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SOME DYNAMICAL PROPERTIES FOR LINEAR
OPERATORS

BINGZHE HOU, GENG TIAN AND LUOYI SHI

Abstract. In this article, some dynamical properties for con-
tinuous linear operators are studied. We investigate that neither

normal operators nor compact operators can be Li–Yorke chaotic.

In addition, we show that a small compact perturbation of the
unit operator could be distributionally chaotic.

1. Introduction and preliminaries

A discrete dynamical system is simply a continuous mapping f : X → X
where X is a complete separable metric space. For x ∈ X , the orbit of x under
f is Orb(f,x) = {x, f(x), f2(x), . . .} where fn = f ◦ f ◦ · · · ◦ f is the nth iterate
of f obtained by composing f with n times.

In 1975, Li and Yorke [8] observed complicated dynamical behavior for the
class of interval maps with period 3. This phenomena is currently known
under the name of chaos in the sense of Li and Yorke.

Definition 1. {x, y} ⊆ X is said to be a Li–Yorke chaotic pair, if

limsup
n→∞

d(fn(x), fn(y)) > 0, lim inf
n→∞

d(fn(x), fn(y)) = 0.

Furthermore, f is called Li–Yorke chaotic, if there exists an uncountable sub-
set Γ ⊆ X such that each pair of two distinct points in Γ is a Li–Yorke chaotic
pair.

In Schweizer and Smı́tal’s paper [13], distributional chaos was defined,
which is a kind of chaos stronger than Li–Yorke chaos.
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For any pair {x, y} ⊂ X and any n ∈ N, define distributional function
Fn

xy : R → [0,1]:

Fn
xy(τ) =

1
n

#{0 ≤ i ≤ n − 1 : d(f i(x), f i(y)) < τ }.

Furthermore, define

Fxy(τ) = lim inf
n→∞

Fn
xy(τ),

F ∗
xy(τ) = limsup

n→∞
Fn

xy(τ).

Both Fxy and F ∗
xy are nondecreasing functions and may be viewed as cumu-

lative probability distributional functions satisfying Fxy(τ) = F ∗
xy(τ) = 0 for

τ < 0.

Definition 2. {x, y} ⊂ X is said to be a distributionally chaotic pair, if

∀τ > 0, F ∗
xy(τ) ≡ 1 and ∃ε > 0, Fxy(ε) = 0.

Furthermore, f is called distributionally chaotic, if there exists an uncountable
subset Λ ⊆ X such that each pair of two distinct points in Λ is a distribu-
tionally chaotic pair. Moreover, Λ is called a distributionally ε-scrambled
set.

Distributional chaos always implies Li–Yorke chaos, as it requires more
complicated statistical dependence between orbits than the existence of points
which are proximal but not asymptotic. The converse implication is not true
in general. However, in practice, even in the simple case of Li–Yorke chaos,
it might be quite difficult to prove chaotic behavior from the very definition.
Such attempts have been made in the context of linear operators (see [2], [3]).
Further results of [2] were extended in [11] to distributional chaos for the anni-
hilation operator of a quantum harmonic oscillator. More about distributional
chaos, we refer to [1], [9], [10], [15], [16].

We are interested in the dynamical systems induced by continuous linear
operators on Banach spaces. From Rolewicz’s article [12], hypercyclicity is
widely studied (Grosse–Erdmann’s and Shapiro’s articles [5], [14] are good
surveys). In fact, it coincides with a dynamical property “transitivity.” With
regard to distributional chaos, Mart́ınez-Giménez et al. gave a discussion for
shift operators in [4]. In a recent article [7] of the first author, one introduces
a new dynamical property for linear operators called norm-unimodality which
implies distributional chaos.

Definition 3. Let X be a Banach space and let T ∈ L(X). T is called
norm-unimodal, if we have a constant r > 1 such that for any m ∈ N, there
exists xm ∈ X satisfying

lim
k→∞

‖T kxm‖ = 0, and ‖T ixm‖ ≥ ri‖xm‖, i = 1,2, . . . ,m.
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Furthermore, such r is said to be a norm-unimodal constant for the norm-
unimodal operator T .

Theorem 4 (Distributionally chaotic criterion [7]). Let X be a Banach
space and let T ∈ L(X). If T is norm-unimodal, then T is distributionally
chaotic.

More generally, is the following theorem.

Theorem 5 (Weakly distributionally chaotic criterion [7]). Let X be a
Banach space and let T ∈ L(X). Suppose that Cm is a sequence of positive
numbers increasing to +∞. If there exist {xm} ∞

m=1 in X and a sequence of
positive integers {Nm} ∞

m=1 increasing to +∞, satisfying

(WNU1) lim
k→∞

‖T kxm‖ = 0;

(WNU2) lim
m→∞

#{0 ≤ i ≤ Nm − 1; ‖T ixm‖ ≥ Cm‖xm‖}
Nm

= 1.

Then T is distributionally chaotic.

2. Normal operators and compact operators

In this section, we will discuss some dynamical properties of normal oper-
ators and compact operators. Chaos for small compact perturbations of the
unit operator are also considered.

Recall that the ω-limit set of a point x ∈ X in a dynamical system (X,f),
is defined by ω(x) = {y ∈ X; ∃{ni} ↑ +∞ s.t. limi→∞ fni(x) = y}. Denote by
D the unit open disk on complex plane. Moreover, D

− denoted as its closure
and ∂D denoted as its boundary.

Theorem 6. Let N be a normal operator on separable complex Hilbert
space. Then N is impossible to be Li–Yorke chaotic.

Proof. Since N is normal, there exist a finite positive regular Borel measure
μ and a Borel function η ∈ L∞(σ(N), μ) such that N and Mη are unitarily
equivalent. Mη is multiplication by η on L2(σ(N), μ). To see Mη being not
Li–Yorke chaotic, it is sufficient to prove limm→∞ ‖Mm

η (f)‖ = 0 if 0 ∈ ω(f).
Let

Δ1 = {z ∈ σ(N); |η(z)| ≥ 1},

Δ2 = {z ∈ σ(N); |η(z)| < 1},

Δ3 = {z ∈ σ(N);f(z) = 0 a.e. [μ]},

Δ4 = {z ∈ σ(N);f(z) �= 0 a.e. [μ]}.
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Since 0 ∈ ω(f), there exist {mk } ∞
k=1 such that limmk →∞ ‖Mmk

η (f)‖ = 0.
Then

‖Mmk
η (f)‖2 =

∫
σ(N)

|ηmkf |2 dμ

=
∫

Δ1∩Δ4

|ηmkf |2 dμ +
∫

Δ2∩Δ4

|ηmkf |2 dμ

≥
∫

Δ1∩Δ4

|f |2 dμ +
∫

Δ2∩Δ4

|ηmkf |2 dμ,

and hence μ(Δ1 ∩ Δ4) = 0. For any m ∈ N, there exists k such that mk ≤ m <
mk+1. Consequently,

‖Mm
η (f)‖2 =

∫
Δ2∩Δ4

|ηmf |2 dμ

=
∫

Δ2∩Δ4

|ηmkf |2|ηm−mk |2 dμ

≤
∫

Δ2∩Δ4

|ηmkf |2 dμ

= ‖Mmk
η (f)‖2.

Therefore, limm→∞ ‖Mm
η (f)‖ = 0. �

Theorem 7. Let K be a compact operator on complex Hilbert space. Then
K is impossible to be Li–Yorke chaotic.

Proof. According to Riesz’s decomposition theorem, we have

K =
[
K1

K2

]
H1

H2
,

where σ(K1) = σ(K) ∩ D and σ(K2) = σ(K) \ σ(K1).
Furthermore,

K =
[
K1 ∗

K̃2

]
H1

H⊥
1

and σ(K̃2) = σ(K2) = {μ1, μ2, . . . , μl}.
Since K is a compact operator, one can see
(1) there exist 0 < ρ < 1 and N ∈ N such that ‖Kn(x)‖ ≤ ρn‖x‖, for any

x ∈ H1 and any n ≥ N .
(2) K̃2 is similar to Jordan model J =

⊕l
i=1{

⊕ki

j=1 Jni
j
(μi)}, where

Jn(μ) =

⎡⎢⎢⎢⎢⎣
μ 1

. . . . . .
. . . 1

μ

⎤⎥⎥⎥⎥⎦
(n×n)

.
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We have

K ∼ T =
[
K1 ∗

J

]
H1

H⊥
1

.

Hence, T and K are simultaneously Li–Yorke chaotic or not. At present,
it suffices to consider the condition of only one Jordan block J = Jn(μ).

If |μ| > 1, then r1(J) � infλ∈σ(J) |λ| = |μ| > 1. According to spectral map-
ping theorem and spectral radius formula,

r1(J)−1 = r(J −1) = lim
k→∞

‖J −k ‖ 1
k .

One can choose ε > 0 such that r1(J)−1 + ε < 1. Then there exists M ∈ N

such that for k ≥ M ,

1
‖J −k ‖ ≥

(
1

r1(J)−1 + ε

)k

> 1.

Thus, for each nontrivial point x,

‖Jkx‖ > ‖J −k ‖ · ‖Jkx‖ ≥ ‖x‖ for k ≥ M.

Consequently, J can not be Li–Yorke chaotic.
Now let |μ| = 1. Since the dimension of H⊥

1 is finite, then for each y ∈ H⊥
1 ,

y = y1e1 + y2e2 + · · · + ynen,

where {e1, e2, . . . , en} is an orthonormal basis of H⊥
1 .

For each z ∈ H , there is a unique decomposition z = x + y where x ∈ H1

and y ∈ H⊥
1 . Claim that y = 0 if 0 ∈ ω(z). Suppose y �= 0. There exists a

positive integer i such that yi �= 0 and yi+1 = yi+2 = · · · = yn = 0. Then

‖Tm(z)‖2 ≥ ‖Jm(y)‖2 =

∥∥∥∥∥∥∥∥∥

⎡⎢⎢⎢⎣
C0

mμm C1
mμm−1 · · · Cn−1

m μm−n+1

C0
mμm · · · Cn−2

m μm−n+2

. . .
...

C0
mμm

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

y1

y2

...
yn

⎤⎥⎥⎥⎦
∥∥∥∥∥∥∥∥∥

2

= |C0
mμmy1 + C1

mμm−1y2 + · · · + Cn−1
m μm−n+1yn|2

+ |C0
mμmy2 + C1

mμm−1y3 + · · · + Cn−2
m μm−n+2yn|2 + · · ·

+ |C0
mμmyn|2

≥ |C0
mμmyi + C1

mμm−1yi+1 + · · · + Cn−i
m μm−n+iyn|2

= |yi|2.
It is a contradiction to 0 ∈ ω(z).

Consequently, if 0 ∈ ω(z), we have limm→∞ ‖Tm(z)‖ = limm→∞ ‖Km
1 (x)‖ =

0. Therefore, T is impossible to be Li–Yorke chaotic, and so is K. �

In the research of hypercyclicity, Herrero and Wang [6] gave a surprising
result.
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Proposition 8 ([6]). For any ε > 0, there is a small compact operator
‖Kε‖ < ε such that I + Kε is hypercyclic.

Correspondingly, we obtain a similar result for distributional chaos. Al-
though I + K cannot be norm-unimodal, it may hold weakly distributionally
chaotic criterion.

Theorem 9. For any ε > 0, there is a small compact operator ‖Kε‖ < ε
such that I + Kε is distributionally chaotic.

Proof. Without losses, assume H is a separable complex Hilbert space.
Given any ε > 0. Let Ci be a sequence of positive numbers increasing to +∞.
For each i ∈ N, set εi = 4−iε. Then we can select Li to satisfy (1 + εi)Li ≥√

2Ci. Moreover, choose mi such that Li

mi
< 1

i .
Write ni = 2mi. We can obtain a orthogonal decomposition of Hilbert space

H =
⊕∞

i=1 Hi, where Hi is an ni-dimensional subspace. Define operators on
each Hi as follows,

Si =

⎡⎢⎢⎢⎢⎣
0 2εi

. . . . . .
. . . 2εi

0

⎤⎥⎥⎥⎥⎦
(ni ×ni)

, Ki =

⎡⎢⎢⎢⎢⎣
−εi 2εi

. . . . . .
. . . 2εi

−εi

⎤⎥⎥⎥⎥⎦
(ni ×ni)

.

Then

Ii + Ki =

⎡⎢⎢⎢⎢⎣
1 − εi 2εi

. . . . . .
. . . 2εi

1 − εi

⎤⎥⎥⎥⎥⎦
(ni ×ni)

= (1 − εi)Ii + Si.

Let xi = (1,1, . . . ,1) ∈ Hi. We have for 1 ≤ n ≤ mi,

‖(Ii + Ki)n(xi)‖
=

∥∥(
(1 − εi)Ii + Si

)n(xi)
∥∥

=

∥∥∥∥∥
(

n∑
k=0

Ck
n(1 − εi)kSi

n−k

)
xi

∥∥∥∥∥
≥

∥∥∥∥∥
(

n∑
k=0

Ck
n(1 − εi)k(2εi)

n−k
, . . . ,

n∑
k=0

Ck
n(1 − εi)k(2εi)

n−k

︸ ︷︷ ︸
mi

,0, . . . ,0

)∥∥∥∥∥
=

√
mi(1 + εi)n

=
(1 + εi)n

√
2

‖xi‖.
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Consequently,

#{0 ≤ k ≤ mi − 1; ‖(Ii + Ki)kxi‖ ≥ Ci‖xi‖}
mi

≥ #{Li,Li + 1, . . . ,mi − 1}
mi

= 1 − Li

mi
.

Since Ki is of finite rank and ‖Ki‖ ≤ 41−iε, Kε =
⊕∞

i=1 Ki is a compact op-
erator on H and ‖Kε‖ < ε. Notice I + Kε =

⊕∞
i=1(Ii + Ki). In addition, the

previous xi could be seemed as a point in H, thus

(WNU1) lim
k→∞

‖(I + Kε)
k
xi‖ = 0 since r(I + Kε) < 1.

(WNU2) The sequence of positive integers mi increasing to +∞ satisfies

lim
i→∞

#{0 ≤ k ≤ mi − 1; ‖(I + Kε)kxi‖ ≥ Ci‖xi‖}
mi

= lim
i→∞

#{0 ≤ k ≤ mi − 1; ‖(Ii + Ki)kxi‖ ≥ Ci‖xi‖}
mi

= lim
i→∞

1 − Li

mi
= 1.

Therefore, I + Kε is distributionally chaotic by Theorem 5. �
Remark 1. From the construction above, we can see that distributional

chaos is not preserved under compact perturbations for bounded linear opera-
tors. The previous operator I +Kε is an example. In fact, (I +Kε) − K̃i is not
distributionally chaotic, where K̃i = (

⊕i
j=1 0Hj ) ⊕ (

⊕∞
j=i+1 Kj) is a compact

operator with norm less than 4−iε.
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