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THE MAXIMAL PURE SPECTRUM OF AN ABELIAN
GROUP

R. GÖBEL AND B. GOLDSMITH

Abstract. This paper introduces the notion of the maximal pure
spectrum of an Abelian group—this is the set of isomorphism

classes of maximal proper pure subgroups—and focuses on the

situation in which this spectrum is small. The converse situation

is also examined i.e., given a collection of isomorphism classes

of groups, can one find an Abelian group having precisely this

collection as its maximal pure spectrum. Finally, it is shown

that in some familiar situations, the answers to these questions
may be undecidable.

1. Introduction

An arbitrary nonzero Abelian group G has the property that it contains
maximal pure proper subgroups—see Proposition 2.1 below. In general, one
would expect that for an arbitrary group G, the set of such maximal pure
subgroups would be large and varied (up to isomorphism): recall that Boyer
showed [2], that an uncountable group G has 2|G| pure subgroups, each having
cardinality equal to |G|. Nevertheless, there are situations when, up to iso-
morphism, the collection of maximal pure subgroups has a particularly simple
form, and this is one focus of the present work. We formalize this notion by
defining the maximal pure spectrum of a group G as the set of isomorphism
classes of maximal pure subgroups; we denote this set by MPSpec(G). (The
notion clearly has a family resemblance to the notion of torsion-free Craw-
ley groups introduced by the authors and A. L. S. Corner recently [4].) We
shall also be interested in the converse situation of when a given collection
of isomorphism classes of groups can occur as the maximal pure spectrum of
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some group; we shall say that a collection of isomorphism classes of groups
{Hi} supports a maximal pure spectrum if there exists some group G such
that MPSpec(G) = {Hi}.

Throughout all groups are additively written Abelian groups and standard
concepts and notation for Abelian groups may be found in the books [8], [9],
while set-theoretic concepts may be found in [7]; note that here mappings are
written on the right.

2. Basic results

We begin by establishing the existence of a maximal pure spectrum for any
nonzero group. Recall that a group is said to be pure simple if its only proper
pure subgroup is the zero group {0}; it is well known that such a group is
isomorphic to a subgroup of Q or Z(p∞), for some prime p—see [8, Exercise 7,
p. 119].

Proposition 2.1. If G is a nonzero group, then MPSpec(G) �= ∅. More-
over, if G is uncountable and X is any subgroup of G with |X| < |G|, then
there is a proper maximal pure subgroup of G containing X .

Proof. If G is not torsion-free, then it has a direct summand which is pure
simple and then any complement of this summand is a maximal pure subgroup
of G. If G is torsion-free, then it can be embedded as an essential subgroup
of a direct sum of copies of Q and the kernel of any projection onto a single
factor, when restricted to G, will be a maximal pure subgroup of G since the
image is pure simple. To establish the second statement, note that by Szele’s
result—see, for example [8, Proposition 26.2]—there is a pure subgroup Y of G
containing X and |Y | = max{ |X|, ℵ0} < |G|. So G/Y is a nonzero group and
by the first part of our result, there is a proper maximal pure subgroup M/Y
of G/Y . Clearly, M is a maximal pure subgroup of G and contains X . �

Not surprisingly, the situation for divisible groups is straightforward and
the elementary proof of the next proposition is left to the reader.

Proposition 2.2. If G =
⊕

p∈P′
⊕

αp
Z(p∞) ⊕

⊕
β Q is divisible, then

MPSpec(G) consists of the collection of groups of the form⊕
p∈P′

⊕
α∗

p

Z(p∞) ⊕
⊕
β∗

Q,

where precisely one of α∗
p, β

∗ differs from the αp, β and, in that case it is either
αp − 1 or β − 1, with the usual conventions applying if the αp or β are infinite.
In particular, if G is torsion-free divisible of rank β, then MPSpec(G) consists
of a singleton

⊕
β−1 Q.

The converse situation is equally clear, at least when all the invariants are
infinite.
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Proposition 2.3. If H =
⊕

p∈P′
⊕

αp
Z(p∞) ⊕

⊕
β Q is a divisible group

and each invariant αp (p ∈ P′), β is infinite, then H supports the maximal
pure spectrum of only one group viz. H itself.

Proof. If G is a group with MPSpec(G) = {H}, then if M is any maximal
pure subgroup of G, G/M is pure simple and G splits as G = M ⊕ X , where
X ≤ Q, or X ≤ Z(p∞), for some prime p. Let M1 be maximal pure in M
and note that M1 ⊕ X is then, by hypothesis, isomorphic to H . It follows
immediately that X ∼= Q or X ∼= Z(p∞) for some p ∈ P′. Since each invariant
is infinite, G is then isomorphic to H . Finally, it follows from Proposition 2.2
that the maximal pure spectrum is, in this case, actually equal to {H}. �

It is not, of course, true that given a group H , one can find a group G
having {H} as maximal pure spectrum. For example, if H = Jp, the group
of p-adic integers, then H does not support any maximal pure spectrum; in
fact, we have the more general in the following.

Proposition 2.4. If H is a reduced torsion-free algebraically compact
group, then there does not exist any group G with MPSpec(G) = {H}.

Proof. Suppose such a group G exists, then G must be an extension of H by
a rank one group, R, say. Since H is algebraically compact such an extension
must split: G = H ⊕ R. Let K be a maximal pure subgroup of H , so that
K ⊕ R is maximal pure in G. Thus, K ⊕ R must, by hypothesis, be iso-
morphic to H and this is impossible since any direct summand of a reduced
algebraically compact group, and thus in particular, R, must again be reduced
algebraically compact. This contradiction establishes the result. �

The situation for free groups is also straightforward, although in this case
there is an interesting twist.

Lemma 2.5. If G is an arbitrary uncountable group having a free sub-
group M of infinite rank, with countable quotient G/M , then G = M1 ⊕ N
where M1 is a summand of M of uncountable rank, and N is countable.

Proof. If A is the subgroup generated by the preimages of the coset rep-
resentatives of G/M , then G = A + M . Moreover, since A ∩ M is countable,
there is a decomposition M = M0 ⊕ M1 with A ∩ M ≤ M0 and M1 �= 0. Set
N = A+M0, a countable group and note that G = N +M1 while N ∩ M1 = 0.
Thus, G = N ⊕ M1 as required. �

Proposition 2.6. If G is a torsion-free group of infinite rank having the
property that every maximal pure subgroup is free, then G is free. Conversely,
if G is free of infinite rank, then all maximal pure subgroups are isomorphic
and free.



820 R. GÖBEL AND B. GOLDSMITH

Proof. We consider first the case where G has uncountable rank. Let M
be a maximal pure subgroup of G, so that M is, by assumption, free of
uncountable rank. However, since M is maximal pure in G, the quotient
G/M is torsion-free of rank 1; in particular G/M is countable. By Lemma 2.5,
G = M1 ⊕ N , where M1 is a summand of M of uncountable rank, and so is free.
Now choose a maximal pure subgroup H of M1 and consider the subgroup
H ⊕ N of G. Clearly, it is a maximal pure subgroup of G and so by hypothesis,
it too is free. Consequently, N is free and so also is G = M1 ⊕ N .

Suppose now that G is countably infinite. It will suffice, by Pontryagin’s
Theorem [8, Theorem 19.1], to show that every finite rank subgroup of G is
free. Embed G in its divisible hull D, a countable direct sum of copies of Q.
Now if F is a finite rank subgroup of G, there is a finite rank summand D1

of D such that F ≤ D1 : D = D1 ⊕ D2, where D2 is divisible of countable
rank. Let π be the projection of D onto a rank one summand of D2, so that
F ≤ Kerπ. Now if H = Kerπ � G = G ∩ Kerπ, then F ≤ H . However, G/H ∼=
Imπ � G ≤ Q and so H is a maximal pure subgroup of G. By hypothesis, H
is free and hence, so also is F .

The converse is essentially immediate: subgroups of free groups are free
and maximal pure subgroups are of the same rank as the whole group. �

Corollary 2.7. If H is a free group of infinite rank, then {H} supports
the maximal pure spectrum of a single group G, and G ∼= H .

The twist here is that the proposition above fails for all finite ranks n ≥ 2:
Corner has exhibited a group of finite rank n with all rank (n − 1) subgroups
free, but the group is indecomposable—see e.g., [9, Exercise 8, Section 88].

Recall that a group A is said to be ℵ1-separable if every countable subset
of A is contained in a countable free summand of A and that A is said to be
hereditarily (or totally) ℵ1-separable, if every subgroup of A is ℵ1-separable.
Finally, slightly modifying a standard definition, we say that A is of strong
quotient type Q if A has a filtration A =

⋃
α<λ Aα such that Aα+1/Aα

∼= Q for
all limit ordinals α < λ. Note that any other filtration of A will agree with the
given one on a cub; see Chapter VIII in [7] for the above concepts. We note
that an ℵ1-separable group A of cardinality ℵ1 may be defined via a filtration
A =

⋃
α<λ Aα in which Aα+1 is a free direct summand of A for all α. Hence,

if A is also of strong quotient type Q and B =
⋃

α<λ Bα is an ℵ1-filtration,
then the existence of an isomorphism φ : A → B implies that there is a cub C
such that Bα = Aαφ and Bα is not closed in B for all α ∈ C: the existence
of a cub with Bα = Aαφ for all α ∈ C follows from a standard back and forth
argument. Since Aα+1 is a summand of A, it is the closure of Aα, and thus
Aα+1/Aα is mapped isomorphically onto Bα/Bα, implying that Bα is not
closed, as required.

Proposition 2.8. If G is a group such that every maximal pure subgroup
is (hereditarily) ℵ1-separable, then all the maximal pure subgroups of G are
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isomorphic and are isomorphic to G. In particular, G is again (hereditarily)
ℵ1-separable.

Proof. If the maximal pure subgroups are of countable rank, then they are
free and so the result reduces to the corresponding result, Proposition 2.6
above. Assume then that the maximal pure subgroups, and hence G, are
uncountable. Then, by an identical argument to that used in Lemma 2.5,
if M is maximal pure in G, G = N ⊕ M1 and N is countable, while M1 is an
uncountable direct summand of M . Since M is assumed to be ℵ1-separable,
so also is M1—see e.g., [7, Exercise 1, Chapter VIII]. However, as M1 is ℵ1-
separable, it has a free summand of countable rank and so M1

∼= M1 ⊕ N = G
and M1

∼= M . Thus, all maximal pure subgroups are isomorphic to G. The
case where the maximal pure subgroups are assumed to be hereditarily ℵ1-
separable, follows immediately. �

We are now in a position to establish the following theorem.

Theorem 2.9. Let {Hi : i ∈ I} be a collection of isomorphism classes of
hereditarily ℵ1-separable groups. Then, there exists a group G with
MPSpec(G) = {Hi : i ∈ I} if, and only if, |I| = 1. Moreover, in this case
MPSpec(G) = G itself.

Proof. If any Hi is countable, we are immediately reduced to the situation
where all the groups are free, so we may suppose that each Hi is uncountable.
So, if there is a group G with MPSpec(G) = {Hi : i ∈ I}, it follows from
Proposition 2.8 above that G is hereditarily ℵ1-separable and every maximal
pure subgroup of G is isomorphic to G itself. Hence, |I| = 1, as required.

Conversely, given a hereditarily ℵ1-separable group G, if M is a maximal
pure subgroup of G, then M is a subgroup of countable index in G and it then
follows from [11, Theorem 201] that M ∼= G, i.e., MPSpec(G) = {G}. �

If we weaken the assumption in the previous theorem to being simply
that the collection {Hi : i ∈ I} consists of ℵ1-separable groups, the situation
changes dramatically. Note that if G is of strong quotient type Q, then G
is not free. Recall that a group G is said to be a Griffith group if G is a
(nonfree) ℵ1-separable subgroup of Zℵ1 of cardinality ℵ1 defined by a filtra-
tion G =

⋃
α<ω1

Gα such that for each limit ordinal α, Gα+1/Gα
∼= Q—see

[11, Theorem 147]. Clearly, Griffith groups are examples of groups of strong
quotient type Q.

Under the set-theoretic assumption V = L, we obtain the following theo-
rem.

Theorem 2.10 (V = L). If {Hi : i ∈ I} is collection of isomorphism classes
of ℵ1-separable groups of cardinality ℵ1 and strong quotient type Q, then there
does not exist a group G with MPSpec(G) = {Hi : i ∈ I}.
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Remark: The hypothesis of strong quotient type Q in Theorem 2.10 can
also be weakened: it suffices to have that each of the groups H has the
property that for each limit ordinal α, Hα+1/Hα

∼= R, where R is a subgroup
of Q containing a subring of Q different from Z.

The theorem follows immediately from the next result which may be of
some independent interest. We remark that Megibben [12] has produced a
similar result in the category of Abelian p-groups, but our proof is necessarily
somewhat more complicated than his. This is because, in a p-group, a closed
countable pure subgroup of an ℵ1-separable p-group is necessarily a direct
summand, and so one has a convenient class of test subgroups from which one
can demonstrate failure of the ℵ1-separability property. No such convenient
class seems to exist in the torsion-free case.

Theorem 2.11 (V = L). If G is an ℵ1-separable group of cardinality ℵ1,
which is of strong quotient type Q, then G has a maximal pure dense subgroup
which is not ℵ1-separable.

Proof. Since G is an ℵ1-separable of cardinality ℵ1 of strong quotient
type Q, we can choose a filtration of G by countable free subgroups: G =⋃

α<ω1
Gα with Gα+1/Gα

∼= Q for all limit ordinals α < ω1. Next, we shift
the labels of the filtration and begin with Gω+1 which now becomes G0 or
say just A. If B is the old Gω , then A/B ∼= Q and E := {α < ω1 | Gα+1/Gα

∼=
Q} =

◦
ω1, the set of limit ordinals < ω1, is a stationary subset of ω1. Now

partition E into disjoint stationary sets E = E′ .
∪ E′ ′. Note that the set E′

will be reserved solely to ensure that the group H to be constructed will be
maximal pure in G. From V = L follows that ♦ω1(E

′ ′) holds and so there are
Jensen functions fα : Gα → Gα (α ∈ E′ ′) such that for each endomorphism
f : G → G, the set {α ∈ E′ ′ | fα = f � Gα} is stationary in ω1.

The subgroup B is maximal pure dense in A and so we may choose an
element z ∈ A such that A = 〈B,z〉∗, the pure subgroup of G generated by B
and z. Fix one such z for the remainder of our discussion. Let X = {X | B ≤
X ≤ G, |X| = ℵ0, z /∈ X}.

We now construct a group H as an ℵ1-filtration H =
⋃

α<ω1
Hα with Hα ≤∗

G as follows:

(0) z /∈ Hα for any α < ω1,
(1) H0 = B,
(2) if α is a limit ordinal, Hα =

⋃
β<α Hβ ,

(3) assuming Hα has been constructed, choose a maximal linearly indepen-
dent subset of

(Gα+1 + Hα)/〈Hα, z〉 ∗,

lift this back to elements {xj }(j∈J) ∈ Gα+1 and set Hα+1 = 〈Hα, xj | j ∈
J 〉∗ ≤ G,
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(3a) UNLESS α ∈ E′ ′ is a limit ordinal, fα = ρ �Gα for some projection ρ
of G with kernel kerρ = XG, X ∈ X , Hαfα ⊆ Hα and Hαfα not closed
in G. In these circumstances, we choose xα ∈ Hαfα \ Hαfα and set
Hα+1 = 〈Hα, xα − z〉 ∗ ≤ G.

The only condition needing to be checked for consistency of this construc-
tion, is that z /∈ Hα for any α. Clearly, z /∈ H0 and limit ordinals will present
no difficulty if we have handled successors.

We show first that z /∈ Hα+1 when Hα+1 was constructed as in (3a). Note
that xα ∈ Hαfα implies that xα = limn→∞ hαnfα for some hαn ∈ Hα and,
since fα in this situation acts as the projection ρ, it extends uniquely to a ho-
momorphism on the closure of Hα; there will be no confusion if we continue to
call the extended map fα. Now xαfα = limn→∞(hαnfα)fα = limn→∞ hαnfα =
xα. Now suppose for a contradiction that z ∈ Hα+1; then there are inte-
gers r, s such that sz = hα + r(xα − z) for some hα ∈ Hα. Applying the
map fα to this equation, we recall that z ∈ B ≤ kerfα and thus zfα = 0, we
get 0 = hαfα + rxαfα, so that r(xαfα) ∈ Hαfα ≤ Hα, whence xαfα ∈ Hα by
purity. But xα = xαfα ∈ Hαfα—contrary to the choice of xα /∈ Hαfα.

Finally, if the construction of Hα+1 is as in (3) and if z ∈ Hα+1 = 〈Hα, xj |
j ∈ J 〉∗, then for some s �= 0, rj ∈ Z and xj from (3) and hα ∈ Hα it follows
sz =

∑
j∈J xjrj +hα. Hence, hα = sz −

∑
j∈J xjrj and looking at the equation

mod 〈Hα, z〉∗ we have rj = 0 for all j ∈ J by the choice of the xj ’s. Hence,
sz = hα and z ∈ Hα by purity of Hα is a contradiction. Thus, in either case
is z /∈ Hα+1; the construction can go on and H =

⋃
α<ω1

Hα ≤∗ G.
By the choice of E′ it follows that case (3) appears on an unbounded

sequence of steps. This implies that all independent elements of
Gα+1 mod 〈Hα, z〉∗ are absorbed into H or equivalently at the end G =
〈H,z〉∗ which is to say that G/H ∼= 〈z + H〉 ∗ ∼= Q.

We claim that H is not ℵ1-separable; specifically we show that B cannot
be embedded in a countable summand of H . Suppose for a contradiction that
B ≤ X and H = X ⊕ K, where X is countable. Since z /∈ H , we have z /∈ X
and so X ∈ X . Observe firstly that this implies that G = 〈X,z〉∗ ⊕ K: an
argument on rank show that G = 〈X,z〉∗ + K, while if k ∈ 〈X,z〉∗ ∩ K, then
tk = x + sz for some integers s, t and x ∈ X,k ∈ K. Thus, both k,x ∈ H and
sz = tk − x ∈ H as well, a contradiction.

Now let ρ be the projection of H onto K with kernel X . Notice that there
can be only one extension of ρ to a projection of G onto K with kernel 〈X,z〉∗:
for if π,π1 were such extensions, then the difference π − π1 would induce a
map π − π1 from G/H into K. However, G/H ∼= Q and K is reduced, so
the induced map must be the zero map i.e., π = π1. Thus, there shall be no
confusion if we refer to the projection of G onto K with kernel X as ρ also.
Note that K is again an ℵ1-separable group since it is a summand of G.
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Let Yα = Hαρ and note that
⋃

α<ω1
Yα is an ℵ1-filtration of K. However,

the subgroup 〈X,z〉∗ of G is countable and hence free, and so one can deduce
that G ∼= K as K is ℵ1-separable. Since the group G is of strong quotient
type Q, at each limit ordinal α one has that Gα+1/Gα

∼= Q and so, as observed
earlier, there exists a cub C∗ such that Yα = Hαρ is not closed in K for α ∈ C∗.
Since ρ ∈ End(G) and ρ �H ∈ End(H), we can find a cub C in ω1 such that
for all α ∈ C:
(1) Hαρ ≤ Hα and
(2) Gαρ ≤ Gα.
So there is an ordinal β ∈ E′ ′ ∩ (C ∩ C∗). Hence, fβ = ρ �Gβ , Hβρ ≤ Hβ so
that Hβfβ ≤ Hβ . Moreover, Hβfβ = Hβρ is not closed in K and hence in G.
We conclude that by the above the construction of Hβ+1 at step β must
have proceeded according to (3a), so that Hβ+1 = 〈Hβ , xβ − z〉∗ for some
xβ ∈ Hβfβ \ Hβfβ . This, however, is impossible: Since z = xβ − (xβ − z)
and fβ acts like the projection ρ, thereby fixing xβ and killing z, we have
xβ = (xβ − z)ρ ∈ H . Since xβ − z ∈ Hβ+1 ≤ H , we would then be forced to
conclude that z ∈ H , a contradiction. This contradiction shows that B cannot
be embedded in a countable summand of H , so that H is not ℵ1-separable,
as required. �

We also remark that a special case of the above theorem is the statement
that, under the assumption of V = L, there is an ℵ1-separable group of car-
dinality ℵ1, which is not hereditarily ℵ1-separable. Such a group G has been
previously obtained by Eklof [6, Theorem 4.5], however his proof does not
establish the existence of a maximal pure dense subgroup of G which fails
to be ℵ1-separable. We also note that it is not possible to dispense with the
set-theoretic hypothesis here, since Eklof also established in [6], that under
the assumption (MA + ¬CH), every ℵ1-separable group of cardinality ℵ1 is
hereditarily ℵ1-separable.

3. Whitehead and ℵ1-coseparable groups

In the previous section, we exploited the ‘separability-like’ properties of
some classes of groups to investigate their maximal pure spectra. Here, we
shall make use of a more homological approach which, perhaps inevitably,
requires some further cardinality restrictions. Recall that a group G is said
to be a Whitehead group or W-group if Ext(G,Z) = 0.

Proposition 3.1. If G is a group such that every maximal pure subgroup
of G is a W-group of rank λ, then if 2λ > 2ℵ0 , G is a W-group; in particular
if every maximal pure subgroup of G is a W-group of cardinality 2ℵ0 , then G
is a W-group.

Proof. Let M be a maximal pure subgroup of G and first observe that
Hom(G,Z) �= 0: consider the short exact sequence 0 → M → G → X → 0,
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where X is torsion-free of rank 1 and assume, for a contradiction, that
Hom(G,Z) = 0. Note that X � Z then follows, and so Hom(X,Z) = 0. Ap-
plying the contravariant functor Hom(−,Z) and using the assumption, gives

0 → Hom(M,Z) → Ext(X,Z) → Ext(G,Z) → Ext(M,Z) = 0.

Since X ≤ Q, it follows easily that Ext(X,Z) is an epimorphic image of
Ext(Q,Z) and, since the latter is isomorphic to Qℵ0 , it follows that Ext(X,Z)
has cardinality at most 2ℵ0 . On the other hand, it has a subgroup Hom(M,Z)
which, by a well-known result of Chase (see e.g., [9, Proposition 99.4]), has
cardinality 2λ > 2ℵ0—contradiction. Thus, it follows that G = H ⊕ Z, for
some subgroup H . However, H is clearly a maximal pure subgroup of G and
hence is a W-group. It is then immediate that G is also a W-group. �

The converse of the above proposition is not immediately clear. Under
the assumption (V = L), it is, of course, immediate and merely reduces to
Proposition 2.6, since W-groups are free. Assuming (MA+ ¬CH), W-groups
of power ℵ1 are ℵ1-coseparable, and so it is natural to investigate this class of
groups; recall—see e.g., [11, Chapter VIII]—that a group G is ℵ1-coseparable
precisely if Ext(G,S) = 0, where S is the free group of rank ℵ0 and that G
is hereditarily ℵ1-separable if, and only if, it is both ℵ1-separable and ℵ1-
coseparable.

Proposition 3.2. If G is a group such that every maximal pure subgroup
is an ℵ1-coseparable group of rank λ, then if 2λ > 2ℵ0 , G is an ℵ1-coseparable
group.

Proof. The proof is essentially identical to that of Proposition 3.1 once one
notes the following: (i) if Hom(G,Z) = 0, then Hom(G,S) = 0; (ii) replace
the functor Hom(−,Z) with the functor Hom(−, S) and note that Ext(X,S)
is a homomorph of Ext(Q, S) and that this latter still has cardinality 2ℵ0 ;
(iii) since the maximal pure subgroup M is ℵ1-coseparable, and hence a W-
group, and Hom(M,Z) ≤ Hom(M,S) ≤ Ext(X,S), we can reach the desired
result by applying Chase’s result. �

However, in this situation, we have a converse and so we can establish the
following theorem.

Theorem 3.3. If H is an ℵ1-coseparable group of rank λ and 2λ > 2ℵ0 ,
then {H} supports the maximal pure spectrum of only one group, namely H
itself.

Proof. If M is any maximal pure subgroup of H , then it follows from
[11, Theorem 201] that M ∼= H . Thus, H itself has maximal pure spectrum
{H}. Uniqueness follows from the cardinality hypothesis and the previous
proposition. �
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4. The Baer–Specker group

In the following, we will denote as usually by P = Zℵ0 the Baer–Specker
group, where Zλ =

∏
α<l Zeα is the cartesian product of λ copies of Z. The

first work on this type of problem is, to the best of our knowledge, due to
A. L. S. Corner in an undated manuscript [3] from the late fifties or early
sixties. The main result of that paper is the following theorem.

Theorem 4.1 ([3]). Let G be a group such that every maximal pure sub-
group of G is isomorphic to Zλ, where λ is a given infinite cardinal. Then
G ∼= Zλ.

Proof. Suppose, for a contradiction, that G satisfies the hypotheses but not
the conclusion of the theorem. It is immediate that Hom(G,Z) = 0; otherwise
G = Z ⊕ M for some subgroup M which is clearly a maximal pure subgroup
of G and so, by hypothesis, is isomorphic to Zλ. This would lead immediately
to the contradiction that G is isomorphic to Zλ. Claim that every maximal
pure subgroup of G is dense in the Z-adic topology of G. Consider, a maximal
pure subgroup H of G. The quotient G/H is visibly torsion-free and of rank
one. Suppose, for a contradiction, that G/H is reduced. Then, as a countable
reduced torsion-free group, it is slender. Moreover, since G/H is countable,
while G itself is of cardinality at least the continuum, there is a maximal pure
subgroup M of G that contains a representative of each coset of H in G,
so that the composition M → G → G/H is an epimorphism. Since G/H is
slender while M ∼= Zλ, the epimorphism must, in fact, vanish on a direct
complement of some free direct summand of finite rank in M ; hence G/H
is finitely generated. But this then implies that G/H ∼= Z, which contradicts
Hom(G,Z) = 0. Consequently, G/H ∼= Q and the claim is established.

We continue to consider H ≤ G and note by the above that there is an
element g0 ∈ H \ H , the Z-adic closure of H in G such that G = 〈g0,H〉∗
which, for convenience, can be viewed in the Z-adic completion Ĥ of H and
clearly Ĝ = Ĥ .

By assumption of the theorem, we can write H =
∏

δ∈Δ Zeδ , where Δ is
an indexing set of cardinality λ. Now we can write g0 =

∑∗
δ∈Δ πδeδ , where

πδ ∈ Ẑ.
Let M be a maximal pure subgroup of G that contains g0 and the eδ (δ ∈

Δ); such an M exists by Proposition 2.1, since | 〈g0, eδ (δ ∈ Δ)〉 | = λ < 2λ =
|G|. Since M is a product of copies of Z, there is a nonzero homomorphism
φ : M → Z. Now by the claim above, M is dense in G and φ extends to a
Ẑ-homomorphism φ̂ : Ĝ → Ẑ. Since the kernel of φ is of corank 1 in M and
therefore of corank ≤ 2 in G, the image Gφ̂ is a subgroup of rank at most 2
in Ẑ; hence Gφ̂ is slender, see [8]. But φ̂ �H : H → Gφ̂, so that almost all
the eδφ must vanish. It now follows that Gφ̂ ≤ Z: for if g ∈ G, then for some
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positive integer q we have

qg =
∗∑

δ∈Δ

ξδeδ + ξg0

for suitable ξ, ξδ ∈ Z; hence

q(gφ̂) =
∗∑

δ∈Δ

ξδ(eδφ) + ξ(g0φ) ∈ Z

and therefore gφ̂ ∈ Z, by the purity of Z in Ẑ. Since Hom(G,Z) = 0, we
have Gφ̂ = 0; and it follows that φ = 0, contrary to the choice of φ. This
contradiction establishes the theorem. �

Proposition 4.2. If λ is an infinite cardinal, then there is a maximal pure
dense subgroup H of Zλ which is not isomorphic to Zλ.

Assuming that we have established the proposition above, we deduce the
following.

Corollary 4.3. A group of the form Zλ, with λ infinite, does not support
the maximal pure spectrum of any group G.

Proof. Suppose that Zλ did support the maximal pure spectrum of
a group G, then by the previous theorem G itself would be of the form Zλ,
which would force all maximal pure subgroups to be isomorphic to Zλ, con-
trary to Proposition 4.2. �

Proof of Proposition 4.2. First, we consider the case λ = ℵ0. Take a count-
able free resolution 0 → F0 → F1 → Q → 0 of Q in which F0, F1 are of count-
able rank and set P1 = F ∗

1 , P0 = F ∗
0 , so that

0 → P1 → P0 → Ext(Q,Z) ∼= Qℵ0 → 0.

Choose G containing P1 so that P0/G is a single copy of Q; G is certainly
pure of countable corank in P0 and is not a summand of P0.

Suppose G ∼= P0. Then we may apply Nunke [14, p. 69, Lemma 3]: We
have P0/G ∼= Q, thus (P0/G)∗ = 0 and from G∗ ∼= P ∗

0
∼= F0, it follows that

U := G∗/P ∗
0 (with the canonical embedding P ∗

0 ≤ G∗) is countable. From
Nunke [14], it now follows that U ∗ = 0 and Q ∼= P0/G ∼= Ext(U,Z). Thus,
Ext(U,Z) �= 0 and since U �= 0 is countable, Ext(U,Z) is well-known and must
be uncountable (see, for example [7, Chapter XII, 4]) which contradicts the
last equation. Thus, G �∼= P0.

Now let λ be any infinite cardinal and set H := G ⊕ Zλ ≤ P0 ⊕ Zλ = P ,
so that H is a maximal pure dense subgroup of P and P ∼= Zλ. We claim
that H is not isomorphic to P . Otherwise, G would be isomorphic to a direct
summand of Zλ. If λ is less than the first measurable cardinal, then another
result of Nunke [13, p. 69, Theorem 5] applies, showing that G is a product P2
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of copies of Z. Thus, G∗ ∼= P ∗
2 must be free of countable rank, which implies

G ∼= P0, contradicting our choice of G. If λ is the first measurable cardinal or
even larger, then a parallel result by Eda [5] applies, and again G would be
isomorphic to P0, a contradiction. Since H is maximal pure dense in P , the
proof of the proposition is complete. �

5. Torsion groups

The situation for separable p-groups is easily handled since any p-group has
a cyclic direct summand whose complements are maximal pure subgroups.

Proposition 5.1. If G is a p-group such that all its maximal pure sub-
groups are direct sums of cyclic groups, then G is a direct sum of cyclic groups.

Note: In the case of separable p-groups, one actually only needs the ex-
istence of a single maximal pure subgroup which is a direct sum of cyclic
groups.

Proposition 5.2. If G is a separable p-group which has a maximal pure
subgroup which is a direct sums of cyclic groups, then G is a direct sum of
cyclic groups.

Proof. Suppose that M is a maximal pure subgroup which is a direct sum
of cyclic groups, then either G/M ∼= Z(pn) for some finite n, or G/M ∼= Z(p∞).
In the first case the group splits as G ∼= M ⊕ Z(pn) which is clearly a direct
sum of cyclic groups. In the second situation, M is a basic subgroup of G
with countable quotient and so, since G is assumed separable, G is a direct
sum of cyclic groups by [9, Proposition 68.3]. �

Separability is, of course, necessary for this proposition: the Prüfer group
Hω+1 has an upper basic subgroup such that its quotient by this upper basic
subgroup is a single copy of Z(p∞), however Hω+1 is not a direct sum of cyclic
groups.

The converse situation also holds provided all Ulm invariants are infinite.
For if G is a direct sum of cyclic groups with fn(G) infinite for all n, and M is
any maximal pure subgroup, then M is also a direct sum of cyclic groups and,
as above, either G ∼= M ⊕ Z(pn) for some n or M is basic in G. In either case,
G and M have the same Ulm invariants and hence are isomorphic. Thus, we
have established the following proposition.

Proposition 5.3. If H is a direct sum of cyclic p-groups and each Ulm
invariant of H is infinite, then there exists a group G with MPSpec(G) = H ;
in fact G ∼= H .

The restriction on the Ulm invariants is necessary for suppose that H is
a direct sum of cyclic groups and an Ulm invariant, say fN (H), is finite and
nonzero, but {H} = MPSpec(G) for some separable p-group G. Then as in
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Proposition 5.2, G will again be a direct sum of cyclic groups. If the quotient
G/H is Z(pN+1), then G ∼=

⊕
α Z(pN+1) ⊕ H1, where α = fN (H) + 1; note

fN (H1) = 0. Now choose M to be a direct summand complementing a single
cyclic group in H1. Then X =

⊕
α Z(pN+1) ⊕ M is maximal pure in G and

so, by assumption, must be isomorphic to H . This forces fN (X) = fN (H)
which in turn requires that α = fN (H) + 1 = fN (H), a contradiction since
fN (H) is finite. If G/H ∼= Z(pk+1) for some k �= N , choose a decomposition
H = M ⊕ Z(pN+1) so that Y = M ⊕ Z(pk+1) is maximal pure in G and is
isomorphic to H . A similar argument shows that this too violates the restric-
tion that fN (H) is finite. Finally, if G/H ∼= Z(p∞) then H is basic in G and
so, as observed above, G is again a direct sum of cyclic groups and is actu-
ally isomorphic to H . Set G =

⊕
α Z(pN+1) ⊕ G1 where fN (G1) = 0. Then

X =
⊕

α−1 Z(pN+1) ⊕ G1 is maximal pure but is not isomorphic to H since
their Ulm invariants fN (X) and fN (H) are different.

The situation for torsion-complete groups is, however, completely different
and reminiscent of the situation for the Baer–Specker group; observe that the
proof of our next result depends only on the existence of a single maximal
pure subgroup which is torsion-complete.

Proposition 5.4. If G is a p-group such that every maximal pure subgroup
is a torsion-complete p-group, then G itself is torsion-complete.

Proof. Suppose that H is maximal pure in G so that G/H is isomorphic to
a subgroup of Z(p∞). If the subgroup is proper, then the quotient is a finite
cyclic group and thus G splits as G = H ⊕ X where X is finite cyclic. In this
case, G is clearly torsion-complete being the direct sum of two such groups.
Thus, it remains only to handle the situation where 0 → H → G → Z(p∞) → 0
is a short pure-exact sequence. Applying the functor Hom(Z(p∞), −) to
this sequence and noting that a group K is torsion-complete if and only if
Pext(Z(p∞),K) = 0 (see e.g., [9, Corollary 68.5]), one obtains the sequence
0 = Pext(Z(p∞),H) → Pext(Z(p∞),G) → Pext(Z(p∞),Z(p∞)) → 0. However,
the final term is also zero since Z(p∞) is divisible, and so
Pext(Z(p∞),G) = 0, which yields the desired result by applying [9, Corol-
lary 68.5] again. �

We can now show that it is impossible to find a group G with maximal
pure spectrum a fixed unbounded torsion-complete group. By the previ-
ous Proposition 5.4 such a group would, itself, be torsion-complete and so
would have a direct summand which is maximal pure and unbounded torsion-
complete. Hence, it will suffice to exhibit a maximal pure subgroup of an
unbounded torsion-complete group which is not torsion-complete. Since an
unbounded torsion-complete group can be expressed as a direct sum of two
torsion-complete groups, one of which is unbounded with a basic subgroup
which is countable, it will suffice to show that the latter has a maximal pure
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subgroup which is not torsion-complete. So suppose that B is unbounded
torsion-complete with countable basic subgroup B. Then, by adopting the
argument of Beaumont and Pierce [1]—see also [10]—one may exhibit a max-
imal pure subgroup of B with endomorphism ring a split extension of the ring
of p-adic integers, Jp, by the ideal of small endomorphisms. Such a group is
not torsion-complete. Thus we have proved the following.

Proposition 5.5. There does not exist a p-group G having MPSpec(G) =
{B}, where B is a fixed unbounded torsion-complete group.

A considerable amount is known about p-groups which are ℵ1-separable
i.e., separable p-groups which have the property that any countable subset
may be embedded in a countable direct summand. This is particularly the
case when one makes the additional set-theoretic hypothesis (MA + ¬CH)—
see e.g., the fundamental paper of Megibben [12]. Surprisingly, we do not
need any additional set theory to derive our main result on such groups,
but unsurprisingly the question of whether a single ℵ1-separable p-group can
support a maximal pure spectrum is undecidable. First, we derive a simple
and standard proposition; note that as in Proposition 5.4, the existence of a
single suitable maximal pure subgroup suffices.

Proposition 5.6. If G is an uncountable p-group with all its maximal pure
subgroups ℵ1-separable, then G is ℵ1-separable.

Proof. Suppose that M is any maximal pure subgroup of G, so that G/M
is countable. Then, as in Lemma 2.5, G = M + A for some countable sub-
group A. Now M ∩ A is a countable subset of M and so there is a direct
decomposition M = M0 ⊕ M1 where M ∩ A ≤ M0. Set N = A + M0 so that
G = N + M1. However, a routine check shows that N ∩ M1 = {0}, so that
G = N ⊕ M1. Note that N is countable and so is a direct sum of cyclic groups,
and hence certainly ℵ1-separable. However, it is easy to show that the direct
sum of two ℵ1-separable p-groups is again ℵ1-separable, so G is ℵ1-separable,
as required. �

Theorem 5.7. If H is an uncountable ℵ1-separable p-group with all its
Ulm-invariants infinite, then any group G with maximal pure spectrum
MPSpec(G) = {H}, is isomorphic to H itself.

Proof. Suppose that G is a p-group such that MPSpec(G) = {H}, then by
Lemma 5.6, G is again ℵ1-separable. Moreover, G/H is then either a finite
cyclic group or the quasi-cyclic group Z(p∞). In the former case, G splits and
as the Ulm-invariants of H are all infinite, G is then isomorphic to H . In the
latter case, we argue as in Lemma 5.6 that G = H + C for some countable
subgroup C, and furthermore H = D ⊕ K for a some summand D which
contains H ∩ C. Setting A = D + C, one obtains as before G = A ⊕ K; note
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that A is still countable. A routine check shows that A ∩ H = D and so

A/D = A/A ∩ H ∼= A + H/H = G/H ∼= Z(p∞).

Now D is Σ-cyclic and pure in G, and hence in A, so D is a basic subgroup
of A. Since A itself is countable, it is a direct sum of cyclic groups and thus
is basic in itself. It follows immediately that D ∼= A and thus H = D ⊕ K ∼=
A ⊕ K = G, as required. �

The converse question is much trickier and leads to an independence result.

Theorem 5.8. If G is an ℵ1-separable p-group of cardinality ℵ1 which is
not a direct sum of cyclic groups and fn(G) is infinite for all n, then:

(i) (MA + ¬CH) all maximal pure subgroups of G are isomorphic to G
itself i.e., G supports the maximal pure spectrum of a single group which is G
itself.

(ii) (2ℵ0 < 2ℵ1) G has a maximal pure subgroup which is not ℵ1-separable
and hence G does not support the maximal pure spectrum of any group.

Proof. As noted in Theorem 5.7 above, nondense maximal pure subgroups
split and the condition on the Ulm invariants ensures that for any such max-
imal pure subgroup, M say, its Ulm invariants are also all infinite, and hence
M ∼= M ⊕ Z(pn) ∼= G for any n. If H is maximal pure dense in G, then the
result follows from [12, Theorem 2.6].

However, the assumption (2ℵ0 < 2ℵ
1 ) allows one to construct an ℵ1-separable

p-group G0 having a maximal pure subgroup H0 which is not ℵ1-separable—
see e.g., [12, Theorem 3.3]. By adding on, if necessary, a direct summand X
which is a direct sum of cyclic groups with infinite Ulm-invariants, one ob-
tains a group G = G0 ⊕ X which is ℵ1-separable and has all its Ulm-invariants
infinite. However, the subgroup H = H0 ⊕ X is maximal pure in G but not
ℵ1-separable since its summand H0 is not. The final conclusion follows im-
mediately from Theorem 5.7. �
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