rank” by the equivalence class of the range projection, do not remain valid.
Concerning convexity, they give the following theorem.

Theorem 4.1 ([2]). Let x be a self-adjoint element of a factor M. If M is
type II or III, then U (x)

σ−w
is convex. If M is type I, U (x)

σ−w
is convex if

and only if the spectrum and essential spectrum of x have the same minimum
and maximum.

At present our only examples of nonconvex U (x)
σ−w

are in factors of type I.
We would be interested to know if this can happen in other factors.

The main goal of the section is to prove the following.

Theorem 4.2. Let x belong to the norm closure of the ℵ0-divisible opera-
tors in a von Neumann algebra M. Then U (x)

σ−w
is convex.

As mentioned in the Introduction, this result motivated our entire study
of divisible operators. Its converse is not true: there are operators x that
are not norm limits of ℵ0-divisible operators, yet U (x)

σ−w
is convex. (Use

Theorems 3.9 and 4.1.) And the implication also fails when the norm topology
is replaced by an operator topology. (Use Proposition 2.1 and Theorem 4.1.)
Actually, Theorem 4.2 is somewhat isolated, but it would have a very nice
consequence if one could also show that the ℵ0-divisible operators are norm
dense in a type III factor.

Lemma 4.3. Let v and x belong to a properly infinite von Neumann alge-
bra M, with v an isometry. Then v∗xv ∈ U (x)

σ−w
.

Proof. Let {ϕj } ⊂ M+
∗ be a finite subset. By repeatedly halving the iden-

tity, one can find a decreasing sequence of projections {pn} with

pn ∼ 1 ∀n and ϕj(pn) ≤ 1
n

∀j,n.

For each n, vp⊥
n is a partial isometry with right support p⊥

n and left support
vp⊥

n v∗. Note that

1 − vp⊥
n v∗ = 1 − vv∗ + vpnv∗ ≥ vpnv∗ ∼ pn ∼ 1,

so that 1 − vp⊥
n v∗ ∼ pn. Letting wn be a partial isometry with right support

pn and left support 1 − vp⊥
n v∗, define un to be the unitary operator vp⊥

n +wn.
Thus,

un − v = wn − vpn.
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Now we use Cauchy–Schwarz to calculate, for any j,

|ϕj(u∗
nxun − v∗xv)| = |ϕj(u∗

nxun − v∗xun) + ϕj(v∗xun − v∗xv)|
≤

∣∣ϕj

(
(wn − vpn)∗xun

)∣∣ +
∣∣ϕj

(
v∗x(wn − vpn)

)∣∣
≤ ϕj

(
pn(wn − v)∗(wn − v)pn

)1/2
ϕj(u∗

nx∗xun)1/2

+ ϕj(v∗xx∗v)1/2ϕj

(
pn(wn − v)∗(wn − v)pn

)1/2

≤ ϕj

(
pn(wn − v)∗(wn − v)pn

)1/2(2‖ϕj ‖1/2‖x‖)

≤ ϕj(4pn)1/2(2‖ϕj ‖1/2‖x‖) n→∞−→ 0. �

Proof of Theorem 4.2. We first show

(4.3)
u1xu∗

1 + u2xu∗
2

2
∈ U (x)

σ−w ∀u1, u2 ∈ U (M).

Start by assuming that x is ℵ0-divisible. Then W ∗(x)′ ∩ M contains B(�2),
so it contains two isometries v,w satisfying vv∗ + ww∗ = 1. This implies all
of the following:

(4.4) v∗w = w∗v = 0, v∗xw = w∗xv = 0, v∗xv = w∗xw = x.

Set

(4.5) r =
vu1v

∗ + vu2w
∗

√
2

, s =
vu1v

∗ − vu2w
∗

√
2

.

By computations using (4.4), one verifies that

rr∗ = ss∗ = vv∗,

so r and s are partial isometries, and moreover that

r∗r + s∗s = 1.

The complements of the left and right supports of r are equivalent:

1 − rr∗ = 1 − vv∗ = ww∗ ∼ w∗w = 1 = v∗v ∼ vv∗ = ss∗ ∼ s∗s = 1 − r∗r.

This means that r can be extended to a unitary y, i.e.

(4.6) r = rr∗y = vv∗y.

Using Lemma 4.3, we compute

U (x)
σ−w

= U (yxy∗)
σ−w � v∗yxy∗v

= v∗vv∗yxy∗vv∗v
(4.6)
= v∗rxr∗v

(4.5)
=

u1v
∗xvu∗

1 + u1v
∗xwu∗

2 + u2w
∗xvu∗

1 + u2w
∗xwu∗

2

2
(4.4)
=

u1xu∗
1 + u2xu∗

2

2
.



DIVISIBLE OPERATORS 593

Now we suppose x to be a norm limit of ℵ0-divisibles {xn}, as in the
statement of the theorem. For unitaries u1, u2, y and a finite set {ϕj } ⊂ M+

∗ ,∣∣∣∣ϕj

(
u1xu∗

1 + u2xu∗
2

2
− yxy∗

)∣∣∣∣ ≤
∣∣∣∣ϕj

(
u1(x − xn)u∗

1 + u2(x − xn)u∗
2

2

)∣∣∣∣
+

∣∣∣∣ϕj

(
u1xnu∗

1 + u2xnu∗
2

2
− yxny∗

)∣∣∣∣
+

∣∣ϕj

(
y(xn − x)y∗)∣∣.

We can guarantee that this is small for all ϕj by first choosing n to bound
the first and third terms, then choosing y as in the first part of the proof to
bound the second. This establishes (4.3).

From (4.3), it follows that U (x)
σ−w ⊇ conv(U (x)). Then

U (x)
σ−w ⊇ conv(U (x))

σ−w ⊇ U (x)
σ−w

,

implying equality. It is an easy general fact that the closure of a convex set is
convex, as long as the map (ξ, η) �→ ξ+η

2 is continuous in the relevant topology.

Thus, U (x)
σ−w

is convex, finishing the proof. �

Remark 4.4. The preceding lemma and theorem are also true for the
Banach space weak topology (σ(M, M ∗)-topology); just choose the set {ϕj }
from M ∗

+.

Appendix A. Quotients of operators by cardinals

We first explain what is meant here by “dividing an operator by a cardinal.”
Given x ∈ M, a quotient by n is y ∈ N satisfying

n©(y ∈ N ) ∼= (x ∈ M).

The existence of a solution is equivalent to the n-divisibility of x. As men-
tioned in the Introduction, uniqueness only becomes meaningful once we agree
to identify isomorphic operators, as follows. Note that ∼= is an equivalence
relation on operators in von Neumann algebras, and write equivalence classes
with brackets, for example, [x ∈ M]. Since amplification is well-defined on
equivalence classes (Lemma 1.4(1)), we may also consider the equation

(A.1) n©[y ∈ N ] = [x ∈ M].

For a given [x ∈ M] and finite n, the solution to (A.1) is always unique if it
exists. The main goals of this appendix are to explain why this is true and to
discuss several variations of interest.

In everything that follows, operators may be replaced with *-homomor-
phisms of C∗-algebras.
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A.1. Initial comments. 1. The first issue in (A.1) is really to identify the
algebra N (up to isomorphism). We write [M] for the isomorphism class of
M, and [M]n for [Mn ⊗ M]. Then the algebra in question is a solution to

(A.2) [N ]n = [M].

For factors on a separable Hilbert space, the study of equation (A.2) goes all
the way back to Murray and von Neumann, who wrote it as N

p
= M. Their

results [59, Section 2.6] are subsumed in Lemma 1.2 and Proposition A.1(1).
2. Although we think of the maps [M] �→ [M]n and [x] �→ n©[x] as multipli-

cations, they do not arise by iterating some kind of sum operation. Indeed, if
there were a sum “+” satisfying [M]“+”[M] = [M]2, what would [M]“+”[N ]
be? In this sense algebras of the form B(H) are very special, since one can take
[B(H1)]“+”[B(H2)] = [B(H1 ⊕ H2)]. We now admit that the opening paragraph
of this paper is somewhat disingenuous.

At the level of operators, the situation is even worse. In general, one cannot
form the diagonal sum of a pair of classes, even from the same algebra: a pair
[x ∈ M], [y ∈ M] does not determine a well-defined class

[(
x
0

0
y

)
∈ M2 ⊗ M

]
.

As we explain elsewhere, this can be attributed to the existence of automor-
phisms that are not locally inner [72, Section 3].

Of course the usual direct products are defined on isomorphism classes of
algebras and operators, that is, [x ∈ M] ⊕ [y ∈ N ] = [x ⊕ y ∈ M ⊕ N ]. By
iteration, they give rise to the multiplications

[M] �→ [�∞
n ⊗ M],(A.3)

[x ∈ M] �→ [1 ⊗ x ∈ �∞
n ⊗ M].(A.4)

One may further say that (y ∈ N ) is “centrally n-divisible” if it is isomorphic
to an output of (A.4). But this property is not nicely characterized in W ∗(y)
or its relative commutant, as the intertwiners that indicate multiplicity lie
outside of N .

The substitution of Mn for �∞
n suggests that the maps [M] �→ [M]n and

[x] �→ n©[x] should be considered quantized multiplications.
3. In his 1955 book [51], Kaplansky posed three “test problems” for abelian

groups and suggested their possible merit for other mathematical structures
with sum and isomorphism. (Only the first two problems made it into the
second edition of the book.) The second test problem is this: if a ⊕ a ∼= b ⊕ b,
must a ∼= b? Among the substantial literature on these problems, Kadison and
Singer answered them affirmatively in the context of unitary equivalence for
Hilbert space operators two years later [47]. Their result says that in type I
factors, 2©[a] = 2©[b] implies [a] = [b]. See Azoff [5] for other operator theoretic
results and references concerning the test problems. In particular, [5] answers
the test problems affirmatively for the direct sum of von Neumann algebras,
so that (A.3) also has an inverse when n = 2. Of course any finite n is also
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suitable; the intrepid reader may go on to show the existence of a “central”
operator quotient by inverting (A.4).

A.2. Uniqueness of finite quotients. It suffices to prove the following
proposition.

Proposition A.1. Let n be finite, and let x ∈ M and y ∈ N be elements
of von Neumann algebras.
(1) If Mn ⊗ M ∼= Mn ⊗ N , then M ∼= N .
(2) If n©x ∼= n©y, then x ∼= y.

Sketch of proof. Statement (1) is a consequence of (2). As we just men-
tioned, (2) was proved for n = 2 and type I factors in [47, Theorem 1]. The
essence of the following argument is the same.

Fix
π : Mn ⊗ M ∼→ Mn ⊗ N , π(1 ⊗ x) = 1 ⊗ y.

Here is a suitable chain of isomorphisms, with explanations afterward:

x ∈ M ∼= e11 ⊗ x ∈ (e11 ⊗ 1M)(Mn ⊗ M)(e11 ⊗ 1M)
∼= π(e11 ⊗ 1M)(1 ⊗ y) ∈ π(e11 ⊗ 1M)(Mn ⊗ N )π(e11 ⊗ 1M)
∼= (e11 ⊗ 1N )(1 ⊗ y) ∈ (e11 ⊗ 1N )(Mn ⊗ N )(e11 ⊗ 1N )
∼= y ∈ N .

The first and fourth isomorphisms are clear. The second isomorphism is
an application of π, using e11 ⊗ x = (e11 ⊗ 1M)(1 ⊗ x).

For the third, first note that e11 ⊗ 1M commutes with 1 ⊗ x, so π(e11 ⊗ 1M)
commutes with π(1 ⊗ x) = 1 ⊗ y. Then both π(e11 ⊗ 1M) and e11 ⊗ 1N are
projections in W ∗(1 ⊗ y)′ ∩ (Mn ⊗ N ) that solve the equation

(A.5) [p] + [p] + · · · + [p]︸ ︷︷ ︸
n times

= [1]

in the dimension theory for W ∗(1 ⊗ y)′ ∩ (Mn ⊗ N ), and this implies that they
are Murray–von Neumann equivalent in W ∗(1 ⊗ y)′ ∩ (Mn ⊗ N ). (The dimen-
sion theory for a von Neumann algebra M is the quotient
(P (M)/ ∼), where P (M) is the set of the projections in M and ∼ is Murray–
von Neumann equivalence. Among its many features is a partially-defined
addition for arbitrarily large sets of summands. See [70, Section 2] for an
overview.) The third isomorphism can then be had by conjugating by a
partial isometry in W ∗(1 ⊗ y)′ ∩ (Mn ⊗ N ) that goes from π(e11 ⊗ 1M) to
e11 ⊗ 1N . �

Although it looks innocuous, Proposition A.1(1) does not hold for C∗-
algebras! The first example was given in [62], and [52] contains a more sys-
tematic study.
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Proposition A.1 also fails for infinite n. For example, note that a projection
in B(�2) with infinite rank and corank is an ℵ0-multiple of any nontrivial
projection on a separable (possibly finite-dimensional) Hilbert space. Just as
for cardinals, division by an infinite quantity is problematic. We do, however,
have the implications

[N ]n = [M] ⇒ [M]n = [M] and n©[y] = [x] ⇒ n©[x] = [x].

Their proofs are alike; for the second, assume n©y ∼= x and compute

n©x ∼= n©( n©x) ∼= n©y ∼= x.

This means that for n infinite and x n-divisible, the equation n©[y] = [x] always
has the solution [y] = [x]. Typically, there are other solutions, but not always
(for instance, n = ℵ0 and x the identity of a σ-finite type III factor).

The property

(A.6) [x] = n©[x]

may be thought of as a “self-similarity.” For n infinite, (A.6) is no stronger
than n-divisibility, as we just mentioned. For n finite, by repeated substi-
tution (A.6) entails that x is nk-divisible for any natural k, or equivalently,
that W ∗(x)′ ∩ M lacks a finite type I summand. But the converse to this
implication does not generally hold. For example, the identity of a II1 factor
M satisfies (A.6) if and only if M ∼= Mn ⊗ M, which is not always true.

A.3. Generalized amplifications of operators. Readers familiar with
von Neumann algebras will not be surprised to hear that an expression such
as n©[x] sometimes makes sense for noninteger values of n. So, for example, one
may sometimes amplify [x ∈ M] by

√
2, thinking of this as the isomorphism

class of the quantum direct sum of
√

2 copies of x.
In fact, in the broadest context, the parameter may be chosen from the

Murray–von Neumann equivalence classes of projections in amplifications of
W ∗(x)′ ∩ M. For a projection p ∈ Mk ⊗ (W ∗(x)′ ∩ M) ⊆ Mk ⊗ M, we define
the (generalized) amplification of [x ∈ M] by the dimension [p] to be

[p]©[x ∈ M] def= [p(1 ⊗ x) ∈ p(Mk ⊗ M)p].

The parameter [p] looks dishearteningly non-numerical, but by dimension the-
ory it can be identified with a cardinal-valued function on the spectrum of the
center of W ∗(x)′ ∩ M [76]. (On the spectrum of the type II summand, the
function may also take values in the positive reals.)

This allows us to unify division and multiplication, as we now illustrate with
a simple example. Consider (A.1) under the assumption that W ∗(x)′ ∩ M and
n are finite, with the identity of W ∗(x)′ ∩ M n-divisible. Let [p] ∈ (P (W ∗(x)′ ∩
M)/ ∼) be the unique solution to (A.5). Then [p] is characterized as the set
of projections in W ∗(x)′ ∩ M whose image under the canonical dimension
function (or center-valued trace) for W ∗(x)′ ∩ M is exactly 1

n . On its domain
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the operation [p]© is inverse to n©, so one considers it as “division by n,” solving
(A.1) for [y] by applying it to both sides.

It is actually not too much trouble to set up an algebraic calculus for ampli-
fications in which only dimensions are used. But in general the incorporation
of cardinals requires some unwieldy extra bookkeeping, because dimension
functions are not unital in infinite algebras (so that the map from cardinals
to dimensions is many-to-one), and are not even canonical in II∞ algebras.
We do not give the details here, but we point out that Ernest worked out
a version of this theory for B(�2) [21, Chapter 4]. He used no cardinals higher
than ℵ0, and he only considered dimensions with full central support. (Mod-
ulo the cardinality restriction, these correspond to the coupling functions for
W ∗(x)′ ∩ M.) This produces a useful subset of the amplifications of x ∈ B(�2):

(A.7) {y ∈ B(�2)| ℵ0©y ∼= ℵ0©x}.

Ernest called the relation ℵ0©y ∼= ℵ0©x quasi-equivalence, so that (A.7) is the
quasi-equivalence class of x. This relation might also be considered “stable
equivalence” or even a sort of Morita equivalence for operators, as coupling
functions are invariants of representations. In B(�2) or other σ-finite von Neu-
mann algebras, we prefer to call (A.7) the genus of x, following terminology
set up long ago by Murray and von Neumann for analogous equivalence classes
of factors [59, Chapter III]. So once again, they have the last word.

Acknowledgments. We are grateful to Chuck Akemann for uncountably
many useful comments. Thanks are also due to Ken Dykema for pointing out
some relevant references.
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