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ON THE CONJUGACY GROWTH FUNCTIONS OF GROUPS

VICTOR GUBA AND MARK SAPIR

Dedicated to Paul Schupp

Abstract. To every finitely generated group, one can assign the
conjugacy growth function that counts the number of conjugacy

classes intersecting a ball of radius n. Results of Ivanov and Osin

show that the conjugacy growth function may be constant even

if the (ordinary) growth function is exponential. The aim of this

paper is to provide conjectures, examples and statements that

show that in “normal” cases, groups with exponential growth
functions also have exponential conjugacy growth functions.

1. Introduction

The investigation of the growth of conjugacy classes was motivated by
counting closed geodesics (up to free homotopy) on complete Riemannian
manifolds. In the case of a negative upper bound for the sectional curvature of
a complete Riemannian manifold M , there is only one closed geodesic in each
free homotopy class. Strengthening a result of Sinai [Sinai], Margulis [Mar,
MarS] proved that for compact manifolds of pinched negative curvature and
exponential volume growth exp(hn), the number of primitive closed geodesics
of period ≤ t is approximately

(1)
exp(ht)

ht
.

In group theoretic terms, this implies that the number of primitive con-
jugacy classes intersecting the ball of radius n in the Cayley graph of the
fundamental group of M (with respect to some finite generating set) is be-
tween 1

Cn exp( 1
C hn) and C

n exp(Chn) for some constant C > 1. (Recall that
a conjugacy class is primitive if it does not contain elements that are proper
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powers.) Basically it means that two cyclically reduced products of genera-
tors are conjugate “almost” only if they are cyclic shifts of each other. So
this result should not be very surprising to those who know the theory of
Gromov-hyperbolic and relatively hyperbolic groups. And indeed, this result
has been generalized several times to larger classes of manifolds and groups
(see, for example, [Link, CK] and references therein).

Definition 1.1. Let G = 〈X〉 be a group generated by a finite set X . For
every n, let γc(n) be the number of conjugacy classes of G intersecting the
ball of radius n in G. The function γc(n) will be called the conjugacy growth
function of G with respect to X .

Clearly, conjugacy growth functions corresponding to different finite gen-
erating sets of the same group are equivalent because a ball of radius n with
respect to one generating set contains a ball of radius Cn with respect to the
other generating set for some constant C depending only on the two generat-
ing sets but not on n. Here, as usual, we say that two functions f, g : N → N

are equivalent if f(n) ≤ Cg(Cn) + C and g(n) ≤ Cf(Cn) + C for some con-
stant C and all n. Thus, we can talk about the conjugacy growth function of
a finitely generating group.

The definition differs from that in [Mar, MarS] and other papers because we
do not consider only primitive conjugacy classes. In the case of hyperbolic,
relatively hyperbolic groups or CAT(0)-groups considered in [Mar, MarS,
CK, Link] and other papers these definitions give equivalent functions (in the
usual sense of asymptotic group theory) because the number of nonprimitive
conjugacy classes is small comparing to the number of all conjugacy classes.
But, for example, in a torsion group without involutions every element is a
square, so there are no primitive conjugacy classes at all.

It is known that the conjugacy growth function for arbitrary groups can
differ dramatically from the (ordinary) growth function. Ivanov [Olbook]
constructed the first example of a finitely generated infinite group with fi-
nite number of conjugacy classes, and Osin [Osin1], answering an old group
theory question (one of the origins of this question is also from dynamics), con-
structed a finitely generated infinite group with just two conjugacy classes.
The conjugacy growth functions for these groups are eventually constants
while the ordinary growth functions are exponential. Still it is not known
how widespread this phenomenon is. For example, there are no examples
of finitely presented groups with exponential growth function and subexpo-
nential conjugacy growth function. Conjectures, examples and theorems of
this paper show that for “ordinary” groups, exponential growth should imply
exponential conjugacy growth.

Our results are intentionally not of the most general form. We just demon-
strate the ideas which clearly can be used in more general situations.
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Updates. During the time between the first appearance of the paper in the
arXiv and the day the paper was accepted in the Illinois Journal of Mathe-
matics, several problems mentioned in the paper have been solved. For each
of these problems, we include references to (and in one case short description
of) the solution as an update.

2. Amenable groups

Conjecture 2.1. For every amenable group of exponential growth, the
conjugacy growth function is exponential. An amenable group with polyno-
mial conjugacy growth function is virtually nilpotent.

For solvable groups, Conjecture 2.1 should follow from the proof of Milnor
[Milnor] and Wolf [Wolf] of the fact that solvable groups of subexponential
growth are virtually nilpotent. In the case of polycyclic groups, one can use
the method of Wolf [Wolf]. In the case of solvable nonpolycyclic groups,
Milnor proved that if such a group has exponential growth, it contains a free
subsemigroup. One “only” needs to show that some of the free subsemigroups
are Frattini-embedded (i.e., two elements of the subsemigroup are conjugate
in the ambient groups if and only if they are cyclic shifts of each other).
One can also use a result of Kropholler [Kro] characterizing finitely generated
solvable groups which do not have sections which are wreath products of a
cyclic group with Z and results of Osin [Osin2] about the uniform growth of
solvable groups.

The second part of Conjecture 2.1 is of course an analog of the celebrated
theorem of Gromov [Gromov] about groups with polynomial growth. In this
regard, it would be interesting to compute the conjugacy growth functions of
Grigorchuk (and similar) groups of subexponential growth [Grig1]. It is hard
to believe that any of these groups have polynomial conjugacy growth, but
these groups served as counterexamples to many other conjectures before.

Update 1. Laurent Bartholdi and independently but a few months later
Ievgen Bondarenko proved that the conjugacy growth of every Grigorchuk’s
group is super-polynomial. Their proofs are essentially the same. A slightly
modified proof is presented below.

We denote the conjugacy growth function of G by γc
G(n).

Theorem 2.2 (Bartholdi, Bondarenko). If G is the Grigorchuk 2-group of
intermediate growth, then for some α > 0 we have γc

G(n) ≥ enα

.

Proof. The Grigorchuk 2-group G contains a subgroup K of finite index,
such that K contains a copy of Kd = K × K × · · · × K (d times, d > 1) [Grig2].
Let ψ be the injection map Kd to K. It is shown in [Grig3] that for any
elements u1, . . . , ud, v1, . . . , vd in K, the element ψ(u1, . . . , ud) is conjugate to
the element ψ(v1, . . . , vd) if and only if for some permutation σ, the element
ui is conjugate to vσ(i) in K for all i = 1, . . . , d. Hence γc

G(n) ≥ Lγc
G(Ln)d
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for some constant L. Note also that G has infinitely many conjugacy classes
since it has elements of arbitrary large finite orders, hence γc

G is unbounded.
Now a standard argument (see, for example, [GP, Lemma 2.1]) implies that
γc

G(n) ≥ enα

for some α > 0. �

Note that a very similar proof works for all so called regularly branch groups
(see [Grig2] for the definition).

2.1. Two examples. Below, we are using the standard Computer Science
notation: we write g(x) = Θ(f(x)) (resp. g(x) = O(f(x))) if 1

C f(x) ≤ g(x) ≤
Cf(x) (resp. g(x) ≤ Cf(x)) for some constant C > 1 and all sufficiently
large x.

Example 2.3. The Baumslag–Solitar group BS(1, n) = 〈a, b | b−1ab = an〉
(n ≥ 2) has exponential conjugacy growth function.

Proof. It is easy to see that for numbers k �= l not divisible by n, the
elements ak, al are not conjugate in BS(1, n). The length of ak in BS(1, n) is
Θ(logk). Indeed, if k = m1n

t1 + · · · +ms is the n-ary representation of k, then
ak = b−t1am1bt1b−t2am2bt2 · · · , so the length of ak is at most 2(t1 + t2 + · · · )+
m1 + m2 + · · · . Hence, the conjugacy growth function is exponential. �

The next example shows that free subsemigroups are indeed helpful in
proving that the conjugacy growth is exponential.

Example 2.4. Let S∞ be the group of all permutations of Z with finite
supports. Then the cyclic group Z = 〈b〉 acts on S∞ by shift. Let G = S∞ �Z.
This group is clearly generated by b and the transposition a = (1,2). The
conjugacy growth of G is exponential.

Proof. Indeed, consider the subsemigroup generated by b2 and b2a. Every
element in this semigroup has the form bnabn1a · · · where all n,ni are positive
even integers. By taking a cyclic shift, we can assume that the word ends with
a and n ≥ n1, n2, . . . . Let us prove that no two of such elements are conjugate
(this will obviously imply that the conjugacy growth is exponential). Indeed,
the element

(2) bnabn1a · · · bnka

is equal to

(3) bn+n1+···+nka(n1 + · · · + nk)a(n2 + · · · + nk) · · · a,

where a(m) = (1 + m,2 + m), so a = a(0). Note that since all ni are even and
positive, the transpositions a(ni + · · · + nk) are all independent, so they pair-
wise commute. Therefore, the form (3) completely determines the word (2).
If we conjugate an element bsp where p ∈ S∞ by bm, the result is bsp(m)
where p(m) is obtained from p by shifting all numbers in the permutation by
m. If we conjugate bsp by t ∈ S∞, the result equals bst(s)−1pt. Note that in
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(3), the absolute value of the exponent of b is always bigger than all numbers
involved in the permutation a(n1 + · · · +nk)a(n2 + · · · +nk) · · · a. Therefore, if
bmt (t ∈ S∞,m > 0) is conjugate to (3) and not equal to (3), then either some
numbers in the support of the permutation t are negative or some of them
are bigger than m. In both cases bmt is not of the form (3). So two different
elements of the form (3) are not conjugate in G. It remains to note that the
word length of (2) in the alphabet {a, b} is at most n + n1 + · · · + nk + k. �

Example 2.4 is also interesting because the number of conjugacy classes of
elements of S∞ intersecting the ball of radius n grows subexponentially. In
contrast, as we showed above, for BS(1, n), the growth of conjugacy classes
of the kernel of the natural homomorphism BS(1, n) → Z is exponential.

2.2. Nilpotent groups. Recall that by a theorem of Bass [Bass] if G is
a finitely generated nilpotent group, and γS(n) its growth function for some
generating set S, then there are constants A,B > 0 such that And ≤ γS(n) ≤
Bnd for all n ≥ 1, where d = d(G) =

∑
h≥1 hrh, rh is the torsion-free rank of

Gh/Gh+1 and G = G1 ⊇ G2 ⊇ G3 ⊇ · · · ⊇ Gh ⊇ · · · is the lower central series
of G. In particular, for the Heisenberg group H = 〈x, y, z | [x, y] = z, zx =
xz, zy = yz〉 with two generators (x and y), its growth function is Θ(n4).

Example 2.5. The conjugacy growth function of H is Θ(n2 logn).

Proof. Indeed, every element of H is uniquely expressed in the form xkylzm.
The ball B of radius 4n consists of such elements with k ≤ n, l ≤ n,m ≤ n2 (up
to a big O). Conjugating this element by x amounts to adding k to m (and pre-
serving k, l), conjugating by y amounts to adding l to m. Therefore, if k �= 0
or l �= 0, every element of the form xkylzm can be conjugated into an element
of the form xkylzs where 0 ≤ s < d = gcd(k, l). The number of elements of the
form xkylzm in B where either k = l = 0, m ≤ n2 or kl = 0, |m| ≤ max{|k|, |l| }
does not exceed O(n2), so these elements can be ignored. So we can assume
that k �= 0 and l �= 0. Then k = dk0, l = dl0 where k0, l0 are co-prime num-
bers with absolute values bounded by O(n/d). The number of such pairs
(k0, l0) is at most Cn2/d2 for some constant C. Therefore, for every d be-
tween 1 and n, the number of triples (k, l, s) with gcd(k, l) = d, 0 ≤ s < d is at
most Cn2/d for some constant C. Summing up for all d from 1 to n, we get
Cn2(1+1/2+ · · · ) ≤ C ′n2 logn. On the other hand, for every n > 1 and d < n
consider all elements xk0dyl0dzs where 0 < k0 ≤ n/d,0 < l0 ≤ n/d,0 ≤ s < d,
gcd(k0, l0) = 1. Again it is easy to see that conjugating such an element by any
nontrivial element of H produces an element not of this form. Hence, these
elements are pairwise nonconjugate. The length of each of these elements is
at most C1n for some constant C1. By the well-known number theory result
(see, for example, [HW, page 354]), the number of such triples is Θ(n2/d).
Hence, the total number of conjugacy classes intersecting a ball of radius n in



306 V. GUBA AND M. SAPIR

H is at least C2n
2(1 + 1/2 + · · · + 1/n) ≥ C3n

2 logn for some constant C3 > 0
and large enough n. �

Similarly, one can prove that under the assumptions and notation of Bass’
theorem above the conjugacy growth function γc(m) does not exceed Cms

where s =
∑

h≥1 rh.

Problem 2.6. Find more precise estimates for the conjugacy growth func-
tions of finitely generated nilpotent groups.

Update 2. In the case of solvable groups, Conjecture 2.1 has been proved.
In the case of polycyclic groups, it was proved by Hull [Hull]. In the general
solvable case, it was proved by Breuillard and Cornulier [BC].

3. Linear groups

One of the major steps towards describing groups of polynomial growth
was the Tits alternative: a finitely generated linear group (over a field) of
subexponential growth is virtually solvable [Tits].

Conjecture 3.1. Every finitely generated linear group (over a field) of
subexponential conjugacy growth is virtually solvable.

Example 3.2. The conjugacy growth of SLn(Z) for n ≥ 2 is exponential.

Proof. proof Indeed, for every positive integer m consider the matrix Am

with Am[1,1] = m,Am[1,2] = m − 1,Am[i, i] = 1, i ≥ 2, and all other A[i, j]
equal 0. The word length of Am is approximately logm by [LMR], and all
these matrices are pairwise nonconjugate because they have different eigenval-
ues. This immediately implies that the conjugacy growth is exponential. �

Update 3. Conjecture 3.1 has been proved by Breuillard, Cornulier, Lubotz-
ky and Meiri [BCLM].

4. Diagram groups

Let us recall the definition of a diagram group (see [GS1, GS3, GS4] for
more formal definitions). A (semigroup) diagram is a planar directed labeled
graph tesselated into cells, defined up to an isotopy of the plane. Each diagram
Δ has the top path top(Δ), the bottom path bot(Δ), the initial and terminal
vertices ι(Δ) and τ(Δ). These are common vertices of top(Δ) and bot(Δ).
The whole diagram is situated between the top and the bottom paths, and
every edge of Δ belongs to a (directed) path in Δ between ι(Δ) and τ(Δ).
More formally, let X be an alphabet. For every x ∈ X , we define the trivial
diagram ε(x) which is just an edge labeled by x. The top and bottom paths
of ε(x) are equal to ε(x), ι(ε(x)) and τ(ε(x)) are the initial and terminal
vertices of the edge. If u and v are words in X , a cell (u → v) is a planar
graph consisting of two directed labeled paths, the top path labeled by u
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and the bottom path labeled by v, connecting the same points ι(u → v) and
τ(u → v). There are three operations that can be applied to diagrams in order
to obtain new diagrams.

1. Addition. Given two diagrams Δ1 and Δ2, one can identify τ(Δ1) with
ι(Δ2). The resulting planar graph is again a diagram denoted by Δ1 + Δ2,
whose top (bottom) path is the concatenation of the top (bottom) paths of
Δ1 and Δ2. If u = x1x2 · · · xn is a word in X , then we denote ε(x1) + ε(x2) +
· · · + ε(xn) (i.e., a simple path labeled by u) by ε(u) and call this diagram
also trivial.

2. Multiplication. If the label of the bottom path of Δ2 coincides with
the label of the top path of Δ1, then we can multiply Δ1 and Δ2, identifying
bot(Δ1) with top(Δ2). The new diagram is denoted by Δ1 ◦ Δ2. The ver-
tices ι(Δ1 ◦ Δ2) and τ(Δ1 ◦ Δ2) coincide with the corresponding vertices of
Δ1,Δ2, top(Δ1 ◦ Δ2) = top(Δ1),bot(Δ1 ◦ Δ2) = bot(Δ2).

3. Inversion. Given a diagram Δ, we can flip it about a horizontal line
obtaining a new diagram Δ−1 whose top (bottom) path coincides with the
bottom (top) path of Δ. Note that a cell can have the form u → u (i.e., v and
u can coincide). In this case, in order to distinguish the top from the bottom,
we draw a vertical arrow inside the cell from the top to the bottom. If the
inverse cell (u → u)−1, then the arrow points in the opposite direction. So the
inverse cell is not the same as the cell itself.

Definition 4.1. A diagram over a collection of cells P is any planar graph
obtained from the trivial diagrams and cells of P by the operations of addition,
multiplication and inversion. If the top path of a diagram Δ is labeled by a
word u and the bottom path is labeled by a word v, then we call Δ a (u, v)-
diagram over P .

Two cells in a diagram form a dipole if the bottom part of the first cell
coincides with the top part of the second cell, and the cells are inverses of
each other. In this case, we can obtain a new diagram removing the two cells
and replacing them by the top path of the first cell. This operation is called
elimination of dipoles. The new diagram is called equivalent to the initial one.
A diagram is called reduced if it does not contain dipoles. It is proved in [GS1,
Theorem 3.17] that every diagram is equivalent to a unique reduced diagram.
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Now let P = {c1, c2, . . .} be a collection of cells. We can view it either as a
semigroup presentation as in [GS1] or as the collection of cells of a directed
2-complex obtained by identifying all edges of the cells with the same label as
in [GS3]. We shall use the first point of view here. If the top and the bottom
paths of a diagram are labeled by the same word u, we call it a spherical
(u,u)-diagram. The diagram group D(P,u) corresponding to the collection of
cells P and a word u consists of all reduced spherical (u,u)-diagrams obtained
from these cells and trivial diagrams by using the three operations mentioned
above. The product Δ1Δ2 of two diagrams Δ1 and Δ2 is the reduced diagram
obtained by removing all dipoles from Δ1 ◦ Δ2. The fact that D(P,u) is a
group is proved in [GS1].

Examples: (Both examples can be found in [GS1].) If X consists of one
letter x and P consists of one cell x → x2, then the group D(P,x) is the R.
Thompson group F . If X consists of three letters a, b, c and P consists of three
cells ab → a, b → b, bc → c, then the diagram group D(P,ac) is isomorphic to
the wreath product Z � Z [GS4].

Here are the diagrams representing the two standard generators x0, x1 of
the R. Thompson group F . All edges are labeled by x and oriented from left
to right, so we omit the labels and orientation of edges.

It is easy to represent, say, x0 as a product of sums of cells and trivial
diagrams:

x0 = (x → x2) ◦
(
ε(x) + (x → x2)

)
◦

(
(x → x2)−1 + ε(x)

)
◦

(
(x → x2)−1

)
.

There is a natural diagram metric on every diagram group D(P,u):
dist(Δ,Δ′) is the number of cells in the diagram Δ−1Δ′. For some finitely
generated diagram groups (such as F or Z � Z) this metric is quasi-isometric to
the word metric [AGS]. In this case, we say that the group satisfies property B
(after J. Burillo). We do not know whether every finitely generated diagram
group satisfies B (see [AGS, Question 1.5]).

We shall need the following description of the conjugacy relation in diagram
groups.

Let Q be a collection of cells. A spherical (u,u)-diagram Δ over Q is
called absolutely reduced if all its ◦-powers Δ ◦ Δ ◦ · · · ◦ Δ are reduced. Every
absolutely reduced diagram Δ is canonically decomposed as a sum Δ1 +Δ2 +
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· · · +Δn where each Δi is either a trivial diagram ε(ui) or a spherical (ui, ui)-
diagram which is further indecomposable as a sum of spherical diagrams.
Indecomposable absolutely reduced spherical diagrams are called simple.

Theorem 4.2 (see [GS1, Lemmas 15.14, 15.15, 15.20]). (i) Every spherical
(u,u)-diagram is conjugate to an absolutely reduced spherical (v, v)-diagram.

(ii) Suppose that two absolutely reduced diagrams A and B have canoni-
cal decompositions A1 + · · · + Am and B1 + · · · + Bn (where Ai is a (ui, ui)-
diagram, Bj is a (vj , vj)-diagram). Suppose further that A and B are conju-
gate. Then m = n, and Ai is conjugate to Bi, that is Ai = Γ−1

i BiΓi for some
(vi, ui)-diagram Γi, i = 1, . . . ,m.

(iii) If two simple diagrams A, B are conjugate, then they have the same
number of cells. Two trivial diagrams ε(u) and ε(v) are conjugate, if and only
if u = v modulo the semigroup presentation P .

Conjecture 4.3. The following conditions for a finitely generated diagram
group G are equivalent:

(1) G contains a non-Abelian free subsemigroup.
(2) The growth function of G is exponential.
(3) The conjugacy growth function of G is exponential.

It is clear that (3) → (2), (1) → (2). The implication (2) → (1) (and hence
equivalence of these two conditions) is proved as follows. Let G be a finitely
generated diagram group of exponential growth. By [GS5, Theorem 5.7],
G is embedded into a (split) extension of a right angled Artin group A by
the Thompson group F . A subgroup of a right angled Artin group is either
Abelian, or contains a non-Abelian free subgroup [GS5, Lemma 7.6]. Hence,
we can assume that G ∩ A is Abelian. A subgroup of F either contains a
copy of Z � Z or is Abelian [GS2, Theorem 21]. Since Z � Z contains a non-
Abelian free semigroup, we can assume that the the subgroup G/(G ∩ A) of F
is Abelian. Hence, G is solvable of class at most 2. Since G has exponential
growth, it is not virtually nilpotent. By the result of Milnor and and Wolf
cited above, G contains a non-Abelian free subsemigroup.

The next theorem proves a weaker statement than the implication
(1) → (3).

Theorem 4.4. Every finitely generated diagram group containing the
wreath product Z � Z (in particular, the Thompson group F [GS3]) has ex-
ponential conjugacy growth function.

Proof. Consider first the group Z � Z itself, that is the diagram group
D(P,ac) for P = {ab → a, b → b, bc → c}. Let π be the cell b → b, and
n0, . . . , nk be positive integers. Let Δ(n0, . . . , nk) be the following diagram:

(4) ε(a) + πn0 + · · · + πnk + ε(c).
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Let n = n0 + · · · + nk, Γ(n) be the diagram obtained as the following product
((ab, a)−1 + ε(c)) ◦ ((ab, a)−1 + ε(bc)) ◦ · · · ◦ ((ab, a)−1 + ε(bkc). It is clearly an
(ac, abkc)-diagram. Finally, let

A(n0, . . . , nk) = Γ(n)Δ(n0, . . . , nk)Γ(n)−1.

This is a spherical (ac, ac)-diagram from D(P,ac).
Note that each component πni is absolutely reduced, hence simple. Thus,

the decomposition (4) is the canonical decomposition of the absolutely reduced
diagram Δ(n0, . . . , nk). Since A(n0, . . . , nk) is a conjugate of Δ(n0, . . . , nk),
two diagrams A(n0, . . . , nk) and A(n′

0, . . . , n
′
l) are conjugate in D(Q,u) if and

only if the diagrams Δ(n0, . . . , nk) and Δ′(n′
0, . . . , n

′
l) are conjugate. By The-

orem 4.2, then k = l and n0 = n′
0, . . . , nk = n′

k. Note also that each diagram
A(n0, . . . , nk) has n+2(k +1) ≤ 3n cells, whence by property B, it belongs to
the ball of radius O(n) in Z � Z. The number of solutions n = n0 + · · · + nk

in positive integers is equal to 2n−1 (k ≥ 0). Hence, the conjugacy growth of
Z � Z is exponential.

Now suppose that for some collection of cells (semigroup presentation) Q
and some word u we have D(Q,u) ≥ Z � Z. We shall use the fact that Z � Z is
a rigid diagram group in terminology of [GS2, GS4]: by [GS2, Theorem 24]
(for another formulation see [GS4, Section 10]), there exists an embedding Ψ
of Z � Z into D(Q,u) induced by a (ψ(ac), u)-diagram Γ, and a map ψ that
takes letters a, b, c to words ψ(a), ψ(b), ψ(c) over the alphabet of Q, and each
of the three cells x → y of P to a nontrivial (ψ(x), ψ(y))-diagram ψ(x → y)
over Q. The map Ψ takes each (ac, ac)-diagram Δ of D(P,ac) to the diagram
Γ−1ψ(Δ)Γ where ψ(Δ) is obtained from Δ by replacing every edge ε(e) by
the path ε(ψ(e)) and every cell π by the diagram ψ(π).

Note that the number of cells in Ψ(Δ) is big-O of the number of cells in Δ.
Hence if, as above, we let n = n0 + · · · + nk, then by property B, the diagram
Ψ(A(n0, . . . , nk)) is in the ball of radius O(n). Also note that Ψ(A(n0, . . . , nk))
is conjugate to the diagram ε(ψ(a)) + ψ(π)n0 + · · · + ψ(π)n0 + ε(ψ(c)). By
Theorem 4.2, part (i), ψ(π) is conjugate to an absolutely reduced diagram that
is a sum of simple or trivial diagrams Π1 + · · · +Πs, and the number of simple
diagrams among Πi is not zero. Therefore, Ψ(A(n0, . . . , nk) is conjugate to
the diagram

ε(ψ(a)) + (Πn0
1 + · · · + Πn0

s ) + · · · + (Πnk
1 + · · · + Πnk

s ) + ε(ψ(c)).

By Theorem 4.2, parts (ii) and (iii), different diagrams of the form Ψ(A(n0,
. . . , nk)) are not conjugate in D(Q,u). This proves that the conjugacy growth
of D(Q,u) is exponential. �

5. Groups acting on simplicial trees

Groups acting nontrivially on simplicial trees form a large and well studied
class of groups. “Most” of these groups contain free noncyclic subgroups. It is



ON THE CONJUGACY GROWTH FUNCTIONS OF GROUPS 311

quite possible that some of these free subgroups embed as Frattini subgroups.
So we expect their conjugacy growth to be exponential.

Conjecture 5.1. Suppose that G acts on a simplicial tree nontrivially and
faithfully. Then the conjugacy growth function of G is exponential provided
the growth function of G is exponential.

Theorem 5.2. Let G be the HNN-extension of a group H with associated
subgroups A,B such that AB ∪ BA �= H . Then the conjugacy growth function
of G is exponential.

Remark 5.3. Note that the Baumslag–Solitar group BS(m,n) = 〈a, b |
b−1amb = an〉, satisfies the conditions of Theorem 5.2 if and only if m,n are
not co-prime. There is no doubt that the conclusion of the theorem remains
true for every m,n except m = n = 1 (in which case BS(m,n) = Z

2 and the
conjugacy growth function is quadratic).

Proof. Let a ∈ G \ (AB ∪ BA), t be the stable letter of the HNN-extension.
Consider the subsemigroup S generated by t, ta. Every word in S has the
form

(5) tn1atn2 · · · atnk+1

were all ni ≥ 0, and n1, . . . , nk > 0.
Taking a cyclic shift if necessary, we will assume that nk+1 = 0.
We fix the presentation of G which consists of all relations of H plus the con-

jugacy relations ut = tv of the HNN-extension (here u ∈ A,v ∈ B). Suppose
that two words of the form (5) are conjugate in G. Then there exists an annu-
lar (Schupp) diagram Δ for this conjugacy with the inner (outer) label of the
form tn1atn2 · · · tnka (resp. tm1atm2 · · · tmla) (see [MS]). We can assume that
Δ has minimal possible number of cells. Since G is an HNN-extension, follow-
ing Miller and Schupp [MS], we can consider the t-bands, that is sequences of
cells corresponding to the HNN-relations such that every two consecutive cells
have a t-edge in common. Since our HNN-relations include all relations of the
form ut = tv, u ∈ A,v ∈ B, and since Δ has minimal possible number of cells,
every t-band must have length 1 or 0. It is proved in [MS], that Δ cannot
contain t-annuli (i.e., t-bands with same first and last t-edges). Also a t-band
cannot connect two t-edges on the same boundary component of Δ because
all ni ≥ 0. Hence, every t-band connects a t-edge of the inner boundary of Δ
with a t-edge on the outer boundary of Δ. Therefore, the t-bands subdivide
Δ into a number of disc van Kampen diagrams Γ1, . . . ,Γs without HNN-cells,
hence without t-edges. Thus, each Γi is a diagram over H , and so it consists
of one cell corresponding to a relation of H . Note that the boundary of Γi is
of the form p1(Γi)−1q1(Γi)p2(Γi)q2(Γi) (read counterclockwise) where p1(Γi)
is a subpath of the inner boundary of Δ, p2(Γi) is a subpath of the outer
boundary of Δ, q1(Γi) and q2(Γi) are sides of two consecutive t-bands.
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Since pj(Γi) does not contain t-edges, we obtain that either pj(Γi) is empty
or it is an a-edge, j = 1,2. Since all n1, . . . , nk are nonnegative, we have that
the label ui of the path q1(Γi) is from A, the label vi of the path q2(Γi)
is from B. Hence, each diagram Γi corresponds to a relation of H of the
form a−εiuia

δivi where εi, δi ∈ {0,1}. Since a /∈ AB ∪ BA, we conclude that
for every i, εi = δi. Therefore, the t-bands of Δ provide a correspondence
between letters of the words written on the inner and outer boundaries of Δ.
This correspondence shows that these two words are cyclic shifts of each other,
so l = k and for some j we have n1 = mj , n2 = mj+1, . . . (addition in the indices
is modulo k). Thus, we prove that two words of the form (5) are conjugate
in G if and only if they are cyclic shifts of each other. Hence, the conjugacy
growth function of G is exponential. �
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