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CONSTRUCTING MODULES WITH PRESCRIBED
COHOMOLOGICAL SUPPORT

LUCHEZAR L. AVRAMOV AND SRIKANTH B. IYENGAR

To Phil Griffith, algebraist and friend.

Abstract. A cohomological support, Supp∗A(M), is defined for finitely
generated modules M over a left noetherian ring R, with respect to a
ring A of central cohomology operations on the derived category of R-
modules. It is proved that if the A-module Ext∗R(M, M) is noetherian
and Ext∗R(M, R) = 0 for i � 0, then every closed subset of Supp∗A(M)
is the support of some finitely generated R-module. This theorem spe-
cializes to known realizability results for varieties of modules over group
algebras, over local complete intersections, and over finite dimensional
algebras over a field. The theorem is also used to produce large fam-
ilies of finitely generated modules of finite projective dimension over
commutative local noetherian rings.

Introduction

Quillen introduced methods from algebraic geometry to the study of coho-
mology rings of finite groups in a seminal paper, [21]. His ideas and techniques
have led to the appearance of a number of highly developed theories, which
provide insight into the structure of an algebraic object through some geomet-
ric ‘variety’ attached to it. Use of such geometric invariants has been crucial
to progress on a number of difficult problems.

Variety theories share certain formal properties needed in applications.
Some of them guarantee that homologically similar modules, such as all syzygy
modules of a given module, have the same variety. Modules with distinct vari-
eties are therefore expected to exhibit quantifiable differences in homological
behavior. For this reason, a description of all the varieties produced by a
given theory is a useful tool for classifying homological patterns.

The prototype theory applies to all finite dimensional representations of
a finite group; see [8] for a detailed exposition. It has been extended to
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representations of finite dimensional cocommutative Hopf algebras, [13], [25].
Parallel theories have been constructed for finitely generated modules over
finite dimensional self-injective algebras, [12], [22], and over local complete
intersection rings, [1], [2]. Historically, in each concrete case the proofs of the
formal properties of a theory and of the relevant realizability theorem have
involved delicate arguments specific to that context.

We are interested in modules over a fixed associative ring R.
The vehicle for passing from algebra to geometry is provided by a choice of

commutative graded ring A of central cohomology operations on the derived
category of R. In the examples above there are natural candidates for A: the
even cohomology ring of a group (or a Hopf algebra); the even subalgebra of
the Hochschild cohomology of an associative algebras; the polynomial ring of
Gulliksen operators over a complete intersection. However, other choices are
possible and sometimes are desirable.

For each pair (M,N) of R-modules the graded group Ext∗R(M,N) has a
natural structure of graded A-module. The set

Supp∗A(M,N) = {p ∈ ProjA | Ext∗R(M,N)p 6= 0},

where ProjA is the space of all essential homogeneous prime ideals in A
with the Zariski topology, is called the cohomological support of (M,N). The
cohomological support of M is the set Supp∗A(M,M).

The principal contribution of this work is a method for constructing mod-
ules with prescribed cohomological supports. Part of our main result reads:

Theorem 1. Let R be a noetherian ring and let M and N be finite R-
modules, such that the graded A-module Ext∗R(M,N) is noetherian.

If ExtiR(M,R) = 0 holds for all i � 0, then for every closed subset X of
Supp∗A(M,N) there exist finite R-modules MX and NX such that

Supp∗A(MX , N) = X = Supp∗A(M,NX) .

Moreover, when N = M one can choose NX = MX .

Suitable specializations of Theorem 1 yield several known realizibility re-
sults: See Section 5 for Hopf algebras and Section 6 for associative algebras.
Their earlier proofs were modeled on Carlson’s Tensor Product Theorem [11]
for varieties over group algebras; they rely heavily on the nature of R (in the
first case) or on that of A (in the second).

Theorem 1 is proved in Section 4, based on work in Sections 1 and 3. Our
argument requires few structural restrictions on R and none on A itself. The
crucial input is the noetherian property of Ext∗R(M,N) as a module over A.

Another application of Theorem 1 goes into a completely different direction:

Theorem 2. Let (Q, q, k) be a commutative noetherian local ring and f
a Q-regular sequence of length c contained in q2.
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For R = Q/Qf and k̄ an algebraic closure of k there exists a map

V :


isomorphism classes [M ]
of finite R-modules with

proj dimQM <∞

 −→


closed algebraic

sets X ⊆ Pc−1
k̄

defined over k


with the following properties:

(1) V is surjective.
(2) V ([M ]) = ∅ if and only if proj dimRM <∞.
(3) V ([M ]) = V ([ΩRn (M)]) for every syzygy module ΩRn (M).
(4) V ([M ]) = V ([M/xM ]) for every M -regular sequence x in R.

This result is surprising. Indeed, it exhibits large families of modules of
finite projective dimension over any ring Q with depthQ ≥ 2, contrary to
a commonly held perception that finite projective dimension is ‘rare’ over
singular commutative rings. Furthermore, the remaining statements ascertain
that modules mapping to distinct closed cones in k̄c cannot be linked by any
sequence of standard operations known to preserve finite projective dimension.

In Section 7 we prove Theorem 2, and deduce from it a recent theorem on
the existence of cohomological varieties for modules over complete intersection
local rings. For the latter we establish a descent result of independent interest.

In this paper varieties of modules are discussed in the broader context of
varieties of complexes. The resulting marginal technical complications are
easily offset by a gain in flexibility: We first realize a given set as the coho-
mological support of a bounded complex by using constructions whose effect
is easy to track. To show that this set is also the support of a module we use
‘syzygy complexes’, a notion introduced and discussed in Section 1.

This paper is part of an ongoing study of cohomological supports of modules
over general associative rings. In [5] we focus on proving existence of variety
theories with desirable properties under a small set of conditions on a ring,
its module(s), and a ring of central cohomological operators. The properties
that have to be established are clarified in [9] by Benson, Iyengar, and Krause,
who investigate a notion of support for triangulated categories equipped with
an action by a central ring of operators. On the other hand, the methods of
this paper can be adapted to prove realizability results in that context. Of
particular interest is the case of certain monoidal categories, where work of
Suarez-Alvarez, [24], provides natural candidates for rings of operators.

1. Syzygy complexes

In this section we recall a few basic concepts of DG homological algebra,
following [4], and extend the notion of syzygy from modules to complexes.

Let R be an associative ring and D(R) the full derived category of left
R-modules. We write ' to indicate a quasi-isomorphism of complexes; these
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are the isomorphisms in D(R). The symbol ∼= is reserved for isomorphisms of
complexes, and ≡ is used to denote homotopy equivalences. Given a complex
M of D(R), we write ThickR(M) for its thick closure, that is to say, the
intersection of the thick subcategories of D(R) containing M .

1.1. Semiprojective complexes. A complex P of R-modules is called semi-
projective if HomR(P,−) preserves surjective quasi-isomorphisms; equivalently,
if P is a complex of projective modules and HomR(P,−) preserves quasi-
isomorphisms. The following properties are used in the proofs below.

Every quasi-isomorphism of semiprojective complexes is a homotopy equiv-
alence. Every surjective quasi-isomorphism to a semiprojective complex has
a left inverse. Every semiprojective complex C with H(C) = 0 is equal to
cone(idB) for some complex B of projective modules with zero differential.

Lemma 1.2. If π : P → Q is a quasi-isomorphism of semiprojective com-
plexes of R-modules and n is an integer, then there is a homotopy equivalence

P>n ⊕ ΣnQ′ ≡ Q>n ⊕ ΣnP ′,

where P ′ and Q′ are projective R-modules.

Proof. Assume first that π is surjective. It then has a left inverse, hence
one gets P ∼= Q⊕ E with E = Ker(π). This implies that E is semiprojective
with H(E) = 0, and hence E = cone(idF ) for some complex F of projective
R-modules with ∂F = 0. Hence one gets a quasi-isomorphism

P>n
∼= Q>n ⊕ cone(idF>n)⊕ ΣnFn−1 .

The canonical map P>n → Q>n⊕ΣnFn−1 is thus a homotopy equivalence, as
cone(idF>n) is homotopy equivalent to 0. This settles the surjective case.

In general, π factors as P → P̃
ψ−→ Q, where P̃ is equal to P⊕Σ−1cone(idQ)

and ψ is the sum of π and the canonical surjection Σ−1cone(idQ)→ Q. Thus,
ψ is a surjective quasi-isomorphism of semi-projective complexes. So is the
canonical map P̃ → P . The already settled case yields homotopy equivalences

P>n ⊕ ΣnQ′ ← P̃ → Q>n ⊕ ΣnP ′ .

for appropriate projective modules P ′ and Q′. �

1.3. Syzygy complexes. Let M be a complex of R-modules.
A semiprojective resolution of M is a quasi-isomorphism P → M from

a semiprojective complex P . Every complex M has one, and it is unique
up to homotopy equivalence. Thus, the preceding result may be viewed as
a homotopical version of Shanuel’s Lemma. Based on it, we introduce a
homotopical version of the notion of syzygy module.
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For each n ∈ Z let ΩRn (M) stand for any complex Σ−n(P>n), where P is a
semiprojective resolution of M , and call it an nth syzygy complex of M over
R. Its dependence on the choice of P is made precise by the preceding lemma.

Any complex P of projective modules with Pi = 0 for i � 0 is semipro-
jective. Thus, when M is an R-module and P is its projective resolution the
complex Σ−n(P>n) is isomorphic in D(R) to an nth syzygy module of M .

The next lemma expands upon the last observation.

Lemma 1.4. If M is a complex of R-modules, s = sup{i | Hi(M) 6= 0}, and
n is an integer with n ≥ s, then ΩRn (M) is quasi-isomorphic to H0(ΩRn (M)).

Proof. Let P → N be a semiprojective resolution with ΩRn (M) = Σ−n(P>n).
For i ≥ n+ 1 one has isomorphisms Hi(P>n) ∼= Hi(P ) ∼= Hi(M) = 0, the first
one of which comes from the exact sequence of complexes

�(1.4.1) 0→ P<n → P → P>n → 0 .

1.5. Cohomology. Let M be a complex of R-modules and P → M a
semiprojective resolution. For every complex N and each i ∈ Z the abelian
group

ExtiR(M,N) = H−i(HomR(P,N)) = Hi(HomR(P,N))
is independent of the choice of resolution P ; see 1.1. It is a module over Rc,
the center of the ring R. For modules M , N this is the usual gadget; see 1.3.

Over noetherian rings syzygy modules inherit finiteness properties of the
original module. We show that syzygy complexes behave similarly.

Lemma 1.6. If R is a noetherian ring and M is a complex with H(M) a
finite R-module, then one can find a syzygy complex ΩRn (M) in ThickR(M⊕R).

Furthermore, for every complex C ∈ ThickR(M ⊕R) the following hold.
(1) The R-module H(C) is noetherian.
(2) Ext�0

R (M,N) = 0 for a bounded complex N implies Ext�0
R (C,N) = 0.

(3) Ext�0
R (M,R) = 0 implies Ext�0

R (C,F ) = 0 for every projective R-
module F .

Proof. Under the hypotheses on R and M , one can choose a semiprojective
resolution P 'M with each Pi finite and Pi = 0 for i� 0. It follows that P<n
is in ThickR(R), so the exact sequence (1.4.1) yields P>n ∈ ThickR(M ⊕R).

The complexes L with H(L) finite form a thick subcategory of D(R). As
it contains M and R, it contains ThickR(M ⊕R) as well. This proves (1). A
similar argument settles (2). For M and F as in (3) there is an isomorphism

Ext∗R(M,F ) ∼= Ext∗R(M,R)⊗R F ,
which one can get by using the resolution P above. Thus, Ext�0

R (M,R) = 0
implies Ext�0

R (M,F ) = 0. Now (2) yields Ext�0
R (C,F ) = 0, as desired. �
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2. Graded rings

Here we describe notation and terminology for dealing with graded objects.

2.1. Graded modules. Let A be a commutative ring that is non-negatively
graded : A =

⊕
i∈ZAi with AiAj ⊆ Ai+j and Ai = 0 for i < 0.

Modules over A are Z-graded: M =
⊕

j∈ZMj with AiMj ⊆ Mi+j . For
such anM finite means finitely generated, eventually noetherian meansM>j

is noetherian for j � 0, and eventually zero means M>j = 0 for j � 0.
The annihilator of M is the set annAM = {a ∈ A | aM = 0}. It is a

homogeneous ideal in A, so A/ annAM is a graded ring and M is a graded
module over it. WhenM is noetherian so is A/ annAM, so modulo annAM
every ideal in A is generated by finitely many homogeneous elements.

2.2. Supports. Let SpecA be the space of prime ideals of A, with the
Zariski topology. For an A-module M, set

SuppAM = {p ∈ SpecA | Mp 6= 0} ;

ProjA = {p ∈ SpecA | p homogeneous and p 6⊇ A>1} ;

Supp+
AM = SuppAM∩ ProjA .

The following properties of graded A-modules L,M, and N follow from
the definition of support and the exactness of localization.

(1) If L ι−→M ε−→ N is an exact sequence, then

Supp+
AM⊆ Supp+

A L ∪ Supp+
AN ;

equality holds when ι is injective and ε is surjective.
(2) For each i ∈ Z, one has Supp+

A (M>i) = Supp+
AM .

(3) If some M>n is finite, say, ifM is eventually noetherian, then

Supp+
AM = {p ∈ ProjA | p ⊇ annA(M>i)}

holds for every i ≥ n; thus, Supp+
AM is a closed subset of ProjA.

(4) If the A-modules M and N are finite, then

Supp+
A(M⊗A N ) = Supp+

AM ∩ Supp+
AN .

(5) IfM is eventually zero, then Supp+
AM = ∅. The converse holds when

M is eventually noetherian over A.

In some cases, supports have a natural geometric interpretation.

2.3. Varieties. Let k be a field and k̄ an algebraic closure of k. Assume
that the graded ring A has A0 = k and is generated over k by finitely many
homogeneous elements of positive degree. For each graded A-module M set

VA(M) =
(
SuppĀ (M⊗k k̄) ∩Max Ā

)
∪ {Ā>1},

where Ā denotes the ring A⊗k k̄ and Max Ā the set of its maximal ideals.
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Let M be a finite graded A-module. The subset VA(M) of Max Ā then is
closed in the Zariski topology; it is also k-rational and conical, in the sense
that it can be defined by homogeneous elements in A. The Nullstellensatz
implies that each one of the sets VA(M) and Supp+

AM determines the other.

The graded rings and modules of interest in this paper are generated by
cohomological constructions, which we recall below.

2.4. Products in cohomology. Let M and N be complexes of R-modules,
and let P → M and Q → N be semiprojective resolutions. For each i ∈ Z
one has

H−i(HomR(P,Q)) = Hi(HomR(P,Q)) ∼= Hi(HomR(P,N)) = ExtiR(M,N)

in view of properties discussed in 1.1 and 1.5. We set

Ext∗R(M,N) =
⊕
i∈Z

ExtiR(M,N) .

This is a graded module over Rc, the center of the ring R.
Composition of homomorphisms turns HomR(Q,Q) and HomR(P, P ) into

DG algebras over the center Rc of R, and HomR(P,Q) into a left DG mod-
ule over the first and a right DG module over the second. The actions are
compatible, so Ext∗R(N,N) and Ext∗R(M,M) become graded Rc-algebras and
Ext∗R(M,N) a left-right graded bimodule over them.

These structures do not depend on choices of resolutions.

3. Cohomological supports

In this section R denotes an associative ring.

3.1. Cohomology operations. A ring of central cohomology operations is a
commutative graded ring A equipped with a homomorphism of graded rings

ζM : A −→ Ext∗R(M,M)

for each M ∈ D(R), such that for all N ∈ D(R) and ξ ∈ Ext∗R(M,N) one has

(3.1.1) ξ · ζM (a) = ζN (a) · ξ for every a ∈ A .
For N = M this formula implies that ζM (A) is in the center of Ext∗R(M,M).

We assume that A is non-negatively graded and that Ai = 0 for i odd or
2A = 0; this hypothesis covers existing examples and avoids sign trouble.

3.2. Scalars. Using the standard identifications of rings

Ext∗R(R,R) = HomR(R,R) = Ro ,

where Ro denotes the opposite ring of R, one sees from (3.1.1) that the ho-
momorphism of rings ζR : A → Ro maps every element a ∈ A0 to the center
of Ro. We identify the centers of Ro and R. Formula (3.1.1) then shows
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that the action of a on Ext∗R(M,N) coincides with the maps induced by left
multiplication with ζR(a) on M or on N .

For the next definition we use the notion of support introduced in 2.2.

3.3. Cohomological supports. Let A be a graded ring of central cohomol-
ogy operations, as above. For each pair (M,N) of complexes we call the
subset

Supp∗A(M,N) = Supp+
A (Ext∗R(M,N)) ⊆ ProjA

the cohomological support of (M,N). The cohomological support of M is

Supp∗A(M) = Supp∗A(M,M) .

The theorem below is the main result of this section.

Theorem 3.4. Let M and N be complexes of R-modules.
If the graded A-module Ext∗R(M,N) is noetherian, then for every closed

subset X of Supp∗A(M,N) there exist complexes MX in ThickR(M) and NX
in ThickR(N), such that the following equalities hold:

X = Supp∗A(MX , N) = Supp∗A(MX , NX) = Supp∗A(M,NX) .

Moreover, when N = M one can take NX = MX .

The proof appears at the end of the section. Some of the preparatory
material is used repeatedly throughout the paper.

Let d be an integer. The dth shift of a complex M is the complex ΣM with
(ΣdM)n = Mn−d for all n and ∂ΣdM = (−1)d∂M . The dth twist of a graded
A-module M is the graded module M(d) withM(d)j =Md+j for all j.

3.5. Functoriality. Let M,M ′,M ′′ and N,N ′, N ′′ be complexes of R-
modules.

There exist canonical isomorphisms of graded A-modules:

Ext∗R(ΣM,N)(1) ∼= Ext∗R(M,N) ∼= Ext∗R(M,ΣN)(−1) ;(3.5.1)

Ext∗R(M ′ ⊕M ′′, N) ∼= Ext∗R(M ′, N)⊕ Ext∗R(M ′′, N) ;

Ext∗R(M,N ′ ⊕N ′′) ∼= Ext∗R(M,N ′)⊕ Ext∗R(M,N ′′) .
(3.5.2)

Indeed, basic properties of the functor HomD(R)(−,−) show that for a fixed
N (respectively, M) the canonical isomorphisms of graded Rc-modules are
linear for the action of Ext∗R(N,N) on the left (respectively, of Ext∗R(M,M)
on the right). They are A-linear because of the centrality of A; see (3.1.1).
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Similarly, exact triangles M ′ → M → M ′′ → and N ′ → N → N ′′ → in
D(R) induce exact sequences of graded A-modules

(3.5.3)

Ext∗R(M ′′, N) // Ext∗R(M,N) // Ext∗R(M ′, N) //

Ext∗R(M ′′, N)(1) // Ext∗R(M,N)(1)

Ext∗R(M,N ′) // Ext∗R(M,N) // Ext∗R(M,N ′′) //

Ext∗R(M,N ′)(1) // Ext∗R(M,N)(1)

Putting together the remarks in 2.2 and 3.5, one gets:

Lemma 3.6. In the notation of 3.5 the following statements hold.

Supp∗A(ΣM,N) = Supp∗A(M,N) = Supp∗A(M,ΣN) .(3.6.1)

Supp∗A(M ′ ⊕M ′′, N) = Supp∗A(M ′, N) ∪ Supp∗A(M ′′, N) .

Supp∗A(M,N ′ ⊕N ′′) = Supp∗A(M,N ′) ∪ Supp∗A(M,N ′′) .
(3.6.2)

Supp∗A(M,N) ⊆ Supp∗A(M ′, N) ∪ Supp∗A(M ′′, N) .

Supp∗A(M,N) ⊆ Supp∗A(M,N ′) ∪ Supp∗A(M,N ′′) .
(3.6.3)

If Ext∗R(M,N) is eventually zero, then Supp∗A(M,N) = ∅. The converse
holds when Ext∗R(M,N) is eventually noetherian over A. �

The exact sequences (3.5.3) imply the following statement:

Lemma 3.7. Let M be a complex of R-modules.
The full subcategory of D(R) consisting of complexes L with Ext∗R(M,L)

(respectively, Ext∗R(L,M)) eventually noetherian over A is thick. �

3.8. Mapping cone. Let M be a complex of R-modules.
For each ϕ ∈ Ad the morphism ζM (ϕ) : M → ΣdM defines an exact triangle

(3.8.1) M
ζM (ϕ)−−−−−→ ΣdM −→M//ϕ −→ ,

which is unique up to isomorphism.
Let N be a complex of R-modules and set M = Ext∗R(M,N). By (3.5.3)

and (3.5.1), the triangle above yields an exact sequence of graded A-modules

(3.8.2) M(−d− 1) −→M(−1) −→ Ext∗R(M//ϕ,N) −→M(−d) −→M .

The maps at both ends are given by multiplication with ϕ, so from (3.8.2)
one can extract an exact sequence of graded A-modules

(3.8.3) 0 −→
(
M/Mϕ

)
(−1) −→ Ext∗R(M//ϕ,N) −→ (0 :M ϕ)(−d) −→ 0 .

Let ϕ = ϕ1, . . . , ϕn be homogeneous elements in A. Set ϕ′ = ϕ1, . . . , ϕn−1.
A complex (M//ϕ′)//ϕn is defined uniquely up to isomorphism in D(R); we
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let M//ϕ denote any such complex. Iterated references to (3.8.1) yield

(3.8.4) M//ϕ ∈ ThickR(M) .

Example 3.9. If ϕ1, . . . , ϕn are in A0, then ζM (ϕi) is the homothety
M → M defined by the central element zi = ζR(ϕi) ∈ R; see 3.2. Thus, in
D(R) one has M//ϕ ' M ⊗Rc K(z), where K(z) is the Koszul complex on
z = z1, . . . , zn.

Proposition 3.10. Let M , N be complexes of R-modules and ϕ = ϕ1,
. . . , ϕn a sequence of homogeneous elements in A.

If the A-module Ext∗R(M,N) is eventually noetherian, then so are the A-
modules Ext∗R(M//ϕ, N), Ext∗R(M,N//ϕ), and Ext∗R(M//ϕ, N//ϕ), and

Supp∗A(M//ϕ, N) = Supp∗A(M//ϕ,N//ϕ) = Supp∗A(M,N//ϕ)

= Supp∗A(M,N) ∩ Supp+
A(A/Aϕ) .

Proof. It suffices to treat the case when ϕ has a single element, ϕ. From the
exact sequence (3.8.3) one sees that Ext∗R(M//ϕ,N) is eventually noetherian.

Set M = Ext∗R(M,N). The inclusion below holds because (0 :M ϕ) is a
submodule of M and a module over A/Aϕ; the equality comes from 2.2(5):

Supp+
A(0 :M ϕ) ⊆ Supp+

AM ∩ Supp+
A(A/Aϕ) ;

Supp+
A

(
M/Mϕ

)
= Supp+

AM ∩ Supp+
A(A/Aϕ) .

The exact sequence (3.8.3) and 2.2(2) now imply an equality

Supp∗A(M//ϕ,N) = Supp+
AM ∩ Supp+

A(A/Aϕ) .

By a similar argument, Ext∗R(M,N//ϕ) is eventually noetherian and one has

Supp∗A(M,N//ϕ) = Supp+
AM ∩ Supp+

A(A/Aϕ) .

The remaining equality is a formal consequence of those already available. �

Proof of Theorem 3.4. SetM = Ext∗R(M,N) and I = annAM.
From 2.2(3) and 2.2(4) we get

Supp∗A(M,N) = Supp+
AM = Supp+

A(A/I).
As M is noetherian the closed subset X of Supp+

A(A/I) has the form

X = Supp+
A(A/I) ∩ Supp+

A(A/Aϕ),

where ϕ is a finite set of homogeneous elements of A; see 2.1. Thus, one gets

X = Supp∗A(M,N) ∩ Supp+
A(A/Aϕ) .

Choose complexes MX and NX representing M//ϕ and N//ϕ, respectively.
One has MX ∈ ThickR(M) and NX ∈ ThickR(N); see (3.8.4). Also, one gets

X = Supp∗A(MX , N) = Supp∗A(MX , NX) = Supp∗A(M,NX)

from Proposition 3.10. Clearly, when M = N one may choose NX = MX . �
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4. Realizability by modules

In this section R is an associative ring and A is a ring of central cohomology
operations on D(R); see 3.1. The principal result here is a partial enhancement
of Theorem 3.4. It contains Theorem 1 from the introduction.

Existence Theorem 4.1. Let R be a left noetherian ring.
When M and N are complexes of R-modules with H(M) and H(N) finite,

and X is a closed subset of Supp∗A(M,N) the following hold.
(1) If Ext∗R(M,N) is eventually noetherian over A (and X is irreducible),

then there exists a finite (and indecomposable) R-module MX with

X = Supp∗A(MX , N) and MX ∈ ThickR(M ⊕R) .

(2) If, furthermore, Ext∗R(M,R) is eventually zero (and X is irreducible),
then there exists a finite (and indecomposable) R-module NX with

X = Supp∗A(M,NX) and NX ∈ ThickR(N ⊕R) .

When N = M one may choose NX = MX .

Proof. Using Theorem 3.4, choose complexes C in ThickR(M) and D in
ThickR(N), satisfying Supp∗A(C,N) = X = Supp∗A(M,D).

By Lemma 1.6(1), the R-modules H(C) and H(D) are noetherian, so one
has H>n(C) = 0 = H>n(D) for some n. Lemma 1.6 provides syzygy complexes
ΩRn (C) in ThickR(M ⊕R) and ΩRn (D) in ThickR(N ⊕R). Another application
of Lemma 1.6(1) shows that the following R-modules are finite:

MX = H0(ΩRn (C)) and NX = H0(ΩRn (D)) .

Lemma 1.4 yields ΩRn (C) 'MX and ΩRn (D) ' NX .
(1) comes from the equalities below, the second one given by Lemma 4.2(1):

X = Supp∗A(C,N) = Supp∗A(ΩRn (C), N) = Supp∗A(MX , N) .

(2) As Ext∗R(M,R) is eventually zero, so is Ext∗R(M,F ); see Lemma 1.6(3).
Thus, referring to Lemma 4.2(2) for the second equality, one obtains

X = Supp∗A(M,D) = Supp∗A(M,ΩRn (D)) = Supp∗A(M,NX) .

When N = M one can choose D = C by Theorem 3.4, and hence get

NX = MX ' ΩRn (C) ∈ ThickR(M ⊕R) .

Lemma 1.6(3) now shows that Ext∗R(MX , F ) is eventually zero when F is free.
Thus, the already established assertion of the theorem apply to MX and give

X = Supp∗A(MX ,MX) .

It remains to establish the additional property whenX is irreducible. Being
a noetherian module, MX is a finite direct sum of indecomposables. It follows
from (3.6.2) that one can replace MX with such a summand, without changing
Supp∗A(MX , N). A similar argument works for NX . �
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The following general property of syzygy complexes was used above.

Lemma 4.2. Let M , N be complexes of R-modules with bounded homology.
For every integer n the following hold.
(1) There is an equality Supp∗A(M,N) = Supp∗A(ΩRn (M), N).
(2) If Ext∗R(M,F ) is eventually zero for every free module F , then also

Supp∗A(M,N) = Supp∗A(M,ΩRn (N)) .

Proof. (2) Replacing N with a semiprojective resolution, we may assume
that each Nj is projective and Nj = 0 for all j � 0. An elementary argument
using the formulas in 3.5 shows that the complexes C of R-modules, for which
Ext∗R(M,C) is eventually zero, form a thick subcategory of D(R). It contains
the free modules by hypothesis, and hence it contains all bounded complexes
of projective modules. Therefore, Ext>i

R (M,N<n) = 0 holds for all i� 0.
The inclusionN<n ⊆ N gives rise to an exact triangleN<n → N → N≥n →

in D(R). Again by (3.5.3), it induces an exact sequence of graded A-modules

Ext∗R(M,N<n) // Ext∗R(M,N) // Ext∗R(M,N≥n) //

Ext∗R(M,N<n)(1) // Ext∗R(M,N)(1)

In view of the preceding discussion it yields Ext>i
R (M,N) ∼= Ext>i

R (M,N>n)
for all i � 0. On the other hand, one has N>n = ΣnΩRn (N) because N is
semiprojective. The desired equality now follows from 2.2(2).

(1) This follows from a similar, and simpler, argument. �

5. Bialgebras and Hopf algebras

In this section k denotes a field. We recall some notions concerning bialge-
bras and Hopf algebras, referring to [19] for details.

A bialgebra over k is a k-algebra R with structure map η : k → R and
product µ : R ⊗k R → k, equipped with homomorphisms of rings ε : R → k,
the augmentation and ∆: R→ R⊗k R, the co-product, satisfying equalities

εη = idk , (∆⊗ idR)∆ = ∆(∆⊗ idR) ,

µ(idR⊗ηε)∆ = idR = µ(ηε⊗ idR)∆ .

Given R-modules M , N over a bialgebra R, the natural R⊗kR-module struc-
ture on M⊗kN restricts along ∆ to produce a canonical R-module structure:

r · (m⊗ n) =
n∑
i=1

(r′im⊗k r′′i n) when ∆(r) =
n∑
i=1

(r′i ⊗k r′′i ) .

This extends to tensor products of complexes of R-modules. Let M be such
a complex. The canonical isomorphisms below are easily seen to be R-linear:

(5.0.1) k ⊗kM ∼= M and M ⊗k k ∼= M .
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5.1. Cohomology operations. Let R be a bialgebra over k, and view k as
an R-module via the augmentation ε. The ring Ext∗R(k, k) has Ext0R(k, k) = k

and is graded-commutative: for all α ∈ ExtiR(k, k) and β ∈ ExtjR(k, k) one has

α · β = (−1)ijβ · α ;

see [17, (VIII.4.7), (VIII.4.3)] or [16, (5.5)]. Thus, every graded subring

(a) A ⊆ Ext•R(k, k) =

{⊕
i>0 Ext2iR (k, k) if char(k) 6= 2 ;⊕
i>0 ExtiR(k, k) if char(k) = 2 .

is commutative. The functor − ⊗k M preserves quasi-isomorphisms of com-
plexes of R-modules, so it induces a functor −⊗kM : D(R)→ D(R). In view
of the isomorphism k ⊗kM ∼= M ; see (5.0.1), for each M one gets a map

(b) ζM : Ext•R(k, k)→ Ext∗R(M,M) .

It is readily verified to be a central homomorphism of graded k-algebras.

The results in Section 3 apply to any algebra A as above. More compre-
hensive information is available for special classes of bialgebras.

A Hopf algebra is a bialgebra R with a k-linear map σ : R → R, the an-
tipode, satisfying εσ = ε and µ(1⊗ σ)∆ = µ(σ ⊗ 1)∆. Quantum groups offer
prime examples. A Hopf algebra is cocommutative if τ∆ = ∆ holds, where
τ(r ⊗ s) = s⊗ r. For instance, for a group G the k-linear maps defined by

ε(g) = 1 , ∆(g) = g ⊗ g , and σ(g) = g−1 for g ∈ G

turn the group algebra kG into a cocommutative Hopf algebra. Other classi-
cal examples are universal enveloping algebras of Lie algebras and restricted
universal enveloping algebras of p-Lie algebras, where p = char(k) > 0.

5.2. Finiteness. Let R be a Hopf algebra such that rankk R finite.
If R is cocommutative, then Ext•R(k, k) is finitely generated as a k-algebra,

and Ext∗R(M,N) is a finite Ext•R(k, k)-module for all R-modules M,N of finite
k-rank: This is a celebrated theorem of Friedlander and Suslin [13, (1.5.2)],
which extends earlier results for group algebras (Evens, Golod, Venkov) and
for restricted Lie algebras (Friedlander and Parshall).

It is not known whether cohomology has similar finiteness properties when
R is not cocommutative; for positive solutions in interesting classes of such
Hopf algebras see Pevtsova and Witherspoon [20], and the bibliography there.

5.3. Cohomological varieties. Let R be a Hopf algebra with rankk R finite,
set A = Ext•R(k, k) (see 5.1(a)), and let k̄ be an algebraic closure of k.

For a complex M with Ext∗R(M,M) eventually noetherian over A define
(with notation as in 2.3) the cohomological variety of M to be the subset

V ∗R (M) = VA(Ext∗R(M,M)) ⊆ Max (A⊗k k̄) .
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Existence Theorem 5.4. Let R be a Hopf algebra over k, such that
rankk R is finite; set A = Ext•R(k, k). Let M be a complex with H(M) finite
over R.

If Ext∗R(M,M) is eventually noetherian over A, then for each closed conical
k-rational subset X of V ∗A (M) there is a finite R-module MX , such that

X = V ∗A (MX) and MX ∈ ThickR(M ⊕R) .

Proof. Hopf algebras of finite rank are self-injective (see [19, (2.1.3)(4)]),
so one has Ext>1

R (−, R) = 0. It remains to invoke Theorem 4.1 and refer to
2.3. �

5.5. Applications. In view of 5.2, for M = k the theorem specializes to
results of Carlson [11], Suslin, Friedlander, and Bendel [25, (7.5)], Pevtsova
and Witherspoon [20, (4.5)], among others. It is clear that there are also
versions dealing with supports of pairs of modules, and with complexes.

6. Associative algebras

Here k is a field and R is a k-algebra. Let Ro denote the opposite algebra
of R, set Re = R⊗kRo, and turn R into a left Re-module by (r⊗r′) ·s = rsr′.

6.1. Cohomology operations. The Hochschild cohomology of R is the k-
algebra

H∗(R |k) =
⊕
i>0

ExtiRe(R,R) .

Gerstenhaber [14, Cor. 1] proved that it is graded-commutative, so any subring

(a) A ⊆ H•(R |k) =
⊕
i>0

H2i(R |k)

is commutative. The map r 7→ 1 ⊗ r is a homomorphism of rings Ro → Re.
It turns each complex of Re-modules into one of right R-modules. Thus,
−⊗RM is an additive functor from complexes of Re-modules to complexes of
R-modules, whereR acts on the target via the homomorphism of ringsR→ Re

given by r 7→ r ⊗ 1. It induces an exact functor − ⊗L
RM : D(Re) → D(R) of

derived categories, which produces a homomorphism of graded rings

Ext∗Re(R,R)→ Ext∗R(R⊗L
RM,R⊗L

RM) .

The isomorphism R⊗L
RM 'M now yields a natural homomorphism

(b) ζM : H•(R |k)→ Ext∗R(M,M)

of graded rings. These maps satisfy condition (3.1.1); see [23, (10.1)].

The results in Sections 3 and 4 apply to any algebra A as above. Once
again, we focus on a special case to relate them to available literature.
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6.2. Finiteness. Let R be a k-algebra with rankk R finite, J the Jacobson
radical of R, and set K = R/J . It is rarely the case that the H∗(R |k)-module
Ext∗R(M,K) is noetherian for every finite R-module M ; see [12, §1]. Examples
when this property holds include the Hopf algebras in (5.2), exterior algebras,
and commutative complete intersections rings; see (7.1).

6.3. Cohomological varieties. For R as in (6.2), let A be a subring of
H•(R |k) with A0 = k (see 6.1), and let k̄ be an algebraic closure of k.

For a complex of R-modules M , such that the A-module Ext∗R(M,K) is
eventually noetherian, define the cohomological variety of M to be the subset

V ∗A (M) = VA(Ext∗R(M,K)) ⊆ Max (A⊗k k̄) .

As A acts on Ext∗R(M,K) through Ext∗R(K,K), one has V ∗A (M) ⊆ V ∗A (K).

Existence Theorem 6.4. Let R and A be as in 6.3, and let M be a
complex of R-modules with H(M) finite over R.

If Ext∗R(M,K) is eventually noetherian over A, then for each closed conical
k-rational subset X of V ∗A (M) there is a finite R-module MX , such that

X = V ∗A (MX) and MX ∈ ThickR(M ⊕R) .

Proof. The R-module R admits a finite filtration with subquotients iso-
morphic to direct summands of K. Thus, when the A-module Ext∗R(M,K)
is noetherian, so is Ext∗R(M,R). On it A acts through Ext∗R(R,R) = Rc; see
3.2. This means Ext�0

R (M,R) = 0, so we may use Theorem 4.1, then 2.3. �

6.5. Application. When the A-module Ext∗R(K,K) is noetherian, Theo-
rem 6.4 with M = K yields a result of Erdmann et al.; see [12, (3.4)].

7. Commutative local rings

We say that (R,m, k) is a local ring if R is a commutative noetherian ring
with unique maximal ideal m and k = R/m.

An embedded deformation of codimension c of R is a surjective homomor-
phism κ : Q → R of rings with (Q, q, k) a local ring and Ker(κ) an ideal
generated by a Q-regular sequence in q2, of length c.

7.1. Cohomology operations. Let (R,m, k) be a local ring with an embed-
ded deformation κ : Q→ R of codimension c. Set

(a) A = R[χ1, . . . , χc]

where χ1, . . . , χc are indeterminates of degree 2. For eachM ∈ D(R) Avramov
and Sun [7, (2.7), p. 700] construct a natural homomorphism of graded rings

(b) ζM : A → Ext∗R(M,M)
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satisfying condition (3.1.1); whenM and N are R-modules the resulting struc-
ture of graded A-module on Ext∗R(M,N) coincides with that defined by Gul-
liksen [15]. For complexes M and N , the A-module Ext∗R(M,N) is finite if
and only if the Q-module Ext∗Q(M,N) is finite; see [7, (5.1)] and [3, (4.2)].

The action of A on Ext∗R(M,k) factors through the graded ring

(c) R = A⊗R k = k[χ1, . . . , χc] .

Recall that a complex of Q-modules is said to be perfect if it is isomorphic,
in D(Q), to a bounded complex of finite free Q-modules.

Lemma 7.2. Let Q, R, and R be the rings in 7.1.
The following conditions are equivalent for each complex M of R-modules:
(i) M is perfect over Q.
(ii) H(M) is finite over R and Ext∗R(M,k) is finite over R.

Proof. (i) =⇒ (ii): As M is perfect over Q, the Q-module Ext∗Q(M,k) is
finite, and hence the R-module Ext∗R(M,k) is finite; see 7.1.

(ii) =⇒ (i): It follows from 7.1 that Ext∗Q(M,k) is finite over Q, and
hence is eventually zero. Since H(M) is finite over Q, the complex M admits
a semiprojective resolution F with each Fi finite, Fi = 0 for i � 0, and
∂(F ) ⊆ mF ; see, for example, [4]. This yields an isomorphism ExtiQ(M,k) ∼=
HomQ(Fi, k). Thus ExtiQ(M,k) = 0 for i ≥ n implies Fi = 0 for i ≥ n, so F
is a perfect complex of Q-modules that is quasi-isomorphic to M . �

7.3. Cohomological varieties. Let (R,m, k) be a local ring with an embed-
ded deformation κ of codimension c, as in 7.1, and k̄ an algebraic closure of k.
Let M be a complex of R-modules with Ext∗R(M,k) noetherian over R. The
cohomological variety of M is the subset V ∗κ (M) of k̄c defined by the formula

V ∗κ (M) = VR(Ext∗R(M,k)) ⊆ Max (R⊗k k̄) = k̄c ,

where the second equality comes from Hilbert’s Nullstellensatz. When M is a
module and f is a Q-regular sequence that generates Ker(κ), the construction
above yields the cone V ∗R (f ;M) defined in [1].

A Q-module is a perfect complex in D(Q) if and only if proj dimQM is
finite. Thus, Theorem 2 from the introduction is obtained from the next
result by replacing affine cones by their projectivizations.

Existence Theorem 7.4. Let (Q, q, k) be a local ring, f ⊂ q2 a Q-
regular sequence of length c, and κ : Q→ Q/Qf = R the canonical surjection.

The assignment M 7→ V ∗κ (M), which maps complexes in D(R) that are
perfect over Q to closed k-rational cones in k̄c, has the following properties:

(1) It is surjective, even when restricted to modules.
(2) V ∗κ (M) = {0} if and only if M is perfect over R.
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(3) V ∗κ (M) = V ∗κ (ΩRn (M)) for every syzygy complex ΩRn (M).
(4) V ∗κ (M) = V ∗κ (M/xM) for a module M and an M -regular sequence x.

We import some material for the proof of part (1) of the theorem.

7.5. Under the hypotheses of the theorem Avramov, Gasharov, and Peeva
[3, (3.3), (3.11), (6.2)] give a nonzero finite R-module G with

Ext∗R(G, k) ∼= R⊗k Ext∗Q(G, k) ,

which also satisfies the conditions proj dimQG <∞ and Ext>1
R (G,R) = 0.

Proof of Theorem 7.4. (1) One has VR(R) = k̄c by the Nullstellensatz. In
view of 2.3 it thus suffices to find a module G with Supp∗R(G, k) = SpecR,
and to show that every closed subset X of Supp∗R(G, k) is realizable by a
module MX with proj dimQMX <∞.

The R-module G from 7.5 has the necessary property, as Ext∗R(G, k) is a
nonzero graded free R-module. Theorem 4.1 yields a module MX with the
desired cohomological support and is in ThickR(G⊕R). Since G⊕R is perfect
over Q, the last condition implies that so does MX .

(2) Evidently V ∗κ (M) = {0} if and only if SuppR Ext∗R(M,k) = ∅. As
the R-module Ext∗R(M,k) is finite, this is equivalent to Ext�0

R (M,k) = 0.
Lemma 7.2, applied with Q = R, yields the desired equivalence.

(3) This follows from Lemma 4.2.
(4) As noted in Example 3.9, the complex M//x is quasi-isomorphic to the

Koszul complex on x, and hence to the R-module M/xM . Thus, Proposi-
tion 3.10 implies V ∗κ (M/xM) = V ∗κ (M); see 2.3. �

In Theorem 7.4 the hypothesis that R has an embedded deformation can
be weakened in a useful way. The main property is (1), so we focus on it.

7.6. Completions. The m-adic completion of (R,m, k) is a local ring,
(R̂, m̂, k). The maps R→ R̂ and M → R̂⊗RM = M̂ induce isomorphisms

(d) Ext∗bR(k, k) −→ Ext∗R(k, k) and Ext∗bR(M̂, k) −→ Ext∗R(M,k) ,

the first one of graded k-algebras, the second of graded modules, equivariant
over the first. Thus, when R̂ has an embedded deformation κ of codimension
c the ring R from 7.1 acts on Ext∗R(M,k) for each M ∈ D(R). As in 7.3, when
Ext∗R(M,k) is noetherian over R we define a cohomological variety by:

V ∗κ (M) = VR(Ext∗R(M,k)) ⊆ k̄c .
Observe that if κ is an embedded deformation of R, then κ̂, completion

with respect to the maximal ideal of Q, is an embedded deformation of R̂, so
(d) above yields V ∗κ (M) = V ∗bκ (M̂).

The following descent result is of independent interest.
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Theorem 7.7. Let (R,m, k) be a local ring, Q → R an embedded defor-
mation, and L a complex of R̂-modules.

If L is perfect over Q, then there exists a finite R-module M with

V ∗κ (M) = V ∗κ (L) and proj dimQ M̂ <∞ .

Proof. By 2.3, it suffices to prove Supp+
A Ext∗R(M,k) = Supp+

A Ext∗R(L, k).
Choose a set of generators of the ideal m and let x be its image under the

composition R→ R̂→ A. The equality x Ext∗bR(L, k) = 0 implies an inclusion

Supp+
A Ext∗bR(L, k) ⊆ Supp+

A (A/(x)A) .

This yields the second equality below; the first one holds by Lemma 3.7:

Supp+
A Ext∗bR(L//x, k) = Supp+

A Ext∗bR(L, k) ∩ Supp+
A (A/(x)A)

= Supp+
A Ext∗bR(L, k) .

The complex L//x is quasi-isomorphic to the Koszul complex on x with
coefficients in L; see 3.9. Thus, H(L//x) has finite length over R̂, hence also
over R. Let F → L//x be a semi-projective resolution over R with F a finite
free complex. One then has quasi-isomorphisms

R̂⊗R F ' R̂⊗R (L//x) ' L//x

due to the flatness of R̂ over R and, for the second one, also to the finiteness
of the length of H(L//x) over R. Fix n so that H>n(L//x) = 0 holds and set
M = Hn(F>n). One then has quasi-isomorphisms of complexes of R̂-modules

M̂ ∼= R̂⊗RM ' R̂⊗R (F>n) .

They imply M̂ ∼= Ω bR
i (L//x), hence the first equality below:

Supp+
A Ext∗bR(M̂, k) = Supp+

A Ext∗bR(ΩRi (L//x), k)

= Supp+
A Ext∗bR(L//x, k) .

Lemma 1.4 gives the second one. It remains to note that since L and R̂ are
both perfect over Q, so is any complex in Thick bR(L⊕R̂). Thus, L//x is perfect
over Q, by (3.8.4), and hence so is M̂ = Ω bR

i (L//x), by Lemma 1.4. �

Existence Theorem 7.8. Let (R,m, k) be a local ring.
If κ : Q → R̂ is an embedded deformation of codimension c, then for each

closed k-rational cone X ⊆ k̄c there exists a finite R-module M with

X = V ∗κ (M) and proj dimQ M̂ <∞ .

Proof. Theorem 7.4(1) provides a finite R̂-module L with X = V ∗κ (L), and
of finite projective dimension over Q. Now apply Theorem 7.7. �
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7.9. Application. A local ring R is complete intersection if R̂ admits an
embedded deformation κ : Q → R where Q is a regular local ring; see [18,
§29]. For such an R Theorem 7.8 specializes to a result proved by Bergh [10,
(2.3)], who uses Tate cohomology, and by Avramov and Jorgensen [6], who
establish an existence theorem for cohomology modules by using equivalences
of triangulated categories and Koszul duality.
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