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MONOMIAL SEQUENCES OF LINEAR TYPE

HAMID KULOSMAN

Abstract. Let R be a Noetherian commutative ring, 〈a1, . . . , an 〉
a sequence of elements of R, I = (a1, . . . , an) the ideal generated

by the elements ai and Ii = (a1, . . . , ai), i = 0,1, . . . , n, the ideal

generated by the first i elements of the sequence. A c-sequence

is a sequence 〈a1, . . . , an 〉 which satisfies the condition

[Ii−1I
k : ai] ∩ Ik = Ii−1I

k−1

for every i ∈ {1, . . . , n} and every k ≥ 1. It generates an ideal of
linear type. We characterize c-sequences in terms of the corre-
sponding sequences in the Rees algebra of the ideal generated by

the elements of the sequence. We then characterize monomial
c-sequences of three terms.

1. Introduction

Let R be a Noetherian commutative ring, 〈a〉 = 〈a1, . . . , an〉 a sequence
of elements of R, I = (a1, . . . , an) the ideal generated by the ai’s and Ii =
(a1, . . . , ai), i = 0,1, . . . , n, the ideal generated by the first i elements of the
sequence.

Let S(I) =
⊕

i≥0 Si(I) be the symmetric algebra of the ideal I , R[It] =⊕
i≥0 Iiti its Rees algebra and α : S(I) → R[It] the canonical map, which

maps ai ∈ S1(I) to ait. The ideal I is said to be of of linear type if α is
an isomorphism. There are also the canonical maps ρ : R[T1, . . . , Tn] → R[It],
mapping Ti to ait, and σ : R[T1, . . . , Tn] → S(I), mapping Ti to ai ∈ S1(I).
Let Q∞ = ker(ρ) and Q = ker(σ). Then Q ⊂ Q∞ and A := ker(α) can be
identified with Q∞/Q.

Received October 17, 2007; received in final form June 4, 2008.
2000 Mathematics Subject Classification. Primary 13A30, 13B25. Secondary 13A15,

13C13.

1213

c©2009 University of Illinois

http://www.ams.org/msc/


1214 H. KULOSMAN

Now, we list various types of sequences related to the notion of ideals of
linear type. The notion of regular sequence is one of the most important no-
tions in Commutative Algebra (see [10]) and there are various generalizations
of it.

We say that 〈a〉 is a relative regular or d-sequence [8] if

[Ii−1 : ai] : aj = Ii−1 : aj

for every i, j ∈ {1,2, . . . , n} with j ≥ i. Equivalently,

[Ii−1 : ai] ∩ I = Ii−1

for every i ∈ {1,2, . . . , n}.
We say that 〈a〉 is a weakly relative regular sequence [2] if

[Ii−1I : ai] ∩ I = Ii−1

for every i ∈ {1,2, . . . , n}.
We say that 〈a〉 is a proper sequence [5] if

ai · Hj(a1, . . . , ai−1) = 0,

for i = 1, . . . , n, j ≥ 1, where Hj(a1, . . . , ai−1) denotes the jth homology mod-
ule of the Koszul complex on a1, . . . , ai−1. (Actually, it is enough to have this
property for j = 1, and it is then true for all j ≥ 1 by [9].)

We say that 〈a〉 is a sequence of linear type [1] if each of the ideals Ii =
(a1, . . . , ai), i = 1, . . . , n, is of linear type.

It is well known that the ideals generated by d-sequences are of linear
type ([6], [12]), in fact that the d-sequences are sequences of linear type.
Every d-sequence is weakly relative regular and every weakly relative regular
sequence is proper [5].

For any type of sequences, we say that a sequence is an unconditioned
sequence of that type if it is a sequence of that type in any order.

Let x1, x2, . . . , xd be an unconditioned regular sequence. A monomial in
x1, x2, . . . , xd is a product xn1

1 xn2
2 · · · xnd

d , where n1, n2, . . . , nd are nonnegative
integers. A monomial ideal is an ideal generated by monomials.

2. c-sequences

It was proved in [1] that d-sequences satisfy the following property:

[Ii−1I
k : ai] ∩ Ik = Ii−1I

k−1

for every i ∈ {1, . . . , n} and every k ≥ 1. It was also proved [1, Theorem 3]
that, if a sequence satisfies this property, it generates an ideal of linear type.
We call the sequences that satisfy this property c-sequences.

Definition 2.1. We say that 〈a〉 is a c-sequence if

[Ii−1I
k : ai] ∩ Ik = Ii−1I

k−1

for every i ∈ {1, . . . , n} and every k ≥ 1.
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In the next section, we will show that there are (monomial) sequences
that are c-sequences but not d-sequences. We first establish an analogue for
c-sequences of the following two statements:

(i) 〈a〉 is a proper sequence if and only if the corresponding sequence of
1-forms 〈a〉 in SR(I) is a d-sequence [9, Theorem 2.2];

(ii) 〈a〉 is a d-sequence if and only if the corresponding sequence of 1-forms
〈a∗ 〉 in gr I(R) is a d-sequence ([7, Theorem 1.2] (⇒) and [5, Theorem 12.10]
(⇐)).

Proposition 2.2. Let a1, . . . , an ∈ R and let a1t, . . . , ant be the correspon-
ding 1-forms in R[It]. Then 〈a1, . . . , an〉 is a c-sequence in R if and only if
〈a1t, . . . , ant〉 is a d-sequence in R[It].

Proof. Denote I = (a1t, . . . , ant) = R[It]+, the ideal in R[It] generated
by a1t, . . . , ant. Also, Ii−1 = (a1t, . . . , ai−1t) and Ii−1 = (a1, . . . , ai−1), i =
1,2, . . . , n. Then 〈at〉 is a d-sequence in R[It] if and only if

[Ii−1 : ait] ∩ I = Ii−1, i = 1,2, . . . , n,

or equivalently,

[(Ii−1t + Ii−1It2 + · · · + Ii−1I
k−1tk + · · · ) : ait] ∩ R[It]+ = Ii−1,

i = 1,2, . . . , n.

This is further equivalent with

(c1t + c2t
2 + · · · )ait ∈ Ii−1 ⇒ c1t + c2t

2 + · · · ∈ Ii−1,

i = 1,2, . . . , n,

where cj ∈ Ij , j = 1,2, . . . are arbitrary elements. This in turn is equivalent
with

ck ∈ Ii−1I
k : ai ⇒ ck ∈ Ii−1I

k−1, i = 1,2, . . . , n, k ≥ 1,

where each ck ∈ Ik. This is the same as

[Ii−1I
k : ai] ∩ Ik ⊂ Ii−1I

k−1, i = 1,2, . . . , n, k ≥ 1,

which is the condition for 〈a〉 to be a c-sequence. �

Corollary 2.3. Let 〈a1, . . . , an〉 be a sequence in R and let I = (a1, . . . ,
an). Then the following are equivalent:

(i) 〈a〉 is a c-sequence;
(ii) 〈a〉 is a weakly relative regular sequence and I is of linear type;
(iii) 〈a〉 is a proper sequence and I is of linear type.

Proof. (i) ⇒ (ii): Follows from the definition of a weakly relatively regular
sequence and [1, Theorem 3].

(ii) ⇒ (iii): Follows from [5, p. 113].
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(iii) ⇒ (i): By [9, Theorem 2.2], if 〈a〉 is a proper sequence, then the
corresponding sequence of 1-forms 〈a〉 is a d-sequence in SR(I). Since I is
assumed to be of linear type, SR(I) is canonically isomorphic to R[It]. Hence,
〈a1t, . . . , ant〉 is a d-sequence in R[It]. Now, by Proposition 2.2, 〈a1, . . . , an〉
is a c-sequence in R. �

Thus, if I = (a) is an ideal of linear type, where 〈a〉 is a proper or weakly
relative regular sequence, then 〈a〉 is necessarily a c-sequence. Note that
neither proper nor weakly relative regular sequences are necessarily sequences
of linear type.

We will use Corollary 2.3 in the proof of Theorem 3.1.

3. Monomial c-sequences

Theorem 3.1. Let 〈g1, g2, g3〉 be a monomial sequence. Then the following
are equivalent:

(i) 〈g1, g2, g3〉 is a weakly relative regular sequence;
(ii) 〈g1, g2, g3〉 is a c-sequence;
(iii) [g1, g2]|g3 and ([g′

1, g
′
3] = [g′

1, g
′2
3 ] or [g′

2, g
′
3] = [g′

2, g
′2
3 ]), where g′

i =
gi

[g1,g2]
, i = 1,2,3.

Proof. By [11, Theorem 3.1], a monomial sequence 〈g1, g2, g3〉 is proper if
and only if [g1, g2]|g3. Also, every weakly relative regular and every c-sequence
are proper. Hence, in the statement of the theorem we can assume that
〈g1, g2, g3〉 is a proper monomial sequence. Then (because of [11, Theo-
rem 3.1]) its elements can be written as products of monomials in the following
way:

g1 = f1f13f123,

g2 = f2f23f123,(1)
g3 = f3f13f23f123,

with the condition that the following pairs of monomials are relatively prime:

(2) (f1, f2), (f1, f23), (f13, f2), (f13, f23), (f1, f3), (f2, f3).

Note that then
[g1, g2] = f123.

(i) ⇔ (iii): Since the ideals Ii−1I : gi and I are monomial and the intersec-
tion of monomial ideals is a monomial ideal [3, Theorem 3.10], the condition
(i) is equivalent with the following conditions:

g1(g1, g2, g3) : g2
2 = (g1) : g2,

g1(g1, g2, g3) : g2g3 = (g1) : g3,

(g1, g2)(g1, g2, g3) : g2
3 = (g1, g2) : g3.
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Using [4, p. 485], this is equivalent with:(
g2
1

[g2
1 , g2

2 ]
,

g1

[g1, g2]
,

g1g3

[g1g3, g2
2 ]

)
=

(
g1

[g1, g2]

)
,

(
g2
1

[g2
1 , g2g3]

,
g1

[g1, g3]
,

g1

[g1, g2]

)
=

(
g1

[g1, g3]

)
,

(
g2
1

[g2
1 , g2

3 ]
,

g1

[g1, g3]
,

g1g2

[g1g2, g2
3 ]

,
g2

[g2, g3]
,

g2
2

[g2
2 , g2

3 ]

)
=

(
g1

[g1, g3]
,

g2

[g2, g3]

)
.

The condition g1
[g1,g2]

| g2
1

[g2
1 ,g2

2 ]
and analogous conditions for g1, g3 and g2, g3

are automatically satisfied. The condition g1
[g1,g3]

| g1
[g1,g2]

is equivalent with
[g1, g2]|g3, which is also satisfied by [11, Theorem 3.1], since we assumed that
〈g1, g2, g3〉 is a proper sequence. Thus, 〈g1, g2, g3〉 is a weakly relative regular
sequence if and only if the following conditions hold:

g1

[g1, g2]

∣∣∣ g1g3

[g1g3, g2
2 ]

,(3)

g1

[g1, g3]

∣∣∣ g2
1

[g2
1 , g2g3]

,(4)

g1

[g1, g3]

∣∣∣ g1g2

[g1g2, g2
3 ]

or
g2

[g2, g3]

∣∣∣ g1g2

[g1g2, g2
3 ]

.(5)

Using (1) and the relative primeness (2), we conclude that the conditions (3)
and (4) are also automatically satisfied. Thus, 〈g1, g2, g3〉 is a weakly relative
regular sequence if and only if the condition (5) holds. Using (1) and (2), we
also conclude that (5) has the form

f1

∣∣∣ f1

[f1, f2
3 f13f23]

or f2

∣∣∣ f2

[f2, f2
3 f13f23]

,

or, equivalently, at least one of the two pairs of monomials (f1, f13), (f2, f23)
is relatively prime. Thus, we have shown that (i) ⇔ (iii).

(i) ⇔ (ii): It is enough to show (i) ⇒ (ii). Suppose that 〈g1, g2, g3〉 a weakly
relative regular sequence. By Corollary 2.3, a weakly relative regular mono-
mial sequence 〈g1, g2, g3〉 is a c-sequence if and only if the ideal I is of linear
type. Since any monomial sequence of length 2 generates an ideal of linear
type, we can use the Induction Theorem [1, Theorem 4]. So, by the Induction
Theorem, 〈g1, g2, g3〉 is a c-sequence if and only if the following conditions
hold for every k ≥ 1:

(a) (g1, g2)(g1, g2, g3)k : gk+1
3 = (g1, g2) : g3;

(b) for any z1, z2 ∈ (g1, g2, g3)k with z1g1 + z2g2 = 0, there are c1, c2 ∈
(g1, g2, g3)k−1 with c1g1 + c2g2 = 0, such that c1g3 + z1 ∈ (g1, g2)k and c2g3 +
z2 ∈ (g1, g2)k.
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We first show that the condition (a) holds. We can assume that g1, g2 are
relatively prime, i.e., f123 = 1, since f123 is a nonzero divisor which is a factor
in each of the three monomials. We can also assume, by symmetry and the fact
that (i) ⇔ (iii) is already proved, that the condition for weak relative regularity
is [g1, g3] = [g1, g

2
3 ]. Note that now for any s ≥ 1, if l + m = s, l ≥ 1,m ≥ 0,

then

[gl
1g

m
2 , gs

3] = [gl
1, g

s
3][g

m
2 , gs

3](6)

= [gl
1, g

l
3][g

m
2 , gs

3]

= [g1, g3]l[gm
2 , gs

3].

Hence,
gl
1g

m
2

[gl
1g

m
2 , gs

3]
=

gl
1

[g1, g3]l
gm
2

[gm
2 , gs

3]
.

Hence,

(7)
g1

[g1, g3]

∣∣∣ gl
1g

m
2

[gl
1g

m
2 , gs

3]
.

Also, note that for any s ≥ 1,

(8)
g2

[g2, g3]

∣∣∣ gs
2

[gs
2, g

s
3]

.

The ideal (g1, g2)(g1, g2, g3)k is generated by the monomials gl
1g

m
2 gn

3 , where
l + m + n = k + 1, l + m ≥ 1, l,m,n ≥ 0. We show that each of the monomi-
als

(9)
gl
1g

m
2 gn

3

[gl
1g

m
2 gn

3 , gk+1
3 ]

is divisible by one of the monomials g1
[g1,g3]

, g2
[g2,g3]

. If n = 0, this follows from
the above relations (7), (8) since either l ≥ 1 or l = 0,m = k + 1. Suppose
n ≥ 1. Then the monomial (9) is equal to

(10)
gl
1g

m
2

[gl
1g

m
2 , gk+1−n

3 ]
,

with k + 1 − n ≥ 1, so we can again apply (7), (8). Thus, the condition (a)
holds.

We now show that the condition (b) holds. By [4, p. 485], from z1g1 +
z2g2 = 0 and c1g1 + c2g2 = 0 we have z1 = ag2, z2 = −ag1, c1 = bg2, c2 = −bg1

for some a, b ∈ R. Hence, the condition (b) can be formulated in the following
way:

(b′) for every k ≥ 1, for every a ∈ (g1, g2, g3)k : (g1, g2), there is a b ∈
(g1, g2, g3)k−1 : (g1, g2) such that a + bg3 ∈ (g1, g2)k : (g1, g2).
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It is easy to see that (g1, g2)k : (g1, g2) = (g1, g2)k−1. We show that since
〈g1, g2, g3〉 is weakly relative regular, we have

(g1, g2, g3)k : (g1, g2) = (g1, g2, g3)k−1.

This is clear for k = 1. Suppose that k ≥ 2. Then (g1, g2, g3)k : g1 is generated
by the monomials gl

1gm
2 gn

3
[gl

1gm
2 gn

3 ,g1]
(l + m + n = k), that are equal to:

gl−1
1 gm

2 gn
3 , if l ≥ 1;(11)

gm
2 · gn

3

[gn
3 , g1]

, if l = 0,m ≥ 1;(12)

gk
3

[gk
3 , g1]

, if l = m = 0.(13)

Similarly, (g1, g2, g3)k : g2 is generated by the monomials gl
1gm

2 gn
3

[gl
1gm

2 gn
3 ,g2]

(l +
m + n = k), that are equal to:

gl
1g

m−1
2 gn

3 , if m ≥ 1;

gl
1 · gn

3

[gn
3 , g2]

, if m = 0, l ≥ 1;(14)

gk
3

[gk
3 , g2]

, if l = m = 0.

In each of (11) and (14) we have all of the monomials gp
1gq

2g
r
3 with p+q+r =

k − 1, so each of the ideals (g1, g2, g3)k : g1 and (g1, g2, g3)k : g2 contains
(g1, g2, g3)k−1. Since the sequence 〈g1, g2, g3〉 is weakly relative regular, then
for all k ≥ 2 either gk

3
[gk

3 ,g1]
= gk

3
[g3,g1]

or gk
3

[gk
3 ,g2]

= gk
3

[g3,g2]
. Without loss of gen-

erality, we assume gk
3

[gk
3 ,g1]

= gk
3

[g3,g1]
, then note that gk−1

3 | gk
3

[gk
3 ,g1]

for all k ≥ 2.

It follows that (12) and (13) are elements of (g1, g2, g3)k−1, and hence that
(g1, g2, g3)k : g1 = (g1, g2, g3)k−1. We conclude that

(g1, g2, g3)k : (g1, g2) =
(
(g1, g2, g3)k : g1

)
∩

(
(g1, g2, g3)k : g2

)
equals (g1, g2, g3)k−1 as required.

Now, the condition (b′) is equivalent with:
(b′ ′) for every k ≥ 2, for every a ∈ (g1, g2, g3)k−1 there is a b ∈ (g1, g2, g3)k−2

such that a + bg3 ∈ (g1, g2)k−1.
Any a ∈ (g1, g2, g3)k−1 can be written as a = F (g1, g2) + gl

3G(g1, g2, g3),
l ≥ 1, where F and G are homogeneous polynomials of degrees k − 1 and
k − l − 1. Now if we put b = −gl−1

3 G(g1, g2, g3), we will have a + bg3 ∈
(g1, g2)k−1. So the condition (b) holds.

Thus, (i) ⇔ (ii).
This finishes the proof of the theorem. �
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Example 3.2. Consider the sequence 〈x, y2, yz〉, where x, y, z are variables.
It is not a d-sequence (by [11, Theorem 2.1]), but it is a c-sequence (by
Theorem 3.1). However, if we change the order, the sequence 〈x, yz, y2〉 is a
d-sequence.

Example 3.3. Consider the sequence 〈xy, z2u, yzu2〉, where x, y, z, u are
variables. As before, it is a c-sequence, but not a d-sequence. Moreover, it is
not a d-sequence in any order.

Remark 3.4. A monomial sequence 〈g1, g2, g3〉 is a regular sequence if
and only if gi and gj are relatively prime whenever i �= j. It is then an
unconditioned regular sequence.

Corollary 3.5. Let 〈g1, g2, g3〉 be a monomial sequence. The following
are equivalent:

(i) 〈g1, g2, g3〉 is an unconditioned c-sequence;
(ii) 〈g1, g2, g3〉 is an unconditioned proper sequence;
(iii) gi = df i (i = 1,2,3), where d is a monomial and 〈f1, f2, f3〉 is a regular

monomial sequence.

Proof. (ii) ⇒ (iii): From (1) and the assumption that 〈g1, g3, g2〉 is proper,
i.e., that [g1, g3]|g2, we get f13 = 1. Similarly, f23 = 1.

(iii) ⇒ (i) and (i) ⇒ (ii): clear. �

Remark 3.6. By [11, Corollary 3.3], a monomial sequence 〈g1, g2, g3〉 is
an unconditioned d-sequence if and only if gi = dfi (i = 1,2,3), where d is a
monomial, 〈f1, f2, f3〉 a regular monomial sequence and d relatively prime with
f1, f2, f3. Hence, an unconditioned c-sequence is not necessarily a d-sequence.

Acknowledgment. I would like to thank the referee for a very careful read-
ing of the paper and valuable comments.
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