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THE STRENGTH OF THE WEAK LEFSCHETZ PROPERTY

JUAN MIGLIORE AND FABRIZIO ZANELLO

Abstract. We study a number of conditions on the Hilbert
function of a level Artinian algebra which imply the Weak Lef-
schetz Property (WLP). Possibly the most important open case

is whether a codimension 3 SI-sequence forces the WLP for level

algebras. In other words, does every codimension 3 Gorenstein

algebra have the WLP? We give some new partial answers to this

old question: we prove an affirmative answer when the initial de-
gree is 2, or when the Hilbert function is relatively small. Then

we give a complete answer to the question of what is the largest
socle degree forcing the WLP.

1. Introduction

A very broad and fascinating problem in the study of standard graded
algebras is to describe the algebraic, geometric, and homological consequences
forced on the algebras by conditions on the Hilbert function. There is a vast
literature on this topic. This paper studies the behavior of Hilbert functions
of Artinian algebras with respect to the Weak Lefschetz Property (WLP).
More specifically, we are interested in conditions on the Hilbert function which
force the WLP. For Artinian algebras in general, this problem has already been
solved [25]. Hence, we refine it by focusing on level algebras, and we ask the
following.

Question. Let h = (1, h1, h2, . . .) be a Hilbert function that occurs for
some Artinian level algebra A. What conditions on h guarantee that every
level algebra with Hilbert function h has the WLP? More ambitiously, can
we characterize these Hilbert functions? As an important special case, does
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every codimension 3 Artinian Gorenstein algebra have WLP (i.e., is there an
affirmative answer whenever h is a codimension 3 SI-sequence)?

Since it is not even known what Hilbert functions occur for level algebras in
codimension ≥ 3 (cf. [13], [28], [30]), a full answer to this question will be very
difficult to obtain. This paper is intended to be a first step on the (possibly)
long road toward its solution by giving a partial answer to the first part and
to the last part. It complements a result of Boij and the second author [7],
who gave an example of a unimodal Hilbert function with the property that
no level algebra with this Hilbert function (which dictates that the algebra
has type 2) has WLP.

Of course the last part of the question, the particular case of whether
all codimension 3 Artinian Gorenstein algebras have the WLP, has already
been posed in the literature (see for instance [18], [21]). It is known that in
characteristic zero the WLP holds for a nonempty open subset of the codi-
mension 3 Gorenstein algebras with fixed Hilbert function (e.g., [17], [23]),
and for all codimension 3 complete intersections [18] (it is false in positive
characteristic—cf. Remark 3.3). However, showing it for all codimension 3
Gorenstein algebras has proved very elusive so far, and we give some results
in this direction.

An important prerequisite to answering these questions is to have a good
understanding of as many Hilbert functions as possible for which nonWLP
algebras exist. As a first step, one can simplify the question by focusing only
on the codimension, r, and socle type, t. Are there pairs (r, t) for which no
nonWLP algebras exist? As noted above, even taking codimension 3 and socle
type 1 is open; this is a nontrivial question.

Indeed, much work has recently been done to prove the existence of non-
WLP level algebras for various t and r. It is known that the WLP holds for any
standard graded algebra (level or not) when r = 2 (see [18], [25]). This topic
was studied in [13], where it was asked if at least for level algebras it might
always hold in codimension 3 as well ([13], Question 4.4). The first counterex-
ample was given by the second author [30], who proved it for t as small as 3.
This was extended to r = 3, t = 2 in [7]. It has also been shown that level al-
gebras failing WLP exist for r ≥ 5 and any t (cf. [1], [4], [6], [26], [28]), as well
as r = 3, t ≥ 5, and r = 4, t ≥ 3 (cf. [28]), and for r = 4, t = 1 (cf. [5], [20]).

This leaves open only the question of the existence of nonWLP level alge-
bras for r = 3, t = 1 (Gorenstein) and t = 4, and r = 4, t = 2. The latter two
cases are quite easy to settle, just by variations of known constructions, as we
will see in Example 4.7. The (major) case left open is therefore only that of
codimension 3 Gorenstein algebras, as we asked above. One goal of this paper
is to begin the study of this latter problem.

After some preparatory results and background material, this note is di-
vided into two parts. In the first, we study WLP for codimension 3 Gorenstein
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algebras, as indicated above. The first main result, Corollary 3.2, will be that
all such algebras enjoy the WLP if their initial degree is at most 2. In the
other main result of that section, Theorem 3.6, we show the result for any
socle degree, provided that the Hilbert function not be too large. One of the
motivations of this section was to see to what extent the methods of [24], which
the authors wrote together with Uwe Nagel, could be extended and modified
to study WLP in codimension 3 rather than nonunimodality in codimension 4.

The second part of this paper brings the socle degree into the picture as
well. We prove that the largest socle degree forcing all level algebras to enjoy
the WLP is 2 if the codimension is r = 3, and is 1 if r ≥ 4. One might wonder if
this changes if we further restrict to codimension 3, type 2 level algebras, and
indeed, we prove that the largest socle degree where all such algebras enjoy the
WLP is 3, thus settling the closest case to codimension 3 Gorenstein algebras
also with respect to the socle degree.

2. Background and preparatory results

Let R = k[x1, x2, x3] where k is an infinite field. For most of our results,
we need to assume that k has characteristic zero, which we will see is indeed
an essential hypothesis.

We first recall some standard terminology and notation. Let A be a stan-
dard graded artinian k-algebra, A =

⊕
i≥0 Ai. The Hilbert function of A is

the function hA defined by hA(i) = dimk Ai. The algebra A has the Weak
Lefschetz Property (WLP) if the homomorphism (×L) : Ai → Ai+1 induced
by multiplication by a general linear form L has maximal rank for all i. It has
the Strong Lefschetz Property (SLP) if the homomorphism (×Ls) : Ai → Ai+s

has maximal rank for all i and all s. We say that A is level of type t if the
socle of A is of dimension t and is concentrated in one degree (namely the last
degree in which A is non-zero). Furthermore, A is Gorenstein if and only if
it is level of type 1.

Three basic results studying the behavior of Hilbert functions are those of
Macaulay, Gotzmann, and Green, for which we need a little combinatorial
notation first.

Definition 2.1. Let n and i be positive integers. The i-binomial expansion
of n is

n(i) =
(

ni

i

)
+

(
ni−1

i − 1

)
+ · · · +

(
nj

j

)
,

where ni > ni−1 > · · · > nj ≥ j ≥ 1. Such an expansion always exists and it is
unique (see, e.g., [9], Lemma 4.2.6).

Following [2], we define, for any integers a and b,

(
n(i)

)b

a
=

(
ni + b
i + a

)
+

(
ni−1 + b
i − 1 + a

)
+ · · · +

(
nj + b
j + a

)
,
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where we set
(
m
q

)
= 0 whenever m < q or q < 0.

Theorem 2.2. Let L ∈ A be a general linear form. Denote by hd the degree
d entry of the Hilbert function of A and by h′

d the degree d entry of the Hilbert
function of A/LA. Then:

(i) (Macaulay)

hd+1 ≤
(
(hd)(d)

)1

1
.

(ii) (Gotzmann) If hd+1 = ((hd)(d))11 and I is generated in degrees ≤ d
then

hd+s =
(
(hd)(d)

)s

s
for all s ≥ 1.

(iii) (Green)

h′
d ≤

(
(hd)(d)

)−1

0
.

Proof. (i) See [9], Theorem 4.2.10.
(ii) See [9], Theorem 4.3.3, or [14].
(iii) See [16], Theorem 1. �

A sequence of nonnegative integers h = (1, r, h2, . . . , hd, . . . ) is said to be
an O-sequence if it satisfies Macaulay’s bound for all d. We remark that
Macaulay also showed that any O-sequence is actually the Hilbert function of
some standard graded algebra, so the O-sequences are precisely the Hilbert
functions of standard graded algebras. When A is Artinian and Gorenstein,
its Hilbert function is a symmetric O-sequence. Such a sequence is a Stanley-
Iarrobino (SI)-sequence if in addition, the first half is differentiable, i.e. its first
difference is also an O-sequence. Such sequences are necessarily unimodal.

Lemma 2.3 ([22]). Let R/I be an Artinian standard graded algebra and
let L be a general linear form. Consider the homomorphisms φd : (R/I)d →
(R/I)d+1 defined by multiplication by L, for d ≥ 0. Note that (R/I)d and
(R/I)d+1 are finite-dimensional vector spaces.
(a) If φd0 is surjective for some d0 then φd is surjective for all d ≥ d0.
(b) If R/I is level and φd0 is injective for some d0, then φd is injective for

all d ≤ d0.
(c) In particular, if R/I is level and dim(R/I)d0 = dim(R/I)d0+1 for some

d0 then R/I has WLP if and only if φd0 is injective (and hence is an
isomorphism).

Remark 2.4. Lemma 2.3 implies that for Gorenstein algebras, there is
always exactly one degree that needs to be checked, and it can be chosen so
that only injectivity (resp. surjectivity) has to be checked. Indeed, the only
missing ingredient is that since R/I is self-dual up to twist, injectivity in the
“first half” is equivalent to surjectivity in the “second half.” In Section 3, we
will refer to this with the phrase “by duality.”
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Proposition 2.5 ([24]). Assume that the field k has characteristic zero.
Let R = k[x, y, z] and let J = (F,G1,G2) ⊂ R be a homogeneous ideal with
three minimal generators, where degF = a ≥ 2 and degG1 = degG2 = b ≥ a.
Let L ∈ R be general linear form. Then dim[R/(J,L)]b = a − 1 if and only if
F,G1,G2 have a GCD of degree a − 1. Otherwise, dim[R/(J,L)]b = a − 2.

Proof. We only remark that this result is stated in [24] in a slightly different
way, but in the proof it immediately passes to this setting. �

Lemma 2.6. Let R/I be an Artinian graded algebra, and let a = min{t|It �=
0} be the initial degree of I . Let F ∈ I be a form of degree a and L a general
linear form. Let d ≥ a be an integer.
(1) If Id has a GCD of degree a − ε, then dim[R/(I,L)]d ≥ a − ε.
(2) Suppose that dim[R/(I,L)]d > a − δ. Suppose that I has some minimal

generating set that contains F together with δ generators of degree d (not
including F if a = d), and contains no additional minimal generators of
degree < d. Then the multiplication by a general linear form,

(×L) : (R/I)d−1 → (R/I)d

fails to be injective.

Proof. For (1), let G be the GCD of Id and let Ḡ be its image in R/(L).
Then the elements of (I,L) in any degree t ≤ d, viewed in R/(L), are all of
the form Ḡf where f is a form in [R/(L)]t−(a−ε)

∼= k[x, y]t−(a−ε). Note that
F̄ is one such element, with t = a. Since dim[R/(L)]d = d + 1 and since there
are (d − a + ε + 1) independent forms of degree d − a + ε in k[x, y], we see
that the maximum number of independent elements of (I,L)/(L) in R/(L) is
d − a + ε + 1, so dim[R/(I,L)]d ≥ d + 1 − (d − a + ε + 1) = a − ε as claimed.

For (2), note that I may have more than δ minimal generators of degree
d; we just require the condition on the Hilbert function. Let F1, . . . , Fδ be
the indicated minimal generators. Then the hypotheses say that F̄ , F̄1, . . . , F̄δ

are linearly dependent modulo L. This means that there is some form, A,
of degree d − 1 such that AL + a1F1 + · · · + aδFδ = 0. Since the Fi’s are
homogeneous, for degree reasons clearly A /∈ 〈F1, . . . , Fδ 〉. If A ∈ (F ), then one
of the Fi is redundant, contradicting their choice. This means that AL ∈ I ,
but A /∈ I , so A is a nonzero element in the kernel of the multiplication. �

Remark 2.7. Lemma 2.6 explains why Example 7 of [30] works.

Remark 2.8. We collect the following easy facts.
(1) Let I be any homogeneous ideal and let F be any form of degree d. There

is an exact sequence:

(2.1) 0 → R/(I : F )(−d) ×F−→ R/I → R/(I,F ) → 0.

(2) If R/I is Gorenstein, then we have the following well-known facts:
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• If F /∈ I , then R/(I : F ) is Gorenstein, of socle degree e − d.
• For any form G /∈ I of degree g ≥ 1, hR/(I:G)(d − g) ≤ hR/(I:G)(d − g +

1). Indeed, codimension 3 Gorenstein Hilbert functions are always SI-
sequences, hence unimodal (cf. [26] and the recent elementary proof in
[29]), so it is enough to check that d − g + 1 ≤ e−g

2 , which is an easy
calculation (since g ≥ 1).

We now need some preliminary lemmas. A very useful rephrasing of the
Weak Lefschetz Property in terms of the exact sequence (2.1) is the following.

Lemma 2.9. An Artinian algebra R/I with Hilbert function (1, h1, h2, . . . ,
he) enjoys the WLP if and only if, for any general form linear L and for all
indices i, we have

hR/(I,L)(i) = max{hi − hi−1,0}.

Notice, also, that in the level (or Gorenstein) case, by Lemma 2.3, in order
to check whether WLP holds, there always exists one degree such that it
suffices to check the value of hR/(I,L)(i) only in that spot.

Lemma 2.10. If R/I is any standard graded algebra and L is a linear form,
then (R/I)t

×L−→ (R/I)t+1 is surjective if and only if (R/(I,L))t+1 = 0.

Proof. The exact sequence (2.1) applied to F = L immediately gives the
result. �

Lemma 2.11. If hR/(I,L)(t) = hR/(I,L)(t + 1) = k, then It+1 has a GCD of
degree k.

Proof. This simple but powerful tool was used in [24]. The point is that
Davis’s theorem forces a GCD in (I,L)t+1, which then lifts to It+1 (cf. [3],
[11]). �

Lemma 2.12. Let R/I be an Artinian Gorenstein algebra of socle degree
e. If d > e

2 , then I does not have a GCD of any degree r ≥ 1 occurring in
degree d.

Proof. Suppose otherwise, and let F be such a GCD. Now we apply (2.1)
with the GCD, F , playing the role of the homogeneous form. Note that
(R/(I,F ))t = (R/(F ))t for t ≤ d. Note also that R/(I : F ) is Gorenstein of
socle degree e − r. Finally, since It has to have (at least) F as a common divisor
in all degrees ≤ d, without loss of generality we will assume that d = � e+2

2 �.
Then we have

hR/I(d − 1) ≥ hR/I(d) by definition of d,

hR/(I:F )(−r)(d − 1) ≤ hR/(I:F )(−r)(d),
hR/(I,F )(d − 1) < hR/(I,F )(d) since (I,F ) = (F ) in this range,
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where the second inequality follows because of the (revised) definition of d
and because all Gorenstein Hilbert functions are unimodal in codimension 3.
But then

hR/I(d − 1) = hR/(I:F )(−r)(d − 1) + hR/(I,F )(d − 1)
< hR/(I:F )(−r)(d) + hR/(I,F )(d) = hR/I(d)

is a contradiction. �

Remark 2.13. It is an open question whether all Gorenstein Hilbert func-
tions in codimension 4 are unimodal. This was shown in [24] for h4 ≤ 33. If it
is true that all such Hilbert functions are unimodal, then Lemma 2.12 holds
in codimension 4 as well.

3. Gorenstein algebras of codimension 3

We begin with a useful result connecting WLP with GCD’s of components
of ideals.

Lemma 3.1. Let R/I be an Artinian Gorenstein algebra of socle degree e.
Set d = � e−1

2 �. Let a = min{t|It �= 0} (the initial degree of I). If Id+1 has a
GCD, F , of degree a − 1 then e is even and R/I has WLP.

Proof. If e is odd, then d + 1 > e
2 , so Lemma 2.12 shows that no such

algebras exist. Hence, e must be even.
In order to show that R/I has WLP, it suffices to check that the multipli-

cation by a general linear form from degree d to degree d + 1 is injective, by
Lemma 2.3 and duality.

We make the following observations:
(1) For any t ≤ d + 1, (I,F )t = (F )t.
(2) (I : F ) has initial degree 1. Hence, R/(I : F ) is isomorphic to a codimen-

sion two Gorenstein algebra (necessarily a complete intersection).
Now, the exact sequence (2.1) gives rise to the following diagram (after

taking into account observation (1) and the previous claim):

0 →
(
R/(I : F )

)
d−(a−1)

→ (R/I)d → (R/(F ))d → 0

↓ ↓ ↓
0 →

(
R/(I : F )

)
d−(a−1)+1

→ (R/I)d+1 → (R/(F ))d+1 → 0,

where the vertical arrows are multiplication by a general linear form. The
leftmost vertical map is injective by (2), and the rightmost vertical map is
clearly injective. Thus, the middle map is injective, and so R/I has WLP. �

Corollary 3.2. If R/I is Gorenstein and I has initial degree 2, then R/I
has WLP.
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Proof. We consider the possibilities for h2 = hR/I(2).
Case 1: h2 = 3. Since the Hilbert function of R/I is an SI-sequence, it

is of the form 1,3,3,3, . . . ,3,3,1. Suppose first that the socle degree is ≥ 4.
Then in particular, hR/I(3) = 3. By Green’s theorem, hR/(I,L)(3) = 0, so
by Lemma 2.10, we have a surjectivity (R/I)t → (R/I)t+1 for all t ≥ 2. In
particular, since at least hR/I(3) = 3, by duality we conclude that R/I has
WLP.

It remains to prove WLP for a Gorenstein algebra with Hilbert function
1,3,3,1. Let F , G1, and G2 all be minimal generators of I of degree 2, so
a = b = 2 in Proposition 2.5. Suppose that R/I fails to have WLP. Then the
multiplication by a general linear form from degree 1 to degree 2 fails to be
surjective. By Lemma 2.10, this means that hR/(I,L)(2) = 1 = 2 − 1. Hence by
Proposition 2.5, I2 has a GCD of degree 1 = 2 − 1. Then by Lemma 3.1, R/I
has WLP. We only remark that, as pointed out to us by the referee, WLP
for Gorenstein algebras with h2 = 3 can also be proved, still assuming that
the characteristic of the base field be zero, using an argument involving the
Hessian of an inverse system form (substantially due to [15] and [27], and also
employed in [18], Example 4.3). See also Remark 4.6.

Case 2: h2 = 4. First, suppose that the Hilbert function has of one of the
following forms:

1,3,4,3,1;
1,3,4,4, . . . ,4,3,1;
1,3,4,5,5, . . . ,5,4,3,1.

Using an argument almost identical to the one for Case 1, we get that mul-
tiplication by a general linear form is surjective from degree 2 to degree 3 in
the first two cases, and from degree 3 to degree 4 in the third case. All of
these are enough to force WLP.

It remains to consider the case 1,3,4,5,6, . . . . Now there are two possibil-
ities:

1,3,4,5,6, . . . ,t − 1,t,t − 1, . . .;
1,3,4,5,6, . . . ,t − 1,t,t, . . . ,t,t − 1, . . . .

In the first of these cases, the second t − 1 occurs in degree t − 1, and Green’s
theorem together with Lemma 2.10 guarantees that multiplication by a gen-
eral linear form from degree t − 2 to t − 1 is surjective. By Lemma 2.3 and
duality, this implies that R/I has WLP. In the second of these cases, a similar
argument takes care of the case where there are at least three t’s. So we have
to check the case 1,3,4,5,6, . . . ,t − 1,t,t,t − 1, . . . . Note that the second t
occurs in degree t − 1. Now Green’s theorem gives that hR/(I,L)(t − 1) ≤ 1.
If it is equal to 0, then again we have WLP. So without loss of generality,
assume that it is 1. But also applying Green’s theorem to degree t − 2, we
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obtain that hR/(I,L)(t − 2) = 1. Then Lemma 2.11 gives that It−1 has a GCD
of degree 1, so by Lemma 3.1, R/I has WLP.

Case 3: h2 = 5. Now the form of the Hilbert function is essentially the
following:

1,3,5, (grow by 2), (grow by 1), (flat), . . . ,
where any of these ranges could be empty. All of the specific subcases are
dealt with using the same ideas as above, and we omit the details except for
one that has a slight twist. Suppose that the Hilbert function is of the form

1,3,5,7, . . . ,2t − 1,2t+ 1,2t+ 1,2t − 1, . . . ,

where the first 2t + 1 occurs in degree t. We then note that I has a generator
in degree a = 2 and two in degree b = t + 1, so by Lemma 2.10 and Proposi-
tion 2.5, R/I fails to have WLP if and only if It+1 has a GCD of degree 1,
and Lemma 3.1 gives the result. �

Remark 3.3. The proof for the case 1,3,3,1 used Proposition 2.5 in a
crucial way (although, as we said above, a Hessian argument can also be used).
An important hypothesis, in either case, is that k has characteristic zero. It
was pointed out to us by Uwe Nagel that in fact in characteristic 2 this Hilbert
function does not necessarily have WLP: the complete intersection (x2

1, x
2
2, x

2
3)

is a counterexample (cf. [18]). This answers a question raised at the beginning
of Section 2 of [24], whether Proposition 2.5 has a characteristic-free proof. (In
fact, a counterexample can be found in any characteristic, using a complete
intersection of forms of the same degree, via the same approach.)

Corollary 3.4. Let R/I be an Artinian Gorenstein algebra such that I
has minimal generators F,F1, F2 of degrees 2, b, b, respectively (b ≥ 2), F,F1,
F2 have a GCD in degree b, and all other generators of I have degree ≥ b.
Then R/I cannot have WLP.

Proof. Since the initial degree of I is 2, we see that any GCD would have to
have degree 1. By Lemma 2.12, the socle degree must be ≥ 3 and hR/I(b − 1) ≤
hR/I(b) (since otherwise I has a GCD in degree > e

2 ). So WLP would mean
in particular that we need injectivity from degree b − 1 to degree b. By
Lemma 2.6(1), dim[R/(I,L)]b ≥ 2 − 1 = 1. Then by Lemma 2.6(2), (taking
δ = 2) the required injectivity fails. �

Corollary 3.2 allows us to extend Lemma 3.1, lowering by 1 the degree of
the GCD that forces WLP.

Corollary 3.5. Let R/I be an Artinian Gorenstein algebra of socle degree
e. Set d = � e−1

2 �. Let a = min{t|It �= 0} (the initial degree of I). If Id+1 has
a GCD of degree a − 2, then e is even and R/I has WLP.

Proof. The proof is almost identical to that of Lemma 3.1. The only dif-
ference is that now with the GCD, F , of degree a − 2, we get that I : F has
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initial degree 2 rather than 1. But then with the same argument, also invoking
Corollary 3.2, we obtain the result. �

Theorem 3.6. Let R/I be a Gorenstein Artinian algebra with socle degree e
and Hilbert function hi = hR/I(i). Assume that there is some integer s such
that
• 3 ≤ s ≤ e

2 − 1;
• hs ≤ 3s − 1.
Then R/I has WLP.

Proof. Note that the s-binomial expansion of 3s − 1 is

3s − 1 =
(

s + 1
s

)
+

(
s

s − 1

)
+

(
s − 2
s − 2

)
+ · · · +

(
1
1

)
.

Then the condition that hs ≤ 3s − 1 implies, by Green’s theorem, that
hR/(I,L)(i) ≤ 2 for all i ≥ s.

Suppose first that e is odd, and set d = e−1
2 . Then s ≤ d − 1, and hd−1 =

hd+2 ≤ hd = hd+1. The failure of WLP would imply that hR/(I,L)(d + 1) ≥ 1.
Since hR/(I,L)(d − 1) ≤ 2, hR/(I,L)(d) is equal to either hR/(I,L)(d − 1) or
hR/(I,L)(d+1) (or both). In the latter case, I has a GCD in degree d+1 > e

2 ,
which is impossible by Lemma 2.12.

So without loss of generality, suppose that hR/(I,L)(d − 1) = hR/(I,L)(d) >
hR/(I,L)(d + 1). This can only happen if these values are 2, 2, and 1, respec-
tively. Hence, there is a GCD, Q, of degree 2 in Id. Reducing modulo a
general linear form L, we observe that (I,L)t = (Q,L)t for t = d − 1 and d
since one inclusion is clear and they have the same Hilbert function in those
degrees.

We now consider the other relevant Hilbert functions. For clarity, we sep-
arate the steps.
(1) hR/(I,L)(d + 1) = 0 since the only other possibility is that it equals 1, but

then I has a GCD of degree 1 in degree d + 1, violating Lemma 2.12.
(2) From (2.1) and the values obtained above, we get

hR/(I:L)(d − 2) = hd−1 − 2,

hR/(I:L)(d − 1) = hd − 2,

hR/(I:L)(d) = hd+1 − 1,

hR/(I:L)(d + 1) = hd+2.

(3) By the symmetry of hR/(I:L), we have that hR/(I:L)(d − 1) = hR/(I:L)(d +
1). Hence, from the equalities above and the symmetry of hR/I ,

hd−1 = hd+2 = hR/(I:L)(d + 1) = hR/(I:L)(d − 1) = hd − 2.

This last equality shows that the Hilbert function of R/I grows by 2 from
degree d − 1 to degree d. The binomial expansion above, together with
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Macaulay’s theorem, imply that this growth is maximal. By Gotzmann’s
theorem, this implies that Id has a GCD, Q, of degree 2 (as we saw above),
and furthermore, that if we set J = 〈Id−1〉 to be the ideal generated by the
homogeneous component of degree d − 1, the Hilbert function of R/J grows
by two in all subsequent degrees. Since hd+1 = hd, this means that I has
exactly two new generators in degree d + 1, say F1 and F2.

Now consider the ideal (Q,F1, F2). We have seen that (I,L)d = (Q,
L)d. Hence, (Q,F1, F2,L)d+1 = (I,L)d+1, and so 1 = hR/(I,L)(d + 1) =
hR/(Q,F1,F2,L)(d + 1). But this is exactly the situation of Proposition 2.5,
and it implies that Q, F1 and F2 have a GCD of degree 1. This means that
Id+1 has a GCD, which violates Lemma 2.12. This completes the case that e
is odd.

Now let the socle degree e be even. It suffices to show that the multipli-
cation by a general linear form L is injective between degrees d = e

2 − 1 and
d + 1 = e

2 . If hd = hd+1, then by symmetry hd = hd+1 = hd+2, and the WLP
follows from a result of Iarrobino and Kanev ([19], Theorem 5.77): they show
that, if the Hilbert function of a codimension 3 Gorenstein algebra R/I has
three consecutive entries a, a, a, then there is a unique zero-dimensional sub-
scheme of P

2 of degree a whose ideal is equal to I in the three degrees where
I has dimension a. But clearly then R/I has depth 1, so multiplication by
a general linear form in those degrees is injective and we have the WLP for
R/I .

So we may suppose that hd+1 > hd. Similarly to what we have observed
above, by Macaulay’s theorem, we have that either hd+1 = hd + 1 or hd+1 =
hd + 2. Likewise, since d ≥ s, hR/(I,L)(d + 1) ≤ hR/(I,L)(d) ≤ 2.

If hR/(I,L)(d + 1) = 1, then we clearly must have hd+1 = hd + 1, and the
WLP follows. Thus, it remains to consider when hR/(I,L)(d + 1) =
hR/(I,L)(d) = 2. In this case, we have a degree 2 GCD, say Q, for Id+1.
An argument, involving the unimodality of R/(I : Q), entirely similar to the
one we gave for the previous case implies that hd+1 = hd + 2. But since
hR/(I,L)(d+1) = 2, we have that the multiplication by L between (R/I)d and
(R/I)d+1 is injective, that is that R/I has the WLP, as desired. �

Corollary 3.7. Let R/I be a Gorenstein Artinian algebra with h3 ≤ 8.
Assume that the Hilbert function of R/I is not 1,3,6,8,8,6,3,1 or 1,3,6,6,
3,1. Then R/I has WLP.

Proof. Note that if h2 < 6 we already know the result from Corollary 3.2.
So without loss of generality, we assume that h2 = 6.

The condition h3 ≤ 8 implies (by Macaulay’s theorem) that hs ≤ 2s+2 for
all s ≥ 3. Theorem 3.6 assumes that e ≥ 8. Hence, we only have to take care
of the cases involving small socle degree. The smallest possibility is e = 6. For
convenience, we will summarize the numerical information obtained from the
exactness of (2.1) in a table. We set L to be a general linear form.
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Case 1: 1,3,6,8,6,3,1.
Green’s theorem gives that hR/(I,L)(3) ≤ 2. It follows that the only possible

values of the corresponding Hilbert functions are

deg 0 1 2 3 4 5 6
hR/I 1 3 6 8 6 3 1
hR/(I:L)(−1) 1 3 6 6 3 1
hR/(I,L) 1 2 3 2 0 0 0

Hence, this case follows from Lemma 2.9.
Case 2: 1,3,6,7,6,3,1.

deg 0 1 2 3 4 5 6
hR/I 1 3 6 7 6 3 1
hR/(I:L)(−1) 1 3 3 1
hR/(I,L) 1 2 3

If R/I fails WLP, then hR/(I,L)(4) ≥ 1. But Green’s theorem applied to
degree 3 implies that hR/(I,L)(3) ≤ 2. Hence, there are two possibilities. If
hR/(I,L)(3) = hR/(I,L)(4) = 1, then I has a GCD of degree 1 in degree 4, and
we conclude with Lemma 3.1 (or just observe directly that the multiplication
from degree 2 to degree 3 is injective, which is enough). If hR/(I,L)(3) = 2,
then the three generators of I in degree 3 fail to be independent modulo L,
so Proposition 2.5 applies. It is impossible for hR/(I,L)(3) to equal 0.

Case 3: 1,3,6,6,6,3,1. The three consecutive 6’s imply WLP by [19],
Theorem 5.77.

Case 4: 1,3,6,6,6,6,3,1. This case is immediate using these methods.
Case 5: 1,3,6,7,7,6,3,1. This case is immediate using these methods.
We remark that for each of the two missing cases, the considerations above

leave only one possibility:

deg 0 1 2 3 4 5 6 7
hR/I 1 3 6 8 8 6 3 1
hR/(I:L)(−1) 1 3 6 7 6 3 1
hR/(I,L) 1 2 3 2 1

deg 0 1 2 3 4 5
hR/I 1 3 6 6 3 1
hR/(I:L)(−1) 1 3 5 3 1
hR/(I,L) 1 2 3 1

In the first of these, if R/I is a complete intersection (of type (3,3,4)),
then WLP is known by [18]. �

As mentioned in the Introduction, the most natural (and most important)
question at this point is the following below.

Question 3.8. Do all codimension 3 Gorenstein algebras possess the WLP?
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4. Small socle degree

Let us now turn our attention to the problem of determining the largest
socle degree forcing the WLP for all level algebras of any given codimension,
as well as for some interesting specific cases, such as those of level algebras of
codimension 3 and type 2 and 3. We refer to [12], [19] for an introduction to
the theory of Macaulay’s inverse systems, which will be needed in this portion
of the paper.

We define e(r) as the largest socle degree e such that all level algebras of
codimension r and socle degree ≤ e enjoy the WLP (putting e(r) = +∞ if
such integer does not exist). Also, set et(r) to be the analogous value when
we restrict to type t.

We begin with the following construction, which proves the existence of a
type 2, codimension 3 level algebra of socle degree 4. It is motivated by an
inspiring example of Brenner–Kaid.

Lemma 4.1. Let A = k[x1, x2, x3]/I be the codimension 3 level algebra cor-
responding to the inverse system module M = 〈y2

1(y2
2 + y2

3), y2
2(y2

1 + y2
3)〉 ⊂

k[y1, y2, y3]. Then A has Hilbert function (1,3,6,6,2) and fails to have the
WLP. In particular, e2(3) ≤ 3.

Proof. Brenner and Kaid ([8], Example 3.1) proved that the Artinian al-
gebra

k[x1, x2, x2]/(x3
1, x

3
2, x

3
3, x1x2x3),

which has Hilbert function (1,3,6,6,3), fails to have the WLP between degree
2 and 3. It is easy to see that this is a level algebra of type 3, for instance
by computing its inverse system module (it is immediate with CoCoA [10]),
which is M ′ = 〈y2

1y2
2 , y2

2y2
3 , y2

1y2
3 〉 ⊂ k[y1, y2, y3].

Now, by computing the first partial derivatives of the generators of M ′, we
see that (as a k-vector space)

M ′
3 = 〈y2

1y2, y
2
1y3, y1y

2
2 , y1y

2
3 , y2

2y3, y2y
2
3 〉.

Since both M and M ′ are level algebras, it is enough to prove that M3 = M ′
3

in order to conclude that the algebra A of the statement has Hilbert function
(1,3,6,6,2) and also fails to have the WLP (from degree 2 to 3), because such
equality on the inverse systems implies that the two corresponding ideals also
coincide in degrees ≤ 3. But that is a standard computation of linear algebra,
so will be omitted. �

The next construction provides the existence of socle degree 2, level algebras
of codimension ≥ 4 without the WLP.

Lemma 4.2. Let r ≥ 4. The level algebras quotients of k[x1, . . . , xr], whose
inverse system module is generated by M = 〈y2

1 , y1y2, y
2
2 , y3y4, y

2
5 , . . . , y2

r 〉, all
fail to have the WLP. In particular, e(r) ≤ 1 for r ≥ 4.
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Proof. Note first of all that the algebras of the statement have Hilbert
function (1, r, r), since M is generated by r monomials of degree 2 and by
differentiating them we obtain all the variables.

Also, it is easy to show that (unlike the case of arbitrary ideals), if an ideal
I in some degree i is spanned, as a k-vector space, by monomials, then the
subgroup Mi of the inverse system M of I is also monomial, and furthermore,
its monomials are the same as those whose classes span (R/I)i (of course after
renaming the variables). Therefore, in degrees where an ideal is monomial,
proving the WLP can be done on the inverse system.

Thus, it is enough to show that, for any linear form L = a1y1 + · · · + aryr,
the multiplication by L between M1 = 〈y1, y2, . . . , yr 〉 and M2 = 〈y2

1 , y1y2, y
2
2 ,

y3y4, y
2
5 , . . . , y2

r 〉 is not a bijective map (thinking of the generators of M1 and
M2 as those of (R/I)1 and (R/I)2). Suppose it is. Then it is also injective,
and since a standard computation shows that a3y3 − a4y4 is in the kernel, we
must have a3 = a4 = 0. But then it easily follows that L · y3 = L · y4 = 0, a
contradiction. �

We now have a key lemma, whose argument relies on those of the previous
section.

Lemma 4.3. All level algebras whose Hilbert functions start (1,3,3) enjoy
the WLP.

Proof. As before, we take F,G1,G2 to be minimal generators of degree
2. By Proposition 2.5, if WLP fails then those three generators must have a
GCD of degree 1. However, such a form is then automatically a socle element,
giving a contradiction. �

Theorem 4.4.

e(r) =

⎧⎪⎨
⎪⎩

+∞, r ≤ 2;
2, r = 3;
1, r ≥ 4.

Proof. That e(r) = +∞ for r ≤ 2, that is all level algebras of codimension
at most 2 enjoy the WLP, is well known (see [18], [25]). As for r = 3, we
know that there is a level (monomial) example without the WLP with Hilbert
function (1,3,5,5), constructed in [30], Example 7. Thus, e(3) ≤ 2. Hence,
only level algebras with the following Hilbert functions need to be considered:
(1,3), and (1,3, a), for a = 1,2, . . . ,6.

A standard computation shows that applying Green’s theorem and
Lemma 2.9 takes care of all cases, except for (1,3,3), for which we invoke
Lemma 4.3.

Let r ≥ 4. In light of Lemma 4.2, it remains to show that all level algebras
(1, r) enjoy the WLP, but this fact is trivial. �

Proposition 4.5. e2(3) = 3.
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Proof. Notice that e2(3) ≤ 3, by Lemma 4.1. Thus, it remains to show that
all level algebras with the following Hilbert functions enjoy the WLP: (1,3,2),
and (1,3, a,2), for a = 1,2, . . . ,6. Note first of all that, for a = 1 and 2, the set
of such level algebras is empty (respectively, because of Macaulay’s theorem
and [13], Proposition 3.8). The case (1,3,3,2) follows from Lemma 4.3 and
the use of Green’s theorem as in the previous proof (since (2(3))−1

−1 = 0). All
the other cases are handled exactly as in the previous proof. �

Remark 4.6. (i) An entirely similar argument also proves that e3(3) = 3,
that is the Brenner–Kaid example (1,3,6,6,3) is the best possible in terms of
socle degree for a codimension 3 level algebras of type 3 without the WLP.

(ii) Let us now consider e1(r). In [18], Example 4.3, an example of a
Gorenstein algebra with Hilbert function (1,5,5,1) failing to have the WLP
is provided. It is easy to extend that construction to nonWLP Gorenstein
algebras with Hilbert function (1, r, r,1) for all r ≥ 5. This fact, combined
with Green’s theorem and Lemma 2.9, easily implies that e1(r) = 2 for r ≥ 5.

As for the other values of r, we know that e1(r) = +∞ for r = 1,2, and the
results of the previous section show that e1(3) ≥ 4. We also asked whether
e1(3) = +∞. As far as codimension 4 is concerned, we have Ikeda’s example
([20], Example 4.4) of a nonWLP Gorenstein algebra with Hilbert function
(1,4,10,10,4,1). Furthermore, as pointed out to us by Junzo Watanabe, [18]
Example 4.3 also shows that all Gorenstein algebras with Hilbert function
(1,4,4,1) enjoy the WLP (and actually more). Thus, 3 ≤ e1(4) ≤ 4.

In fact, the referee of this paper pointed out to us that [18] Example 4.3
even implies the conclusion that e1(4) = 4. Indeed, Watanabe [27] showed
that the Hessian of a form of degree s is identically zero if and only if for the
inverse system algebra A, the multiplication ×Ls−2 : A1 → As−1 (where L is
a general linear form) does not have full rank. Since Gordan and Noether [15]
had shown that in four or fewer variables the vanishing of the Hessian implies
that one of the variables can be eliminated, one can conclude that a Gorenstein
algebra with h-vector (1,4, a,4,1) has the Strong Lefschetz Property, and
hence in particular WLP—the bijectivity of the map from degree 1 to degree
3 implies the rest. (A similar argument shows that for Gorenstein algebras
with h-vectors (1,3, n,n, . . . , n,n,3,1) or (1,4, n,n, . . . , n,n,4,1), WLP implies
SLP.)

As promised, we now provide the examples of one level algebra of codi-
mension 4 and type 2, and one of codimension 3 and type 4, without the
WLP. We omit the proofs, since they closely follow, respectively, that of [30],
Proposition 8, and that of Lemma 4.1 of this paper (we used CoCoA [10] for
the computations).

Example 4.7. (i) The codimension 4 and type 2 level algebra correspond-
ing to the following inverse system module M ′ ⊂ k[y1, y2, y3, y4], and having
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Hilbert function (1,4,7,7,2), does not enjoy the WLP:

M ′ = 〈y2
1y2

2 + y2
1y2

3 + y4
4 , y2

1y2
2 + y2

2y2
3 + y4

4 〉.
(ii) The codimension 3 and type 4 level algebra corresponding to the fol-

lowing inverse system module M ′ ′ ⊂ k[y1, y2, y3], and having Hilbert function
(1,3,6,8,10,10,7,4), does not enjoy the WLP:

M ′ ′ = 〈y2
1y5

3 − y1y
6
3 , y3

1y4
3 − y5

1y2
3 ,437y7

1 − 232y6
1y2 − 423y5

1y2
2 − 567y4

1y3
2

− 769y3
1y4

2 + 831y2
1y5

2 − 916y1y
6
2 − 202y7

2 , (127y1 − 548y2 − 943y3)7〉.
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