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HOMOGENEOUS STRUCTURES ON REAL AND COMPLEX
HYPERBOLIC SPACES

M. CASTRILLÓN LÓPEZ, P. M. GADEA AND A. F. SWANN

Abstract. The connected groups acting by isometries on either
the real or the complex hyperbolic spaces are determined. A Lie-
theoretic description of the homogeneous Riemannian, respec-
tively Kähler, structures of linear type on these spaces is then

found. On both spaces, examples that are not of linear type are
given.

1. Introduction

A tensorial approach to homogeneous Riemannian manifolds was intro-
duced by Ambrose and Singer [2]. Tricerri and Vanhecke [16] studied these
ideas in depth and decomposed the space T of such tensors into three com-
ponents T = T1 + T2 + T3 (direct sum). The space T1 is characterised by the
fact that it is the space of sections of a vector-bundle whose fibre dimension
grows linearly with that of the base manifold.

Substantial results on homogeneous Riemannian structures on the real hy-
perbolic space and its related homogeneous descriptions have been obtained
by Tricerri and Vanhecke (e.g., [16]), Pastore ([11, Th. 2], [13, Sect. 3], [12,
Sect. 3]) and Pastore and Verrocca [14, Props. 2.2, 3.1]. One main result of
[16] is that nontrivial homogeneous structures in T1 can only be realized on
the real hyperbolic space RH(n).

Subsequently, similar results were obtained ([6], [5]) for the complex and
quaternionic cases. One considers homogeneous Kähler or homogeneous qua-
ternionic Kähler manifolds, and then one examines the similar decomposition
giving spaces analogous to T1. In these cases, one finds several subspaces
with the linear growth property. It is proved that if a nontrivial homogeneous

Received September 26, 2008; received in final form March 5, 2009.

The two first authors were supported by the Ministry of Science and Innovation, Spain,

under Project MTM2008-01386.

2000 Mathematics Subject Classification. Primary 53C30. Secondary 53C20, 53C55.

561

c©2010 University of Illinois

http://www.ams.org/msc/
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structure is of linear type, i.e., belongs to the sum of these spaces, then the
geometry is that of the complex, respectively quaternionic, hyperbolic space,
and that the tensor is of a special type.

As is well-known, the same underlying Riemannian manifold M can admit
many homogeneous tensors. Different tensors may describe M as different
homogeneous spaces G/H . One open question in [16, p. 55] was the deter-
mination of all homogeneous structures on RH(n) for n ≥ 3. In the present
paper, we will demonstrate how results of Witte [17] can be used to write
down all the pairs G and H which can then in principle be used to determine
all the possible corresponding tensors. The zero tensor corresponds to G being
the full (connected) isometry group SO(n+1) (as is the case for any symmet-
ric space), whereas Tricerri and Vanhecke proved that the tensors of type T1

come from the description of RH(n) as a solvable manifold.
The same idea was used in [5] to tackle the quaternionic case and to describe

the isometry group when the tensor is of linear type. In this paper, we go on to
show how the techniques apply to the situation for RH(n) and CH(n). In the
latter case, this provides a purely Lie-theoretic approach to the construction
of the structure of linear type found in [6].

2. Preliminaries

2.1. Some conventions. Throughout the paper, sums of vector spaces,
algebras, bundles, etc. are direct. We will denote by Λ1,0 the standard rep-
resentation of the unitary group U(n) on C

n, and by [[Λ1,0]] the corresponding
real representation.

We shall follow Tricerri–Vanhecke’s conventions for the curvature tensor of
a Riemannian manifold and that of RH(n):

RXY Z = ∇[X,Y ]Z − ∇X ∇Y Z + ∇Y ∇XZ,
(2.1)

R
RH(n)
XY Z = c

(
g(X,Z)Y − g(Y,Z)X

)
, c < 0.

Similarly, we take

R
CH(n)
XY Z =

c

4
(
g(X,Z)Y − g(Y,Z)X(2.2)

+ g(JX,Z)JY − g(JY,Z)JX + 2g(JX,Y )JZ
)
, c < 0.

2.2. Homogeneous Riemannian and Kähler structures. Let (M,g)
be a connected, simply-connected, complete Riemannian manifold. Ambrose
and Singer [2] gave a characterisation for (M,g) to be homogeneous in terms
of a (1,2) tensor field S, usually called a homogeneous Riemannian struc-
ture (Tricerri and Vanhecke [16]). If ∇ denotes the Levi–Civita connection and
R its curvature tensor, then one introduces the torsion connection ∇̃ = ∇ − S
which satisfies the Ambrose–Singer equations

∇̃g = 0, ∇̃R = 0, ∇̃S = 0.
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The manifold (M,g) above admits a homogeneous Riemannian structure if
and only if it is a homogeneous Riemannian manifold.

In particular, the necessary condition is given as follows. Fix a point p ∈ M

and let m = TpM . Writing R̃ for the curvature tensor of ∇̃, we can consider
the holonomy algebra h of ∇̃ as the Lie subalgebra of skew-symmetric en-
domorphisms of (m, gp) generated by the operators R̃XY , where X,Y ∈ m.
Then, according to Nomizu [10] (see also [2], [16]), a Lie bracket is defined on
the vector space

(2.3) g = h + m

by

(2.4)

⎧⎪⎨
⎪⎩

[U,V ] = UV − V U, U,V ∈ h,

[U,X] = U(X), U ∈ h,X ∈ m,

[X,Y ] = SXY − SY X + R̃XY , X,Y ∈ m.

One calls (g,h) the reductive pair associated to the homogeneous Riemannian
structure S. The connected, simply-connected Lie group G̃ whose Lie algebra
is g acts transitively on M via isometries. The kernel Γ of this action is a
discrete normal subgroup of G̃, and G = G̃/Γ acts effectively on M . The
stabilizer H = stabG(p) is a connected subgroup with Lie algebra h. Thus,
M ≡ G/H and the Riemannian metric g corresponds to an invariant metric
on G/H .

Homogeneous Riemannian structures are sections of T ∗M ⊗ so(M), where
so(M) is the bundle of endomorphisms that preserve the metric g infini-
tesimally, i.e., so(M) consists of A such that g(AX,Y ) + g(X,AY ) = 0 for
all vector fields X,Y . Decomposing under the action of O(n), Tricerri and
Vanhecke [16] showed that there are 8 classes of homogeneous Riemannian
structures. The three primitive classes are denoted by T1

∼= Γ(TM), T2 and
T3

∼= Γ(Λ3TM); the class of linear type is T1. We write simply Ti+j for the
class Ti + Tj . Note that a homogeneous structure that belongs to Ti at some
point of M has the same type at all other points.

One recovers S from (2.3) as follows. The Levi–Civita connection ∇ is
given (Besse [4, p. 183]) by

2g(∇B∗ C∗,D∗) = −{g([B,C]∗,D∗) + g(B∗, [C,D]∗) + g(C∗, [B,D]∗)},

where for B ∈ g, B∗ denotes the vector field with one-parameter group g �→
exp(tB)g (g ∈ G, t ∈ R). Note that [B∗,C∗] = −[B,C]∗. The homogeneous
tensor is now given by S = ∇ − ∇̃, where ∇̃ is the canonical connection ∇̃.
The latter is uniquely determined [16, p. 20] by its value at eH ∈ G/H , where
one has ∇̃B∗ C∗ = −[B,C]∗

m. Indeed ∇̃ is the connection for which every
left-invariant tensor on G/H is parallel [9, p. 192]. Working at eH , we now
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have

(2.5) 2g(SBC,D) = g([B,C],D) − g([C,D],B) + g([D,B],C).

Remark 2.1. Two homogeneous structures S1, S2 are equivalent if there
is an isometry ϕ of (M,g) such that S2 = ϕ−1

∗ ϕ∗S1. In the Ambrose–Singer
picture, this corresponds to the existence of a Lie algebra homomorphism
ψ : g1 → g2 mapping h1 → h2 and m1 → m2, with ψ|m1 a linear isometry [16,
Theorem 2.4].

If (M,g,J) is a Kähler manifold, the isometries considered in the definition
are also required to preserve the complex structure J and this leads to the con-
dition ∇̃J = 0. In this case, homogeneous Kähler structures were classified by
Abbena and Garbiero [1] into 16 classes, corresponding to spaces invariant un-
der the action of U(n). Using work of Sekigawa [15], one considers the bundle
T ∗M ⊗ u(M) where, with the usual notations, u(M) = {A ∈ so(M) : AJ =
JA}. The four primitive classes are denoted by K1, . . . , K4, and, denoting

Ki + Kj simply by Ki+j , the class of linear type is K2+4
∼= Γ(TM + TM).

2.3. Witte’s Theorem on cocompact groups. We consider transitive
(isometric) actions on noncompact Riemannian symmetric spaces M . For
this section, let G be the component of the identity of the isometry group
of M , and assume that G is semi-simple. Then M = G/K with K com-
pact. We are particularly interested in, RH(n) = SO(n,1)/O(n) and CH(n) =
SU(n,1)/S(U(n) × U(1)). A group T acts transitively on M only if T \G/K
is a point. Since K is compact, this implies that T is a nondiscrete cocompact
subgroup of the semi-simple group G.

Witte [17] gives a classification of nondiscrete cocompact subgroups for a
connected, semisimple Lie group G with finite centre as follows (cf. Goto and
Wang [8]). Start with a maximal R-diagonalizable subalgebra a of the Lie
algebra g of G [7, pp. 190–192]. Decompose g with respect to the action of a

as g = g0 +
⊕

λ∈Σ gλ, where Σ is the set of roots corresponding to a. Choose
a system Θ of simple roots in Σ. Write Σ+ for the set of positive roots with
respect to Θ and let Ψ be a subset of Θ. Let [Ψ] denote the set of roots
in Σ that are linear combinations of elements of Ψ. A standard parabolic
subalgebra p(Ψ) of g is defined by p(Ψ) = l(Ψ) + n(Ψ), where l(Ψ) = g0 +∑

λ∈[Ψ] gλ and n(Ψ) =
∑

μ∈Σ+\[Ψ] gμ, are respectively, reductive and nilpotent.
The first can be decomposed as l(Ψ) = l + e + a(Ψ), with l semi-simple with
all factors of noncompact type, e compact reductive, and a the noncompact
part of the centre of l(Ψ). The decomposition P (Ψ)0 = LEAN ,

p(Ψ) = l + e + a(Ψ) + n(Ψ),

is referred to as the refined Langlands decomposition of the parabolic subgroup
P (Ψ) in [17] (cf. [8]), and one has the following theorem.
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Theorem 2.2 (Witte [17]). Let Lr be a connected normal subgroup of L
and Fr a connected closed subgroup of EA. Then there is a closed cocompact
subgroup of G contained in P (Ψ) with identity component LrFrN . Moreover,
every nondiscrete cocompact subgroup of G arises in this way.

3. Real hyperbolic space

We consider now the real hyperbolic space RH(n), n > 1, with curvature
(2.1) (cf. Tricerri and Vanhecke [16, Ch. 5]).

The usual homogeneous description of RH(n) is as RH(n) = SO(n,1)/O(n),
where SO(n,1) is its full group of isometries. In this case, the homogeneous
tensor S vanishes and the manifold is symmetric.

To discuss the other homogeneous structures, we take SO(n,1) as the set of
determinant 1 matrices preserving the bilinear form diag(Idn−1,

(
0
1

1
0

)
). The

Iwasawa decomposition is then SO(n,1) = O(n)AN , with

so(n) =

⎧⎨
⎩

⎛
⎝ B v v

−vT 0 0
−vT 0 0

⎞
⎠ : B ∈ so(n − 1), v ∈ R

n−1

⎫⎬
⎭ ,

(3.1)

a = RA0, n =

⎧⎨
⎩

⎛
⎝ 0 0 v

−vT 0 0
0 0 0

⎞
⎠ : v ∈ R

n−1

⎫⎬
⎭ ,

where A0 = diag(0, . . . ,0,1, −1).

3.1. The solvable description. The first alternative description of the real
hyperbolic space RH(n) is as the Lie group AN , which may be identified with
R>0R

n−1 and multiplication

(x1, . . . , xn)(y1, . . . , yn) = (x1y1, x1y2 + x2, . . . , x1yn + xn).

The Lie algebra structure of a + n is given by⎡
⎣

⎛
⎝ 0 0 v

−vT x 0
0 0 −x

⎞
⎠ ,

⎛
⎝ 0 0 w

−wT y 0
0 0 −y

⎞
⎠

⎤
⎦ =

⎛
⎝ 0 0 xw − yv

yvT − xwT 0 0
0 0 0

⎞
⎠ .

Let us show how a homogeneous structure S ∈ T1 corresponds to the ho-
mogeneous description of RH(n) as the group AN . Note that Tricerri and
Vanhecke [16] proved that the condition S ∈ T1 implies that (M,g) is isomet-
ric to RH(n). With the notation of [16], we have that

SXY = g(X,Y )ξ − g(ξ,Y )X

for some nonzero ξ ∈ X(M). The torsion connection is ∇̃ = ∇ − S. From the
Ambrose–Singer equations (2.4), we have ∇̃ξ = 0, so ‖ξ‖ is constant, and

(3.2) R̃XY Z = RXY Z − RS
XY Z,
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where

RS
XY Z = SSXY −SY XZ − SX(SY Z) + SY (SXZ).

Using the concrete expression for S, one gets

RS
XY Z = −‖ξ‖2

(
g(X,Z)Y − g(Y,Z)X

)
= c′R

RH(n)
XY Z,

where c′ = −‖ξ‖2/c by (2.1). Since ∇̃ξ = 0, we have R̃ξ = 0. But R̃ξ =
(1 − c′)RRH(n)ξ and RRH(n) has nonzero sectional curvature on all planes, so
c′ = 1, ‖ξ‖2 = −c and R̃ ≡ 0. Hence, the holonomy of ∇̃ is trivial and this
structure of type T1 thus gives a description of RH(n) as a group. According
to (2.4), the Lie algebra structure is given by

[X,Y ] = −g(ξ,Y )X + g(ξ,X)Y,

so [ξ,X] = ‖ξ‖2X , [X,Y ] = 0, for X,Y ∈ ξ⊥.
Conversely, consider the group AN . Note that a + n has n as its derived

algebra, at that the elements acting as +1 on n are of the form A0 +X . Using
the equivalence of Remark 2.1, we may thus assume that the splitting a + n

is orthogonal and g(V,V ) = ‖v‖2, where

V =

⎛
⎝ 0 0 v

−vT 0 0
0 0 0

⎞
⎠ .

Let k = g(A0,A0). Then g([B,C],D) = g(B,ξ)g(C,D) − g(C, ξ)g(B,D), with
ξ = A0/

√
k. Using (2.5), we get

g(SBC,D) = g(D,ξ)g(B,C) − g(C, ξ)g(B,D),

which is of class T1 and g is real hyperbolic with c = −1/k, since R = RS .
We thus see that homogeneous structures of type T1 correspond to the homo-
geneous description RH(n) = AN , as claimed in Tricerri and Vanhecke [16].
Furthermore, these are the only homogeneous Riemannian structures carried
by AN .

3.2. Other homogeneous descriptions. To describe the other homoge-
neous structures on RH(n), we need Witte’s Theorem 2.2. Up to conjugation,
the only maximal R-diagonalizable subalgebra of so(n,1) is a = span{A0}.
Its set of roots is { ±λ}, λ(A0) = 1, and Θ = {λ} is a system of simple roots.
There are only two choices for Ψ, either empty or equal to all of Θ. The
corresponding refined Langlands decompositions read

p(Θ) = so(n,1) + {0} + {0} + {0}, p(∅) = {0} + so(n − 1) + a + n,

where n is as in (3.1). For the first parabolic subalgebra, we have that the
cocompact subgroup is either all of SO(n,1) or discrete. As for the second
decomposition, we consider connected subgroups Fr of EA = SO(n − 1)R.
As E ≤ K, the group G = FrN acts transitively on RH(n) = SO(n,1)/K if
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and only if the projection Fr → EA = SO(n − 1)R → A = R is surjective. We
thus have the following theorem.

Theorem 3.1. The connected groups acting transitively on RH(n) are the
full isometry group SO(n,1) and the groups G = FrN , where N is the nilpotent
factor in the Iwasawa decomposition of SO(n,1) and Fr is a connected closed
subgroup of SO(n − 1)R with nontrivial projection to R.

Given a group G acting transitively on RH(n) with stabilizer H , determi-
nation of the corresponding tensor S depends on a choice of complement m to
h in g. Considering the maximal case with g, the normalizer so(n − 1)+R+n

of R + n and h = so(n − 1) there will be families of choices of complements m

in (2.3) and hence families of homogeneous structures if either

(a) so(n − 1) ∼= R or (b) so(n − 1) ∼= n

as vector spaces. Case (a) occurs when n = 3 and corresponds to the homo-
geneous description SO(2)AN/SO(2). Case (b) occurs when n = 4: so(3) ∼=
R3. Interestingly, this is exactly the case when RH(4) = HH(1) (note that
so(3) = ImH). This gives rise to Tricerri–Vanhecke’s example [16, p. 89] of a
T1+3 structure, see also Bérard–Bergery [3]. This may be seen as follows. For
λ ∈ R, let

mλ =

⎧⎪⎨
⎪⎩

⎛
⎜⎝

λ(b×) b b

−bT a 0
−bT 0 −a

⎞
⎟⎠ : a ∈ R, b ∈ R

3

⎫⎪⎬
⎪⎭ ,

where

b× =

⎛
⎝b1

b2

b3

⎞
⎠× =

⎛
⎝ 0 −b3 b2

b3 0 −b1

−b2 b1 0

⎞
⎠

is the matrix given by the operation of taking the cross product with b =
(b1, b2, b3)T in R

3. Now let A0 be as before and let Vb be the typical element of
mλ defined by a = 0. Then [A0, Vb]mλ

= Vb, [Vb, Vc]mλ
= 2λVb×c, since the top

right entry determines the projection to mλ ⊂ so(3) + mλ. For B ∈ mλ, write
B = b0A0 +Vb, b0 ∈ R. Then g([B,C],D) = b0〈c, d〉 − c0〈b, d〉 +2λdet(bcd), so

2g(SBC,D) = −2c0〈b, d〉 + 2d0〈b, c〉 + 2λdet(bcd).

The two first summands constitute a tensor of type T1, and the last summand
one of type T3, as claimed.

Other families of homogeneous structures arise by taking a subgroup of
SO(n − 1) whose representation on R

n−1 includes a copy of the adjoint rep-
resentation. Thus, for any connected compact G, let n = dimG + 1. Then G
acts on R

n−1 ∼= g preserving the Killing form and hence preserving some inner
product. This realizes G as a subgroup of SO(n − 1) and the homogeneous
space RH(n) = GAN/G will have nontrivial choices of complements.
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It is these nonstandard choices of complements that give rise to new homo-
geneous tensors S. For example, consider the solvable description RH(n) =
AN . As a computation shows, the normalizer of AN in G = KAN has Lie
algebra so(n − 1) + a + n. Extending AN to any subgroup of the normalizer
means that we can still use a + n as an ad-invariant complement, and the
computation of S remains unchanged from Section 3.1.

4. Complex hyperbolic space

We now consider the complex hyperbolic space CH(n) with constant holo-
morphic curvature c, see the convention (2.2).

4.1. Transitive actions. Viewed as the symmetric space SU(n,1)/S(U(n) ×
U(1)), the space CH(n) has S ≡ 0. The group has an Iwasawa decomposi-
tion SU(n,1) = KAN . As CH(n) ≡ AN , this gives a second homogeneous
description of the quaternionic hyperbolic space, in this case as a Lie group.

To explore all possible groups acting transitively, we now compute the
Iwasawa decomposition, considering SU(n,1) as the complex matrices that
are unitary with respect to the bilinear form B = diag(Idn−1,

(
0
1

1
0

)
). The

Lie algebra of SU(n,1) is then given by

su(n,1) = {C ∈ Mn+1(C) : C
T
B + BC = 0, trC = 0}

=

⎧⎪⎨
⎪⎩

⎛
⎜⎝

α v1 v2

−v̄T
2 z ib

−v̄T
1 ib′ −z̄

⎞
⎟⎠ :

α ∈ u(n − 1), v1, v2 ∈ C
n−1,

z ∈ C, b, b′ ∈ R,
z − z̄ + trα = 0

⎫⎪⎬
⎪⎭ .

For the Iwasawa decomposition, consider

u(n) =

⎧⎨
⎩

⎛
⎝ α v v

−v̄T ia ia
−v̄T ia ia

⎞
⎠

⎫⎬
⎭ , u(1) =

⎧⎨
⎩

⎛
⎝0 0 0

0 ib −ib
0 −ib ib

⎞
⎠

⎫⎬
⎭ ,

where α ∈ u(n − 1), a, b ∈ R. Then the Lie algebra of K is given by

k =

⎧⎨
⎩

⎛
⎝ α v v

−v̄T i(a + b) i(a − b)
−v̄T i(a − b) i(a + b)

⎞
⎠ :

α ∈ u(n − 1),
v ∈ C

n−1, a, b ∈ R,
2i(a + b) + trα = 0

⎫⎬
⎭ .

That is, k = s(u(n) + u(1)) and K = S(U(n)U(1)).
We now apply Witte’s construction, Section 2.3. Up to conjugation, su(n,1)

contains a unique maximal R-diagonalizable subalgebra a = spanR{A0}, with
A0 = diag(0, . . . ,0,1, −1). The corresponding set of roots is Σ = {±λ, ±2λ},
where λ(A0) = 1, and Θ = {λ} is a system of simple roots with positive root
system Σ+ = {λ,2λ}. Then there are only two choices for Ψ, either empty or
equal to all of Θ. The resulting parabolic subalgebras p(Ψ) have the following
refined Langlands decompositions:

p(Θ) = su(n,1) + {0} + {0} + {0},
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p(∅) = {0} + s
(
u(n − 1) + u(1)

)
+ a + n1 + n2,

where

s
(
u(n − 1) + u(1)

)
=

⎧⎨
⎩

⎛
⎝α 0 0

0 ia 0
0 0 ia

⎞
⎠ :

α ∈ u(n − 1), a ∈ R,
2ia + trα = 0

⎫⎬
⎭ , a = RA0,

n1 =

⎧⎨
⎩

⎛
⎝ 0 0 v

−v̄T 0 0
0 0 0

⎞
⎠ : v ∈ C

n−1

⎫⎬
⎭ , n2 =

⎧⎨
⎩

⎛
⎝0 0 0

0 0 ib
0 0 0

⎞
⎠ : b ∈ R

⎫⎬
⎭ ,

the last being the +1 and +2-eigenspaces of adA0. (The centralizer is g0 =
s(u(n − 1)+u(1))+a.) The Iwasawa decomposition is SU(n,1) = KAN , where
N has Lie algebra n = n1 + n2.

For the first Langlands refined decomposition, Witte’s Theorem 2.2 tells us
that for a cocompact G then G0 is either all of SU(n,1) or it is trivial. Thus,
the only transitive action coming from Ψ = ∅ is that of the full isometry group
SU(n,1) on CH(n).

In the second case, given a subgroup Fr of S(U(n − 1)U(1))R that is closed
and connected, we get a corresponding cocompact subgroup. To get a tran-
sitive action on CH(n) = SU(n,1)/S(U(n)U(1)), it is necessary and sufficient
that the projection Fr → S(U(n − 1)U(1))R → R be surjective. According to
Theorem 2.2, G is then FrN . We thus have the following.

Theorem 4.1. The connected groups acting transitively on CH(n) are the
full isometry group SU(n,1) and the groups G = FrN , where N is the nilpotent
factor in the Iwasawa decomposition of SU(n,1) and Fr is a connected closed
subgroup of S(U(n − 1)U(1))R with nontrivial projection to R.

4.2. The solvable description is not of linear type. The simplest choice
in Theorem 4.1 is Fr = A, this is then the description of CH(n) as the solv-
able group AN . One may determine the homogeneous type for this solvable
description as follows.

Set

X =

⎛
⎝0 0 0

0 0 i
0 0 0

⎞
⎠ .

Then, for any generic element V ∈ n1, we have

[A0,X] = 2X, [A0, V ] = V, [X,V ] = 0,
(4.1)

[V1, V2] =

⎛
⎝0 0 0

0 0 −v̄T
1 v2 + v̄T

2 v1

0 0 0

⎞
⎠ .

Here, we see the solvable Lie algebra structure of g = a + n1 + n2.
To find Kähler structures, we first determine the possible invariant sym-

plectic forms. Consider the dual splitting g∗ = a∗ + n∗
1 + n∗

2. Let a0 ∈ a∗ be
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the dual element to A0, and let x ∈ n∗
2 be dual to X . Extending these to left-

invariant forms on AN , we compute exterior derivatives via da0(B∗,C∗) =
−a0([B,C]∗). This gives, for any v ∈ n∗

1,

da0 = 0, dv = −a0 ∧ v, dx = −2(a0 ∧ x + ω1),

where ω1 is the nondegenerate two-form on n1 determined by (4.1). It follows,
that the invariant closed two-forms on AN are generated by a0 ∧ x + ω1 and
a0 ∧ n∗

1. Therefore, any invariant symplectic form may be written as

(4.2) ω = λ
(
a0 ∧ (x + v) + ω1

)
for some λ ∈ R \ {0} and v ∈ n∗

1.
If g is a left-invariant metric, let ñ1 be the orthogonal complement of n2 in

n = n1 + n2, and let ã be the orthogonal complement of n2 in a + n2. Then
there is a Lie algebra isomorphism ψ : a + n1 + n2 → ã + ñ1 + n2 respecting
the direct sum decompositions. Replacing g by ψ∗g, we may assume n2 is
orthogonal to a + n1, by Remark 2.1.

Now suppose we have a left-invariant Kähler structure (g, J,ω) on G = AN .
Our convention is that ω(A,B) = g(A,JB). Then we may assume g satisfies
the orthogonality of the previous paragraph and that ω is given by (4.2). Now
X� = g(X,X)x and JX� = g(JX, ·) = ω(·,X) = λa0. In particular, a0 ∧ x is
of type (1,1). As J is integrable, we have that d(x + iJx) has no (0,2)-
component. However, d(x + iJx) = dx = −2(a0 ∧ x + ω1) which is real and so
must be of type (1,1). Thus, ω1 ∈ Λ1,1 and equation (4.2), then implies that
a0 ∧ v ∈ Λ1,1 too. Concretely, a0 ∧ v = Ja0 ∧ Jv, but the latter is proportional
to x ∧ Jv which is only in a0 ∧ n∗

1 when v = 0. We conclude that v = 0
in (4.2) and that the decomposition g = a + n1 + n2 is orthogonal with n1

J -invariant. Now (n1, J,ω1) is linearly isomorphic to the standard Kähler
structure on C

n−1, and this extends to a Lie algebra automorphism of g, so
J is equivalent to v �→ iv on

V =

⎛
⎝ 0 0 v

−v̄T 0 0
0 0 0

⎞
⎠ .

We may thus assume g(V,V ) = λ‖v‖2, and putting g(A0,A0) = μ we find
g(X,X) = 1/μ and that we have a Kähler structure. Now computing S as in
Section 3 and taking ξ = A0/

√
μ gives (at p)

g(SBC,D) = μ−1/2
(
g(B,C)g(D,ξ) − g(B,D)g(C, ξ)(4.3)

+ g(B,JC)g(JD, ξ) − g(B,JD)g(JC, ξ)
− g(C,JD)g(JB, ξ)
+ g(JB, ξ){g(C, ξ)g(JD, ξ) − g(JC, ξ)g(D,ξ)}

)
.

The first and second lines are a tensor in K2+4 (for θ1 = θ2 in the notation of
[6]). The third line is also a tensor in K2+4 (this time for θ1 = −θ2). The fourth
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line is a tensor in K3+4
∼= Γ([[S2,1M ]]). One can easily conclude that S ∈ K2+3+4

at p. Now, if a connected, simply-connected, and complete Kähler manifold
(M,g,J) admits a homogeneous Kähler structure S, then, as a consequence
of Sekigawa’s Theorem [15] (see also [1], [6]), M is homogeneous. Also the
type of S is determined by its value at p. Hence, the previous tensor uniquely
determines a homogeneous Kähler structure on CH(n) belonging to K2+3+4,
and we have proved the following.

Proposition 4.2. Any homogeneous Kähler structure on CH(n) ≡ AN
with trivial holonomy lies in the class K2+3+4 and has S given by (4.3). In
particular, there are nontrivial homogeneous structures on CH(n) that are not
of linear type.

Remark 4.3. As a computation shows, the normalizer N of AN in G =
KAN has Lie algebra

N =

⎧⎨
⎩C =

⎛
⎝ α 0 v

−v̄T a b
0 0 −ā

⎞
⎠ :

α ∈ u(n − 1),
a ∈ C, b ∈ ImC,
trC = 0

⎫⎬
⎭ ,

so we can write

N = s
(
u(n − 1) + u(1)

)
+ a + n1 + n2.

We recall that k = s(u(n) + u(1)). Extending AN to any subgroup of the nor-
malizer means that we can still use a+n1 +n2 as an ad-invariant complement,
and the computation of S remains unchanged.

4.3. Structures of linear type. For n > 1, we will find the group theoretic
description of the homogeneous structures on CH(n) of linear type, i.e., in
K2+4. Write ω(X,Y ) = g(X,JY ). According to [1], [6], such a structure is
given by a tensor

SXY = g(X,Y )ξ − g(ξ,Y )X + ω(ξ,Y )JX − ω(X,Y )Jξ,

where ξ ∈ X(M) is nonzero and satisfies ∇̃ξ = 0, i.e., ∇ξ = Sξ, hence ξ has
constant length.

As before, R̃ is given via (3.2). Using the explicit form of S and (2.2), we
have

RS
XY Z = ‖ξ‖2

(
g(Y,Z)X + ω(Y,Z)JX − g(X,Z)Y − ω(X,Z)JY

)
+ 2ω(X,Y )

(
ω(ξ,Z)ξ + g(Z, ξ)Jξ

)
= c′R

CH(n)
XY Z + 2ω(X,Y )

(
−‖ξ‖2JZ + ω(ξ,Z)ξ + g(Z, ξ)Jξ

)
with c′ = −4‖ξ‖2/c. Now 0 = R̃ξ = (1 − c′)RCH(n)ξ, but RCH(n) has nonzero
holomorphic sectional curvature, so we must have c′ = 1, ‖ξ‖2 = −c/4 and

R̃XY Z = 2ω(X,Y )
(

‖ξ‖2JZ + ω(Z, ξ)ξ − g(Z, ξ)Jξ
)
.
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Thus, R̃XY acts as zero on Cξ and as 2‖ξ‖2ω(X,Y )J on U = (Cξ)⊥. We see
that R̃ has holonomy u(1) with representation TpM = R

2 + U , where R
2 is

spanned by ξ and Jξ, and J = −(1/2‖ξ‖4)R̃ξJξ acts as J on the factor U .
The corresponding homogeneous manifold G/H has

h = u(1), g = h + TpM,

and from (2.4) the remaining Lie brackets in g are

[X,Y ] = SXY − SY X + R̃XY

= g(ξ,X)Y − g(ξ,Y )X − ω(ξ,X)JY + ω(ξ,Y )JX

− 2ω(X,Y )Jξ + R̃XY

for X,Y ∈ TpM . Writing L0 = Jξ − ‖ξ‖2J , this gives

[Z1,Z2] = −2ω(Z1,Z2)L0, [ξ,Z] = ‖ξ‖2Z,
(4.4)

[ξ, Jξ] = 2‖ξ‖2L0, [Jξ,Z] = ‖ξ‖2JZ

for Z,Z1,Z2 ∈ U .
By Theorem 4.1, this Lie algebra must be that of a subgroup G = FrN

of S(U(n − 1)U(1))RN , where Fr has nontrivial projection to R. We now
find this identification. Our holonomy algebra h is isomorphic to u(1), so the
group G has Lie algebra

g = h + m = u(1) + ã + n1 + n2.

Here, h + ã is the two-dimensional Lie algebra of Fr and the factor a projects
nontrivially to a.

Note that h + ã is a subalgebra of the reductive Lie algebra s(u(n − 1) +
u(1))+a, so is reductive. As it is 2-dimensional, h+ ã must be Abelian. Since
J is the generator of the infinitesimal holonomy h and the full holonomy
algebra of CH(n) is s(u(n − 1) + u(1)), one has J ∈ s(u(n − 1) + u(1)). Now

J acts trivially on h+ ã+ n2 and effectively on n1. So in the splitting TpM =
R

2 + U , U corresponds to n1 and R
2 ⊂ h + ã + n2. Equation (4.4) implies

that for Z ∈ U we have [Z,JZ] = 2g(Z,Z)L0, so L0 ∈ n2. Also (4.4) implies
ξ ∈ h + ã + n2 \ (h + n2) has only real eigenvalues on g, so we have ã = a and
ξ = ‖ξ‖2A0 + sL0 ∈ a + n2, s ∈ R. Now there is a Lie algebra automorphism
ψ of g = h + a + n1 + n2 which is the identity on h + n1 + n2 and has ψ(A0) =
A0 + sL0. By Remark 2.1, we may thus take ξ = ‖ξ‖2A0.

In the notation of Section 4.2, we may write L0 = tX for some nonzero
t ∈ R. We may obtain t > 0 by replacing (J, J ) by (−J, −J ) if necessary. Then
using the automorphism of g = h+ a+ n1 + n2 that acts as (1,1,1/

√
t,1/t) on

these subspaces, we may ensure L0 = X , and hence Jξ = X + ‖ξ‖2J .
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Now equation (4.1) has [V1, V2] = 2〈v1, iv2〉X . Comparing this with (4.4),
gives J = −i. It follows that J = i

n+1 diag(−2 Idn−1, (n − 1) Id2). The corre-
sponding complement is

(4.5) m = a + n1 + R(X + ‖ξ‖2J ).

We thus have the following theorem.

Theorem 4.4. The complex hyperbolic space CH(n) admits a nonvanish-
ing homogeneous Kähler structure of linear type, which can be realized as a
homogeneous space G/H with G = HAN ⊂ S(U(n − 1)U(1))RN , H ∼= U(1)
and ad-invariant complement described in (4.5).

Note that the above structure is realized by the homogeneous Kähler man-
ifold given in [6, pp. 92–93]. In the Siegel domain model,

D = {(z = x + iy, v1, . . . , vn−1) ∈ C
n : y − ‖v‖2 > 0},

ξ is proportional to ∂/∂y.
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