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SPECTRAL DECIMATION ON HAMBLY’S HOMOGENEOUS
HIERARCHICAL GASKETS

SHAWN DRENNING AND ROBERT S. STRICHARTZ

Abstract. We give a complete description of the Dirichlet and
Neumann spectra of the Laplacian on a class of homogeneous

hierarchical fractals introduced by Hambly. These fractals are

finitely ramified but not self-similar. We use the method of spec-
tral decimation. As applications, we show that these spectra

always have infinitely many large spectral gaps, allowing for nice

convergence results for eigenfunction expansions, and under cer-
tain restrictions we give a computer-assisted proof that the set of

ratios of eigenvalues has gaps, implying the existence of quasiel-
liptic PDE’s on the product of two such fractals. The computer

programs used in this paper and more detailed explanations of

the algorithms can be found at www.math.cornell.edu/~sld32/
FractalAnalysis.html.

1. Introduction

Analysis on fractals has been highly developed in the context of finitely
ramified self-similar fractals (see the books [3], [13], [20]) and the expository
article [17]). In an attempt to extend the theory beyond this context, Hambly
([9], [10]) introduced various examples of finitely ramified hierarchical fractals
that are not self-similar. Roughly speaking, a hierarchical fractal is a set that
may be written as a union of cells of level m, for each m, so that each cell
of level m subdivides into cells of level m + 1 in a specified manner. It is
finitely ramified if the intersections of distinct cells of a given level consist of
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finite sets. It is homogeneous if the subdivision scheme is the same for all cells
of a given level (but it may vary from level to level). In [9], the subdivision
scheme is a variant of the one for the usual Sierpinski gasket. Each cell of
level m is contained in a triangle, and that triangle is split into triangles of
sides 1/bm+1 times the side of the original triangle for bm+1 ∈ 2,3, . . . , the
upside-down triangles are deleted and the ones with the same orientation as
the original contain the cells of level m + 1. The resulting gasket, which
we denote HH(b) for b = (b1, b2, . . .) is homogeneous (in [10] the subdivision
scheme is allowed to vary from cell to cell). In this paper, we will study
these gaskets in the case where each bj equals 2 or 3. Although Hambly’s
original motivation was to look at these gaskets from a probablistic point of
view, allowing the choice of the bj ’s to be governed by random processes that
produce “statistically self-similar fractals,” there are interesting statements
that can be made about the entire class of fractals. Most important, the
definition of a standard Laplacian following the lines of Kigami’s definition
for SG [12] is quite straight forward. In this work, we study the spectrum
(Dirichlet or Neumann) of this Laplacian.

Here, we briefly recap the definition. The fractal will be realized as the limit
of a sequence of graphs Γ0,Γ1, . . . with vertices V0 ⊆ V1 ⊆ · · · . The initial graph
Γ0 is just the complete graph on V0 = {q0, q1, q2}, the vertices of a triangle,
which is considered the boundary of HH(b). The entire fractal is the only
0-cell, which has V0 as its boundary. At stage m of the construction, all the
cells of level m − 1 lie in triangles whose vertices make up Vm−1. If bm = 2,
then each cell of level m − 1 splits into three cells of level m, adding three new
vertices to Vm, connected exactly as in the SG2 (the usual Sierpinski gasket)
construction. If bm = 3, then each cell splits into six cells of level m, of side
length 1/3 that of the (m − 1)-cell, adding seven vertices in Vm, connected as
shown in Figure 1 (Section 2). The choice of all bj = 2 leads to the ordinary
SG2, and the choice of all bj = 3 leads to a self-similar fractal SG3 that is well
studied [20].

We define the unrenormalized energy of a function on Vm by

(1.1) Em(u) =
∑
x ∼

m
y

(
u(x) − u(y)

)2
.

The energy renormalization factors are r2 = 3/5 and r3 = 7/15 for SG2 and
SG3, respectively. That means we want to define

(1.2) Em(u) = (3/5)−m2(7/15)−m3Em(u)

as the renormalized energy, where m = m2 + m3 and m2 = #{j ≤ m : bj = 2}
and m3 = #{j ≤ m : bj = 3}. Then Em(u) is always nondecreasing, and is
constant if u is harmonic, so we may define energy on HH(b) by

(1.3) E (u) = lim
m→∞

Em(u)
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with dom E (always a subspace of the continuous functions) defined as the
space of functions with E (u) < ∞. Then E extends by polarization to a bi-
linear form E (u, v) which serves as an inner product on the Hilbert space
dom E /constants. We let μ denote the probability measure assigning weight
(1/3)m2(1/6)m3 to each m-cell. The standard Laplacian may then be de-
fined using the weak formulation: u ∈ domΔ with Δu = f if f is continuous,
u ∈ dom E , and

(1.4) E (u, v) = −
∫

fv dμ

for all v ∈ dom0 E (the functions in dom E vanishing on V0). There is also a
pointwise formula for any point in V∗ =

⋃
m Vm (not in V0):

(1.5) Δu(x) = 3/2 lim
m→∞

5m2(90/7)m3Δmu(x),

where Δm is a discrete Laplacian associated to the graph Γm. If x is a point
with 4 neighbors in Γm, then

(1.6) Δmu(x) =
∑
y ∼

m
x

(
u(y) − u(x)

)

(with 4 terms in sum), while if x has 6 neighbors in Γm then

(1.7) Δmu(x) = 2/3
∑
y ∼

m
x

(
u(y) − u(x)

)

(with 6 terms in sum). Note that the renormalization factor 5 is the reciprocal
of the product of the factors 3/5 and 1/3 associated to energy and measure for
bj = 2, while 90/7 is the reciprocal of the product of the factors 7/15 and 1/6
for bj = 3. The derivation of (1.6) and (1.7) from (1.4) is obtained by taking v
to be the piecewise harmonic function at level m which satisfies v(x) = 1 and
v(z) = 0 for all z ∈ Vm, z �= x, and then taking the limit as m → ∞. The exact
statement of the converse is that if the limit (1.5) is uniform and converges
to a continuous function f , then (1.4) holds.

The method of spectral decimation, first described for SG2 and related
examples by Fukushima and Shima ([8], [15]), describes a connection between
the eigenfunctions and eigenvalues of the discrete Laplacians Δm for different
values of m, and the Laplacian Δ. It also yields a complete description of the
Dirichlet and Neumann spectra of those Laplacians. (The Neumann spectrum
may be defined in terms of normal derivatives, but is easiest to understand by
considering the double cover H̃H(b), extending functions from HH(b) by even
reflection, and imposing the pointwise eigenfunction equation at the boundary
points in V0, which now have 4 neighbors.) It is known from [16] that SG3

also enjoys spectral decimation. We present the explicit details in Sections 2
and 3. These results have also been obtained independently in [2] and [21].
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Here is an outline of spectral decimation for both cases SG2 and SG3. In
each case there is a finite set of forbidden eigenvalues, and a rational function
denoted R2 or R3. First, there is a local extension algorithm that tells you
how to extend (uniquely) a function u defined on Vm to a function defined
on Vm+1 so as to satisfy the λ-eigenvalue equations on points of Vm+1\Vm,
provided λ is not a forbidden eigenvalue. Then, if it is assumed that u satisfies
a λm-eigenvalue equation on Vm, the extended function will satisfy the λm+1-
eigenvalue equation on Vm+1 provided λm = Rj(λm+1) and λm+1 is not a
forbidden eigenvalue. Every eigenfunction u on SGj has a generation of birth
m0 and a sequence {λm} of discrete eigenvalues for m ≥ m0 (related as above)
such that u restricted to Vm is a λm-eigenfunction, and λm is not a forbidden
eigenvalue for any m > m0 (it may be, and often is, for m = m0). For SG2,
R2(x) = x(5 − x) and the forbidden eigenvalues are 2, 5, 6. For SG3, we will
show that

(1.8) R3(x) =
3x(5 − x)(4 − x)(3 − x)

14 − 3x

and the forbidden eigenvalues are 3 ±
√

5, 3, 5, and 6. For SG2 the function
R2 has two inverses R−1

21 (x) = 5−
√

25−4x
2 and R−1

22 (x) = 5+
√

25−4x
2 , so we have

either λm+1 = R−1
21 (λm) or λm+1 = R−1

22 (λm) for m ≥ m0. In order for the
limit to exist in

(1.9) λ = 3/2 lim
m→∞

5mλm,

which gives the eigenvalues of Δ in terms of the eigenvalues of Δm, it is
necessary that λm → 0, and hence λm+1 = R−1

21 (λm) for all but a finite number
of m’s. For SG3 there are 4 inverses R−1

31 ,R−1
32 ,R−1

33 , and R−1
34 of R3, and

similar conditions hold.
To describe the explicit Dirichlet and Neumann spectra, we have to de-

scribe all possible generations of birth and values for λm0 , and describe the
multiplicity of the eigenvalue by giving an explicit basis for the λm0 -eigenspace
of Δm0 . For each m, we have to add up the dimensions of eigenspaces with
generation of birth m0 ≤ m, extended to Γm in all allowable ways. This total
must be #Vm (Neumann) or #Vm − 3 (Dirichlet), the dimension of the space
on which the symmetric operator Δm acts. The details are known for SG2

([7], [20]). We present the details for SG3 in Section 3.
In Section 4, we show that spectral decimation is also valid on HH(b).

Essentially, in passing from level m to level m + 1, we use the method of
spectral decimation associated to SGbm+1 . As a consequence, we are able to
give an order of magnitude estimate for the eigenvalue counting function

(1.10) ρ(x) = #{j : λj ≤ x}.
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For x between #Vm−1 and #Vm (on the order of 3m2 · 6m3), we will have ρ(x)
on the order of 5m2(90/7)m3 , which means xα(x) for

(1.11) α(x) =
m2 log 5 + m3 log 90/7

m2 log 3 + m3 log 6
.

Then the Weyl ratio

(1.12) W (x) =
ρ(x)
xα(x)

will be bounded, and bounded away from zero. In fact the log–log graph of
W (x) shows a characteristic pattern that allows us to read off the sequence
(b1, b2, . . .). We believe that this is an important clue for the existence of
a spectral segment heuristic that should have consequences in many other
contexts (see the discussion at the end of Section 4).

In Section 5, we give some applications involving the gap structure of the
spectra. We define a c-gap with constant c > 1 to be a consecutive pair of
eigenvalues λ,λ′ such that λ′

λ ≥ c. We show that there are infinitely many
c-gaps, and that c may be chosen greater than 2. This implies the uniform
convergence of eigenfunction expansions if you take the partial sums up to
a gap, both on HH(b) and any product HH(b) × HH(b′), by the methods of
[18] and [19]. We also show that there are gaps in the set of ratios λ

λ′ where
λ and λ′ are any eigenvalues of HH(b), provided the sequence b is composed
of only (2,3) or (3,2) pairs. These gaps are very small. We give a computer
assisted proof. Our method also allows us to find many gaps in the ratios of
eigenvalues for SG2 and SG3. The significance of these gaps is that it enables
you to construct quasielliptic PDE’s on the product HH(b) × HH(b′). These
ideas were introduced in [5] for SG2. Other recent works establishing such
gaps for Vicsek type fractals are [6] and [11].

2. Spectral decimation on SG3

The goal of this paper is to extend some of the fractal analysis that has
been developed on the Sierpinski gasket (SG2). First, we define SG3. The
first level of SG3 is shown in Figure 1. SG3 is the unique solution of

(2.1) K =
6⋃

i=1

FiK

among nonempty compact sets, where each Fi is a similarity mapping the
large triangle into the six smaller triangles in the same orientation.

Just as with SG2 it is possible to define a Laplacian on each approximation
to SG3 (and in the process define energy) and derive a pointwise formula for
it. The pointwise formula for the Laplacian will be the same as the one for
SG2 except for vertices where three cells meet. Here, it is necessary to scale
everything by 2/3. This factor arises because when a function is integrated
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Figure 1. Building block for SG3.

Figure 2. A general function on one cell.

over SG3, a vertex neighboring three cells is given 3/2 as much weight in the
integral as a vertex neighboring only two cells. An easy computation shows
that the energy renormalization factor is 7/15. We also have a measure renor-
malizaton factor of 1/6. Together, these will give a Laplacian renormalization
factor of 90/7. Finally, a Laplacian on SG3 can be defined as the renormal-
ized limit of the Laplacian on level m. We want to study eigenfunctions for
this Laplacian. Our first step will be to derive a spectral decimation process
similar to the one already defined on SG2.

Given a function on Vm, we want to extend it to Vm+1 so that the λ-
eigenvalue equation holds at all points of Vm+1\Vm. This is a local process
and it is only necessary to solve the problem for one cell. If we can come
up with an extension algorithm for Figure 2, we can extend it by linearity
to get an algorithm for a cell with any values on the boundary. The explicit
eigenvalue equations are

(4 − λ)x = a + x′ + y + w,
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(4 − λ)w =
2
3
(x + x′ + y + y′ + z + z′)

and similarly for other vertices. It is a straightforward calculation to solve
these equations.

Lemma 2.1. Let u be defined on Vm and take values on Vm+1 in one Vm

cell shown in Figure 2. Then u satisfies the λ-eigenvalue equation on the
points of Vm+1 for λ �= 3 ±

√
5, 3, 5 if and only if

w =
4

3(4 − 6λ + λ2)
(a + b + c),

x =
(

1
3 − λ

+
36 − 7λ

3(3 − λ)(5 − λ)(4 − 6λ + λ2)

)
a

+
(

16 − 3λ

3(5 − λ)(4 − 6λ + λ2)

)
b +

(
36 − 7λ

3(3 − λ)(5 − λ)(4 − 6λ + λ2)

)
c

and similarly for the other vertices.

Eigenvalues associated with the eigenfunction extension algorithm satisfy
the eigenvalue equation at the vertices of Vm. Specifically, let fm be an
eigenfunction on level m with eigenvalue λm, we want to find an eigenvalue
λm+1 such that when we extend fm to fm+1 using λm+1 in the eigenfunction
extension algorithm, fm+1 is an eigenfunction for λm+1. The only vertices
where fm+1 could possibly not satisfy the eigenfunction equations are vertices
where two or three cells meet. We will solve the problem in the case of two
cells meeting. It is easy to check that our solution also works for where three
cells meet.

Figure 3 shows the values of fm+1 in a neighborhood of a junction point
in Vm. At the point e, we have that fm and fm+1 satisfy

(4 − λm)e = a + b + c + d,

(4 − λm+1)e = w + x + y + z,

respectively. Using Lemma 2.1, it is now straightforward to verify that when
λm+1 �= 3 ±

√
5, 3, 5, or 6 we can write λm in terms of λm+1 as follows:

(2.2) λm =
3(λm+1 − 5)(λm+1 − 4)(λm+1 − 3)λm+1

3λm+1 − 14
.

Theorem 2.2. Suppose λm and λm+1 are related by (2.2), and λm+1 �=
3 ±

√
5, 3, 5, or 6. Then every λm-eigenfunction on Vm extends uniquely to

a λm+1-eigenfunction on Vm+1 by Lemma 2.1, and every λm+1-eigenfunction
on Vm+1 restricts to a λm-eigenfunction on Vm.

Proof. If λ �= 3 ±
√

5, 3, or 5, the above argument shows the existence of
an extension. If λm+1 �= 6, we can run the argument backward and obtain
uniqueness. �
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Figure 3. Two cells meeting.

Recall that for the five forbidden eigenvalues 3, 5, 3 ±
√

5, and 6 that the
eigenfunction extension algorithm will not work. If f is an eigenfunction on
level m corresponding to eigenvalue λ, then using the inverse to Equation (2.2)
(this inverse can be explicitly computed), we get four potential eigenvalues
to use with the eigenfunction extension formula in order to extend f to an
eigenfunction on level m+1. For each of these four potential eigenvalues that
is not a forbidden value, we can use the eigenfunction extension algorithm
to get an eigenfunction on level m + 1. From the second graph in Figure 4,
it is easy to see that in the interval [0,6] only the eigenvalues 0 and 6 are
mapped to forbidden values. The eigenvalue 0 maps to 0, 3, 4, and 5. Since
3 and 5 are forbidden eigenvalues, if λ = 0, f can only be extended in two
ways. Similarly, 6 maps to 3 ±

√
2 and 3 ±

√
5 and since 3 ±

√
5 are forbidden

values, if λ = 6, f can only be extended in two ways. Finally, for any other
value of λ, f can be extended in four ways.

3. Dirichlet and Neumann spectra for SG3

For eigenvalues λ = 3, 5, 3 ±
√

5, and 6, we saw that the eigenfunction ex-
tension algorithm did not work. However, there are eigenfunctions with these
eigenvalues—they just cannot be obtained using the eigenfunction extension
algorithm. We can still completely describe all eigenfunctions with these
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Figure 4. The graph of the inverse of the function in Equation (2.2).

forbidden eigenvalues. We will do this for the particular cases of Dirichlet
and Neumann eigenfunctions. First, we describe the Dirichlet eigenfunctions
appearing on level 1. If the necessary equations are solved on level 1, the
Dirichlet eigenfunctions illustrated in Figure 5 are found. These eigenfunc-
tions can be rotated to give additional eigenfunctions. Doing this gives us 1,
1, 2 and 2 linear independent eigenfunctions for eigenvalues 6, 3 ±

√
5, 5, and

3, respectively.
There are no eigenfunctions of eigenvalue 3 ±

√
5 on any level other than

level 1. For eigenvalues 3, 5, and 6, there are Dirichlet eigenfunctions that
are “born” on each level. We can completely describe these eigenfunctions.
In order to do this, first, we need to consider the Neumann eigenfunctions
on level 1. The best way to compute these is to separately find the sym-
metric and anti-symmetric eigenfunctions. First, observe that the Dirichlet-6
eigenfunction on level 1 shown in Figure 5 is also a Neumann anti-symmetric
eigenfunction. Additionally, we find the Neumann anti-symmetric eigenfunc-
tion shown in Figure 6. The Neumann symmetric eigenfunctions on level 1
are shown in Figure 7. After considering rotations, we see that together these
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Figure 5. Dirichlet eigenfunctions on level 1 of SG3 for
eigenvalues 6, 3 ±

√
5, 5, and 3.

Neumann eigenfunctions generate a 10-dimensional space as desired. The
multiplicities for eigenvalues 6, 0, 4, and 3 ±

√
2 respectively, are 4, 1, 1, and

4 (2 for each).
We can use the eigenfunctions we derived on level 1 to construct eigenfunc-

tions with forbidden eigenvalues on higher levels. The constructions we will
give are general; that is they work for any level of our approximation to SG3.
Furthermore, each eigenfunction will be supported in only a small part of the
domain (this will be made more explicit later). For this reason, we can use
the same procedure to construct Neumann and Dirichlet eigenfunctions. We
just need to be careful near the boundary.

For eigenvalue 6, we can construct an eigenfunction that is equal to the
Dirichlet-6 eigenfunction on one cell of level m and zero elsewhere. This will
be both a Dirichlet and Neumann eigenfunction. It is clear that all of these
eigenfunctions are linearly independent. Next, notice that the symmetric
Neumann-6 eigenfunction can be rotated to give three linearly independent
Neumann-6 eigenfunctions. Around any vertex v on level m, we can construct
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Figure 6. Neumann anti-symmetric eigenfunction for eigen-
values 3 ±

√
2.

Figure 7. Neumann symmetric eigenfunctions for eigenval-
ues 6, 0, 4, and 3 ±

√
2.

an eigenfunction on level m+1 that is equal to one of the symmetric Neumann-
6 eigenfunctions on each cell containing v and equal to zero on each cell not
containing v. Notice that each one of these eigenfunctions is nonzero on
exactly one vertex of level m. Thus, it is easy to see that these eigenfunctions
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Figure 8. Anti-symmetric Dirichlet eigenfunctions for
eigenvalues 3 and 5.

together with the first set are linearly independent. Also, each one of these
eigenfunctions will be Neumann and all but the three that are nonzero on the
boundary will be Dirichlet. Thus, on level m + 1 we have #Tm + #Vm − 3
Neumann and #Tm + #Vm Dirichlet eigenfunctions where Tm and Vm are
respectively the set of cells and vertices on level m.

For eigenvalues 3 and 5, the first thing we need is an anti-symmetric Dirich-
let eigenfunction on level 1. We already have symmetric Dirichlet eigenfunc-
tions on level 1; if we reflect these eigenfunctions about an axis of nonsymme-
try and subtract the result, we get anti-symmetric eigenfunctions. The result
is exhibited in Figure 8. Around any cycle of level m we can connect these
eigenfunctions like batteries to obtain a new eigenfunction. This concept is
illustrated in Figure 9.

Thus, if Cm is the set of cycles on level m, on level m + 1 we get #Cm

eigenfunctions each for eigenvalues 3 and 5. It can be checked that these
eigenfunctions are linearly independent. Additionally, in the Dirichlet case,
we can string the eigenfunctions in Figure 8 along the sides of the fractal
to obtain two additional eigenfunctions. The multiplicities of all these new
eigenfunctions are summarized in Table 1.

We know that on level m we should have #Vm Neumann and #Vm − 3
Dirchlet eigenfunctions. Now we want to check that our spectral decimation
process actually gives this many eigenfunctions. The first step is to give some
simple recursive formulas for #Tm, #Cm, and #Vm. We easily see that:

#Tm = 6 · #Tm−1,(3.1)
#Cm = #Cm−1 + 3 · #Tm−1,(3.2)
#Vm = #Vm−1 + 7 · #Tm−1.(3.3)

Now we will verify that the spectral decimation gives all of the Dirchlet
eigenfunctions. We will do this by induction on the level m. On level 1, we
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Figure 9. An eigenfunction for eigenvalue 3 obtained by
connecting eigenfunctions like batteries.

Table 1. Multiplicities of eigenvalues not coming from the
eigenfunction extension algorithm

λm+1 Dirichlet multiplicity Neumann multiplicty
3 or 5 #Cm + 2 #Cm

6 #Tm + #Vm − 3 #Tm + #Vm

have given all 7 (counting multiplicities) eigenfunctions. On level 2, we get
26 eigenfunctions by extending the 7 eigenfunctions on level 1 with the eigen-
function extension algorithm. Using Table 1, we see that we also get 5 eigen-
functions each for eigenvalues 3 and 5 and 13 eigenfunctions for eigenvalue 6.
Together this gives us 49 Dirichlet eigenfunctions for level 2. It is easy to see
that Vm − 3 is indeed 49. Now assume that the spectral decimation process
gives us #Vm − 3 Dirichlet eigenfunctions on level m (with m > 3). We want
to show that we get Vm+1 − 3 eigenfunctions on level m + 1. From Table 1,
we know that on level m+1 we will have, in total, 2 · #Cm +#Tm +#Vm +1
eigenfunctions of eigenvalues 3, 5, or 6. Next note that there will never be
any Dirichlet eigenfunctions with eigenvalue 0. Thus, for every eigenfunc-
tion on level m not of eigenvalue 6, we will get four eigenfunctions on level
m + 1 from the eigenfunction extension algorithm. For each eigenfunction
of eigenvalue 6, we will get two eigenfunctions on level m + 1. Since there
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are #Tm−1 + #Vm−1 − 3 eigenfunctions of eigenvalue 6 on level m, we get
4 · #Vm − 12 − 2(#Tm−1 +#Vm−1 − 3) = 4 · #Vm − 2 · #Tm−1 − 2 · #Vm−1 − 6
eigenfunctions on level m + 1 from the eigenfunction extension algorithm.
Thus, we want to show that:

#Vm+1 − 3 = (2 · #Cm + #Tm + #Vm + 1)
+ (4 · #Vm − 2 · #Tm−1 − 2 · #Vm−1 − 6).

Replacing #Vm+1 with #Vm + 7 · #Tm and collecting terms, we get

6 · #Tm = 4 · #Vm + 2 · #Cm − 2 · #Vm−1 − 2 · #Tm−1 − 2.

Now use the recursive formulas for #Tm, #Vm, and #Cm to rewrite this
as

36 · #Tm−1 = 4 · #Vm−1 + 28 · #Tm−1 + 2 · #Cm−1

+ 6 · #Tm−1 − 2 · #Vm−1 − 2 · #Tm−1 − 2.

Simplified this becomes

2 · #Tm−1 = #Vm−1 + #Cm−1 − 1.

This final formula is easy to prove for all m by induction. This completes
the proof and proves the following theorem.

Theorem 3.1. If m ≥ 2, then the Dirchlet “born” eigenfunctions (the mul-
tiplicities of which are summarized in Table 1) together with the eigenfunc-
tions obtained by applying the eigenfunction extension algorithm to Dirichlet
eigenfunctions of Δm−1 form a basis for the Dirichlet eigenspace of Δm.

A similar theorem can be formulated for Neumann eigenfunctions.

4. Spectral decimation on homogeneous hierarchical gaskets

It is a straightforward matter to extend the spectral decimation method
from SG2 and SG3 to HH(b) for any b. If we have any eigenfunction u,

(4.1) −Δm−1u = λ(m−1)u

on the graph Γm−1, then u extends to an eigenfunction ũ on the graph Γm,

(4.2) −Δmũ = λ(m)u,

via the SGbm extension algorithm, provided Rbm(λ(m)) = λ(m−1) and λ(m) is
not a forbidden eigenvalue for SGbm . Moreover, we obtain all Dirichlet (or
Neumann) eigenfunctions on Γm by starting with a Dirichlet (or Neumann)
eigenfunction with a forbidden eigenvalue on Γm0 for some m0 ≤ m and iter-
ating the above extension. The first statement holds because the extension
algorithm is local, and the second follows by the same counting arguments
for SG2 and SG3. By passing to the limit as m → ∞ in (1.5), we obtain a
complete set of eigenfunctions for Δ on HH(b). We summarize the results as
follows.
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Theorem 4.1. If m ≥ 2, then the Dirichlet “born” eigenfunctions corre-
sponding to SGbm together with the eigenfunctions obtained by applying the
eigenfunction extension algorithm associated to bm to Dirichlet eigenfunctions
of Δm−1 form a basis for the Dirichlet eigenspace of Δm. Every Dirichlet
eigenfunction on HH(b) arises in this fashion.

A similar theorem can be formulated for Neumann eigenfunctions.
Now we want to define a Weyl ratio for an arbitrary HH(b). Let {λj }

denote the eigenvalues of Δ on HH(b) and {λ
(m)
j } denote the eigenvalues of

Δm. We define

gm(x) = lim
n→∞

5N2(n)(90/7)N3(n)R−1
bm+n1 ◦ · · · ◦ R−1

bm+11
(x),

where Nk(n) = #{j : m < j ≤ n and bj = k}.
Then for small j (corresponding to eigenfunctions born on level m0 ≤ m)

we will have
λj = (3/2)5mpm(90/7)m(1−pm)gm

(
λ

(m)
j

)
,

where pm = m2/m. Now let ρ be the eigenvalue counting function for HH(b)
defined by (1.10) and ρm be the eigenvalue counting function for Δm. We
then have the following relationship

ρ(x) = ρm

(
g−1

m

(
5−mpm(90/7)−m(1−pm)x

))
.

Note that for small enough x that we can ignore the g−1
m since gm(x) = x +

O(x2) and we can bound the error independent of the choice of b. Let

tm = m
(
pm log 5 + (1 − pm) log 90/7

)
.

Since tm increases with m, it follows that for every x that there is an m so
that tm ≤ logx < tm+1. Now we want to define px as a linear interpolation of
pm and pm+1

px =
logx − tm
tm+1 − tm

pm+1 +
tm+1 − logx

tm+1 − tm
pm.

We now define the Weyl ratio as

W (x) =
ρ(x)
xα(x)

,

where α(x) is defined as

α(x) =
px log 3 + (1 − px) log 6

px log 5 + (1 − px) log(90/7)
.

The next theorem explains why W (x) is a reasonable definition for the Weyl
ratio.

Theorem 4.2. There exists an M so that

1/M < W (x) < M.
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Proof. In this proof, we will use the notation f(x) = Θ(g(x)) if f(x) =
O(g(x)) and g(x) = O(f(x)). First assume that x = etm for some m. We then
have

x = 5mpm(90/7)m(1−pm)

and thus
ρ(x) = ρm(g−1

m (1)).

We easily compute that

xα(x) = 3mpm6m(1−pm) = Θ(ρm(6)).

It’s clear that ρ(x) is bounded above by ρm(6). From Figure 10 we can
see that 1/2 is a lower bound for g−1

m (1). In particular, any eigenvalue of
Δm where R−1

31 and R−1
21 were applied at step m − 1 and m of the spectral

decimation process will be less than g−1
m (1). We conclude that ρ(x) > cρm(6)

for some constant c.
We now have

W (x) = ρ(x)/xα(x) = Θ(ρm(6))/Θ(ρm(6)) = Θ(1). �

Figure 10. A plot of the 32 different 5th level approxima-
tions to gm(x).
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An interesting observation is that in the figures above one can read off the
bi’s from the graph of the Weyl ratio plotted on a log–log scale. The reason for
this is that bi has a major influence on the spectrum over the interval where
ti ≤ logx < ti+1, and a relatively small influence elsewhere (except that ti
depends on all values of bj for j ≤ i). The interval [ti, ti+1] in the log–log plot
of W (x) will be bounded by two long nearly vertical curves, corresponding to
spectral gaps. These curves are immediately apparent visually. The length of
these intervals will depend on the value of bi, and the graph over this interval
will closely resemble the graph for SG2 when bi = 2 and SG3 when bi = 3, as
seen in Figures 11, 12, and 13.

The fact that the spectrum of HH(b) determines the sequence b is not at
all surprising. What is more significant is that the spectrum can be divided
into segments, each of which determines a particular value of bj . We see this
as a piece of evidence in favor of a spectral segment heuristic, which says that
the spectrum of Laplacians in many different contexts (graphs, manifolds,
fractals, etc.) may be divided into segments in a way that each segment
may be explained by the geometry of the underlying space at a certain scale.
Note that this is a heuristic, not a conjecture, and it is unlikely to be true

Figure 11. A graph of the Weyl ratio when b = (2,2,2,2, . . .).
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Figure 12. A graph of the Weyl ratio when b = (3,3,3,3, . . .).

in complete generality. Our hope is that it will spur investigations that may
lead to specific conjectures and perhaps theorems. We mention just a couple
of examples below.

Example 1. Spectral gaps are known to occur for certain fractals, and we
prove their existence for HH(b) in the next section. There are other fractals,
such as the pentagasket, for which there is experimental evidence for spectral
gaps [1] but, as yet, no proof, and there are other fractals, such as the Sierpin-
ski carpet, where the experimental evidence points to nonexistence of spectral
gaps [4]. Is it possible to relate the existence of spectral gaps to “geometric
gaps” in the fractal structure?

Example 2. For domains in Euclidean space (or more generally Riemann-
ian manifolds) with fractals boundary, there is a relationship between the
Minkowski dimension of the boundary and the remainder term in the Weyl
ratio for the Dirichlet or Neumann Laplacian due to Lapidus [14]. This in-
volves a global statement about the fractal nature of the boundary across all
scales on the one hand, and a global statement about the remainder in the
spectral asymptotics on the other hand. Is there a refinement of this result
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Figure 13. A graph of the Weyl ratio when b = (2,3,2,3, . . .).

that relates the fractal nature of the boundary on a specified scale with the
remainder in the Weyl ratio on a related segment of the spectrum?

5. Spectral gaps

Now we look at gaps in the spectrum of the Laplacian.

Definition 5.1. We define a c-gap for any constant c > 1 to be a consec-
utive pair of eigenvalues λ,λ′ such that λ′

λ ≥ c.

We will prove a theorem about the existence of c-gaps for c > 2. First, we
need the following lemma.

Lemma 5.1. The function gm(x)/x is an increasing function. Thus, gm(x)
magnifies gaps.

Proof. Let fn(x) = R−1
bm+n1 ◦ · · · ◦ R−1

bm+11
(x). It is clear from the definition

of gm(x) that it is enough to prove that fn(x)/x is increasing for all n. For
n = 1, this reduces to showing

Rbm+1(fn(x)) > R′
bm+1

(fn(x))fn(x),
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which is easily verified. The result now follows from induction and the fact
that if α(x), β(x) are differentiable functions with α(x)/x and β(x)/x increas-
ing, then α ◦ β(x)/x is increasing. �

Theorem 5.2. For any choice of b, there exist infinitely many c-gaps in
the Dirichlet spectrum of HH(b). Furthermore, we may take c > 2. That is,
we can find infinitely many pairs of consecutive eigenvalues λ,λ′ with λ′

λ ≥ c.

Proof. First, we show that there is such a gap in the spectrum of Δm. For
bm = 2, it is easy to see from spectral decimation that there will be a gap
(with c > 2) between R−1

21 (3 +
√

5) and R−1
22 (6). Similarly, for bm = 3, there

will be a c-gap (with c > 2) between R−1
31 (6) and R−1

32 (6). The result now
follows from the lemma. �

Theorem 5.3 (Computer assisted proof). There exist gaps in the ratios of
eigenvalues from the Dirichlet spectrum of SG3.

Proof. The computer program used in the proof of this theorem and the
next one can be found at www.math.cornell.edu/~sld32/FractalAnalysis.
html.

For every eigenvalue λ of Δ, there is some smallest m so that only the
function R−1

31 is applied after the mth step of the spectral decimation algo-
rithm. We will say that λ comes from step m if this is the case. We will
show that there are gaps in the ratios of all eigenvalues coming from the same
or consectutive steps. If λ and λ′ come from (say) level m and level m + 2
respectively, then λm+2 is at most R−1

bm+11
(R−1

bm+21
(6)) and λ′

m+2 is at least
3 −

√
2. Since gm+2 magnifies gaps, it is now easy to verify that all gaps in

the ratio of eigenvalues not coming from the same or consecutive levels are
sufficiently large (or small) so as not to interfere with the gaps we find.

First, we construct a covering Um of the spectrum of Δm (minus the eigen-
value 6). For Δ1, the interval [0,3 +

√
5] provides a cover. Now assume we

have a cover consisting of a finite union of closed intervals for Δm. For each
interval I in Um, we add the interval R−1

3i (I) for i = 1,2,3,4 to Um+1. We
also add the points 3,5 and 3 ±

√
2. Since R−1

3i [0,3 +
√

5] ⊂ [0,3 +
√

5] for
i = 1,2,3,4, we have that U1 ⊃ U2 ⊃ · · · .

Now we can compute a cover Rm for the ratios of all eigenvalues coming
from steps m − 1 and m. To each Un, we let Vn consist of all the intervals not
obtained by applying R−1

31 to an interval of Un−1. Let Wm = Vm ∪ R−1
31 (Vm−1).

For each pair of intervals [a, b] and [c, d] in Wm with d > a, we add the interval
[ gm(c)
gm(b) ,

gm(d)
gm(a) ] to Rm. The set Rm will contain all possible ratios of eigenvalues

coming from steps m − 1 and m. We know that for any m1,m2, the functions
gm1(x) and gm2(x) are the same. Since we also know U1 ⊃ U2 ⊃ · · · , it follows
that R1 ⊃ R2 ⊃ · · · . Therefore, for any m′ > m, Rm will contain all possible
ratios of eigenvalues coming from steps m′ − 1 and m′. Since there are only

http://www.math.cornell.edu/~sld32/FractalAnalysis.html
http://www.math.cornell.edu/~sld32/FractalAnalysis.html
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Table 2. Gaps in the ratios of eigenvalues from the Dirichlet
spectrum of SG3. The largest gap is (4.34572567,4.35469114)
of length 0.01707184

(2.93907568, 2.94842483) (2.95248083, 2.96642935)
(3.01181320, 3.02032781) (3.02032781, 3.02359946)
(3.09070006, 3.09456100) (3.72506327, 3.72517052)
(3.72517052, 3.72665657) (3.72665657, 3.72711091)
(4.15475473, 4.15887569) (4.28486874, 4.29647225)
(4.34572567, 4.35469114) (4.37775352, 4.37846477)
(4.38966354, 4.39183030) (4.40998448, 4.41087665)

finitely many eigenvalues coming from steps prior to step m, it follows that
Rm union a finite set forms a cover for all ratios of eigenvalues coming from
consecutive steps.

Implementing this algorithm on a computer with m = 4, we find that there
actually exist gaps in the ratios of eigenvalues (see Table 2). It is possible
that carrying out the algorithm with a larger m would reveal more gaps, but
most likely those gaps would be smaller than the ones we found. �

Now we adapt this algorithm so it can be applied to HH(b) for more general
choices of b. As with the case of SG3, it is enough to compute all ratios of
eigenvalues coming from consecutive levels. First for an m ∈ N, we want to
construct a suitable cover for the spectrum of Δm. Fix an n ∈ N. For an
arbitrary m, we do not know in general the values of bm−n+1, . . . , bm, however
we do know there are only 2n possibilities. For each of these 2n possibilities,
we can compute as set of intervals Wm,i analogous to the set Wm in the proof
of Theorem 5.3. Now for each i we want to compute all ratios of eigenvalues
coming from the set of interval Wm,i. The ratios we get will depend on
the sequence bm+1, bm+2, . . . . In theory this means that for each i we have
to consider an infinite number of possibilities. In practice the approximate
eigenvalues converge fast enough so that we only have to know bm+1, . . . , bm+k

for k sufficiently large. So for each Wm,i we get 2k coverings of all ratios of
eigenvalues. In total this gives us 2k+n coverings Rm,1, . . . ,Rm,2k+n . Now any
interval in the complement of

⋃2k+n

i=1 Rm,i will be a gap in ratios of eigenvalues
of the Laplacian associated to HH(b). Unfortunately this approach does not
yield any gaps in the ratio of eigenvalues from the Dirichlet spectrum of an
arbitrary HH(b). However, if (b2m+1, b2m+2) is either (2,3) or (3,2) for all
m ≥ 0, then this method does yield gaps in the ratio of eigenvalues from the
Dirichlet spectrum of HH(b) [see Table 3].
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Table 3. Gaps in the ratios of eigenvalues from the Dirichlet
spectrum for those HH(b) described in Theorem 5.4. The
largest gap is (1.99513995,1.99595190) of length 0.00081194

(1.94662032, 1.94673709) (1.95519566, 1.95526996)
(1.95526996, 1.95527236) (1.95527236, 1.95529896)
(1.95529896, 1.95530136) (1.95530136, 1.95540053)
(1.95873916, 1.95880628) (1.96461768, 1.96462662)
(1.97676087, 1.97679670) (1.97679670, 1.97679854)
(1.97679854, 1.97679863) (1.97679863, 1.97680047)
(1.97680047, 1.97680419) (1.99485083, 1.99496915)
(1.99496915, 1.99497172) (1.99497172, 1.99513738)
(1.99513738, 1.99513995) (1.99513995, 1.99595190)
(2.00719160, 2.00749815) (2.01347351, 2.01360832)

Theorem 5.4 (Computer assisted proof). Let b = (b1, b2, . . .) and suppose
(b2m+1, b2m+2) is either (2,3) or (3,2) for all m ≥ 0. Then there are gaps in
the ratios of eigenvalues coming from the Dirichlet spectrum of HH(b).
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