MONOMIAL SEQUENCES OF LINEAR TYPE

HAMID KULOSMAN

ABSTRACT. Let R be a Noetherian commutative ring, $\langle a_1, \ldots, a_n \rangle$ a sequence of elements of R, $I = (a_1, \ldots, a_n)$ the ideal generated by the elements a_i and $I_i = (a_1, \ldots, a_i)$, $i = 0, 1, \ldots, n$, the ideal generated by the first i elements of the sequence. A c-sequence is a sequence $\langle a_1, \ldots, a_n \rangle$ which satisfies the condition

$$[I_{i-1}I^k:a_i] \cap I^k = I_{i-1}I^{k-1}$$

for every $i \in \{1, ..., n\}$ and every $k \ge 1$. It generates an ideal of linear type. We characterize c-sequences in terms of the corresponding sequences in the Rees algebra of the ideal generated by the elements of the sequence. We then characterize monomial c-sequences of three terms.

1. Introduction

Let R be a Noetherian commutative ring, $\langle \mathbf{a} \rangle = \langle a_1, \ldots, a_n \rangle$ a sequence of elements of R, $I = (a_1, \ldots, a_n)$ the ideal generated by the a_i 's and $I_i = (a_1, \ldots, a_i)$, $i = 0, 1, \ldots, n$, the ideal generated by the first *i* elements of the sequence.

Let $S(I) = \bigoplus_{i \ge 0} S^i(I)$ be the symmetric algebra of the ideal I, $R[It] = \bigoplus_{i \ge 0} I^i t^i$ its Rees algebra and $\alpha : S(I) \to R[It]$ the canonical map, which maps $a_i \in S^1(I)$ to $a_i t$. The ideal I is said to be of of linear type if α is an isomorphism. There are also the canonical maps $\rho : R[T_1, \ldots, T_n] \to R[It]$, mapping T_i to $a_i t$, and $\sigma : R[T_1, \ldots, T_n] \to S(I)$, mapping T_i to $a_i \in S^1(I)$. Let $Q_{\infty} = \ker(\rho)$ and $Q = \ker(\sigma)$. Then $Q \subset Q_{\infty}$ and $\mathcal{A} := \ker(\alpha)$ can be identified with Q_{∞}/Q .

©2009 University of Illinois

Received October 17, 2007; received in final form June 4, 2008.

²⁰⁰⁰ Mathematics Subject Classification. Primary 13A30, 13B25. Secondary 13A15, 13C13.

Now, we list various types of sequences related to the notion of ideals of linear type. The notion of *regular sequence* is one of the most important notions in Commutative Algebra (see [10]) and there are various generalizations of it.

We say that $\langle \mathbf{a} \rangle$ is a relative regular or d-sequence [8] if

$$[I_{i-1}:a_i]:a_j = I_{i-1}:a_j$$

for every $i, j \in \{1, 2, ..., n\}$ with $j \ge i$. Equivalently,

$$[I_{i-1}:a_i] \cap I = I_{i-1}$$

for every $i \in \{1, 2, ..., n\}$.

We say that $\langle \mathbf{a} \rangle$ is a *weakly relative regular* sequence [2] if

$$[I_{i-1}I:a_i] \cap I = I_{i-1}$$

for every $i \in \{1, 2, ..., n\}$.

We say that $\langle \mathbf{a} \rangle$ is a *proper* sequence [5] if

$$a_i \cdot H_j(a_1,\ldots,a_{i-1}) = 0,$$

for $i = 1, ..., n, j \ge 1$, where $H_j(a_1, ..., a_{i-1})$ denotes the *j*th homology module of the Koszul complex on $a_1, ..., a_{i-1}$. (Actually, it is enough to have this property for j = 1, and it is then true for all $j \ge 1$ by [9].)

We say that $\langle \mathbf{a} \rangle$ is a sequence of linear type [1] if each of the ideals $I_i = (a_1, \ldots, a_i), i = 1, \ldots, n$, is of linear type.

It is well known that the ideals generated by d-sequences are of linear type ([6], [12]), in fact that the d-sequences are sequences of linear type. Every d-sequence is weakly relative regular and every weakly relative regular sequence is proper [5].

For any type of sequences, we say that a sequence is an *unconditioned* sequence of that type if it is a sequence of that type in any order.

Let x_1, x_2, \ldots, x_d be an unconditioned regular sequence. A monomial in x_1, x_2, \ldots, x_d is a product $x_1^{n_1} x_2^{n_2} \cdots x_d^{n_d}$, where n_1, n_2, \ldots, n_d are nonnegative integers. A monomial ideal is an ideal generated by monomials.

2. c-sequences

It was proved in [1] that d-sequences satisfy the following property:

$$[I_{i-1}I^k:a_i] \cap I^k = I_{i-1}I^{k-1}$$

for every $i \in \{1, ..., n\}$ and every $k \ge 1$. It was also proved [1, Theorem 3] that, if a sequence satisfies this property, it generates an ideal of linear type. We call the sequences that satisfy this property c-sequences.

DEFINITION 2.1. We say that $\langle \mathbf{a} \rangle$ is a *c*-sequence if

$$[I_{i-1}I^k:a_i] \cap I^k = I_{i-1}I^{k-1}$$

for every $i \in \{1, \ldots, n\}$ and every $k \ge 1$.

In the next section, we will show that there are (monomial) sequences that are c-sequences but not d-sequences. We first establish an analogue for c-sequences of the following two statements:

(i) $\langle \mathbf{a} \rangle$ is a proper sequence if and only if the corresponding sequence of 1-forms $\langle \overline{\mathbf{a}} \rangle$ in $S_R(I)$ is a d-sequence [9, Theorem 2.2];

(ii) $\langle \mathbf{a} \rangle$ is a *d*-sequence if and only if the corresponding sequence of 1-forms $\langle \mathbf{a}^* \rangle$ in $gr_I(R)$ is a d-sequence ([7, Theorem 1.2] (\Rightarrow) and [5, Theorem 12.10] (\Leftarrow)).

PROPOSITION 2.2. Let $a_1, \ldots, a_n \in R$ and let a_1t, \ldots, a_nt be the corresponding 1-forms in R[It]. Then $\langle a_1, \ldots, a_n \rangle$ is a c-sequence in R if and only if $\langle a_1t, \ldots, a_nt \rangle$ is a d-sequence in R[It].

Proof. Denote $\mathcal{I} = (a_1t, \ldots, a_nt) = R[It]_+$, the ideal in R[It] generated by a_1t, \ldots, a_nt . Also, $\mathcal{I}_{i-1} = (a_1t, \ldots, a_{i-1}t)$ and $I_{i-1} = (a_1, \ldots, a_{i-1})$, $i = 1, 2, \ldots, n$. Then $\langle \mathbf{a}t \rangle$ is a *d*-sequence in R[It] if and only if

$$[\mathcal{I}_{i-1}:a_it] \cap \mathcal{I} = \mathcal{I}_{i-1}, \quad i = 1, 2, \dots, n,$$

or equivalently,

$$[(I_{i-1}t + I_{i-1}It^2 + \dots + I_{i-1}I^{k-1}t^k + \dots) : a_it] \cap R[It]_+ = \mathcal{I}_{i-1},$$

$$i = 1, 2, \dots, n.$$

This is further equivalent with

$$(c_1t + c_2t^2 + \cdots)a_i t \in \mathcal{I}_{i-1} \quad \Rightarrow \quad c_1t + c_2t^2 + \cdots \in \mathcal{I}_{i-1},$$

$$i = 1, 2, \dots, n,$$

where $c_j \in I^j$, j = 1, 2, ... are arbitrary elements. This in turn is equivalent with

 $c_k \in I_{i-1}I^k : a_i \quad \Rightarrow \quad c_k \in I_{i-1}I^{k-1}, \quad i = 1, 2, \dots, n, \ k \ge 1,$

where each $c_k \in I^k$. This is the same as

$$[I_{i-1}I^k:a_i] \cap I^k \subset I_{i-1}I^{k-1}, \quad i=1,2,\ldots,n, \ k \ge 1,$$

which is the condition for $\langle \mathbf{a} \rangle$ to be a *c*-sequence.

COROLLARY 2.3. Let $\langle a_1, \ldots, a_n \rangle$ be a sequence in R and let $I = (a_1, \ldots, a_n)$. Then the following are equivalent:

- (i) $\langle \mathbf{a} \rangle$ is a c-sequence;
- (ii) $\langle \mathbf{a} \rangle$ is a weakly relative regular sequence and I is of linear type;
- (iii) $\langle \mathbf{a} \rangle$ is a proper sequence and I is of linear type.

Proof. (i) \Rightarrow (ii): Follows from the definition of a weakly relatively regular sequence and [1, Theorem 3].

(ii) \Rightarrow (iii): Follows from [5, p. 113].

(iii) \Rightarrow (i): By [9, Theorem 2.2], if $\langle \mathbf{a} \rangle$ is a proper sequence, then the corresponding sequence of 1-forms $\langle \mathbf{\overline{a}} \rangle$ is a d-sequence in $S_R(I)$. Since I is assumed to be of linear type, $S_R(I)$ is canonically isomorphic to R[It]. Hence, $\langle a_1t, \ldots, a_nt \rangle$ is a d-sequence in R[It]. Now, by Proposition 2.2, $\langle a_1, \ldots, a_n \rangle$ is a c-sequence in R.

Thus, if $I = (\mathbf{a})$ is an ideal of linear type, where $\langle \mathbf{a} \rangle$ is a proper or weakly relative regular sequence, then $\langle \mathbf{a} \rangle$ is necessarily a c-sequence. Note that neither proper nor weakly relative regular sequences are necessarily sequences of linear type.

We will use Corollary 2.3 in the proof of Theorem 3.1.

3. Monomial c-sequences

THEOREM 3.1. Let $\langle g_1, g_2, g_3 \rangle$ be a monomial sequence. Then the following are equivalent:

(i) $\langle g_1, g_2, g_3 \rangle$ is a weakly relative regular sequence;

(ii) $\langle g_1, g_2, g_3 \rangle$ is a c-sequence;

(iii) $[g_1,g_2]|g_3$ and $([g'_1,g'_3] = [g'_1,g'^2_3]$ or $[g'_2,g'_3] = [g'_2,g'^2_3]$, where $g'_i = \frac{g_i}{[g_1,g_2]}$, i = 1,2,3.

Proof. By [11, Theorem 3.1], a monomial sequence $\langle g_1, g_2, g_3 \rangle$ is proper if and only if $[g_1, g_2]|g_3$. Also, every weakly relative regular and every c-sequence are proper. Hence, in the statement of the theorem we can assume that $\langle g_1, g_2, g_3 \rangle$ is a proper monomial sequence. Then (because of [11, Theorem 3.1]) its elements can be written as products of monomials in the following way:

(1)

$$g_1 = f_1 f_{13} f_{123},$$

$$g_2 = f_2 f_{23} f_{123},$$

$$g_3 = f_3 f_{13} f_{23} f_{123},$$

with the condition that the following pairs of monomials are relatively prime:

(2)
$$(f_1, f_2), (f_1, f_{23}), (f_{13}, f_2), (f_{13}, f_{23}), (f_1, f_3), (f_2, f_3).$$

Note that then

 $[g_1, g_2] = f_{123}.$

(i) \Leftrightarrow (iii): Since the ideals $I_{i-1}I$: g_i and I are monomial and the intersection of monomial ideals is a monomial ideal [3, Theorem 3.10], the condition (i) is equivalent with the following conditions:

$$g_1(g_1, g_2, g_3) : g_2^2 = (g_1) : g_2,$$

$$g_1(g_1, g_2, g_3) : g_2g_3 = (g_1) : g_3,$$

$$(g_1, g_2)(g_1, g_2, g_3) : g_3^2 = (g_1, g_2) : g_3.$$

Using [4, p. 485], this is equivalent with:

$$\begin{pmatrix} g_1^2 \\ \overline{[g_1^2, g_2^2]}, \frac{g_1}{[g_1, g_2]}, \frac{g_1 g_3}{[g_1 g_3, g_2^2]} \end{pmatrix} = \begin{pmatrix} g_1 \\ \overline{[g_1, g_2]} \end{pmatrix}, \\ \begin{pmatrix} g_1^2 \\ \overline{[g_1^2, g_2 g_3]}, \frac{g_1}{[g_1, g_3]}, \frac{g_1}{[g_1, g_2]} \end{pmatrix} = \begin{pmatrix} g_1 \\ \overline{[g_1, g_3]} \end{pmatrix}, \\ \begin{pmatrix} g_1^2 \\ \overline{[g_1^2, g_3^2]}, \frac{g_1 g_2}{[g_1 g_2, g_3^2]}, \frac{g_2}{[g_2, g_3]}, \frac{g_2^2}{[g_2^2, g_3^2]} \end{pmatrix} = \begin{pmatrix} g_1 \\ \overline{[g_1, g_3]}, \frac{g_2}{[g_2, g_3]} \end{pmatrix}.$$

The condition $\frac{g_1}{[g_1,g_2]} | \frac{g_1^2}{[g_1^2,g_2^2]}$ and analogous conditions for g_1, g_3 and g_2, g_3 are automatically satisfied. The condition $\frac{g_1}{[g_1,g_3]} | \frac{g_1}{[g_1,g_2]}$ is equivalent with $[g_1, g_2][g_3]$, which is also satisfied by [11, Theorem 3.1], since we assumed that $\langle g_1, g_2, g_3 \rangle$ is a proper sequence. Thus, $\langle g_1, g_2, g_3 \rangle$ is a weakly relative regular sequence if and only if the following conditions hold:

(3)
$$\frac{g_1}{[g_1,g_2]} \left| \frac{g_1 g_3}{[g_1 g_3, g_2^2]} \right|$$

(4)
$$\frac{g_1}{[g_1,g_3]} \Big| \frac{g_1^2}{[g_1^2,g_2g_3]},$$

(5)
$$\frac{g_1}{[g_1,g_3]} \Big| \frac{g_1 g_2}{[g_1 g_2, g_3^2]} \quad \text{or} \quad \frac{g_2}{[g_2,g_3]} \Big| \frac{g_1 g_2}{[g_1 g_2, g_3^2]}$$

Using (1) and the relative primeness (2), we conclude that the conditions (3)and (4) are also automatically satisfied. Thus, $\langle g_1, g_2, g_3 \rangle$ is a weakly relative regular sequence if and only if the condition (5) holds. Using (1) and (2), we also conclude that (5) has the form

$$f_1 \Big| \frac{f_1}{[f_1, f_3^2 f_{13} f_{23}]} \quad \text{or} \quad f_2 \Big| \frac{f_2}{[f_2, f_3^2 f_{13} f_{23}]},$$

or, equivalently, at least one of the two pairs of monomials $(f_1, f_{13}), (f_2, f_{23})$ is relatively prime. Thus, we have shown that (i) \Leftrightarrow (iii).

(i) \Leftrightarrow (ii): It is enough to show (i) \Rightarrow (ii). Suppose that $\langle g_1, g_2, g_3 \rangle$ a weakly relative regular sequence. By Corollary 2.3, a weakly relative regular monomial sequence $\langle g_1, g_2, g_3 \rangle$ is a c-sequence if and only if the ideal I is of linear type. Since any monomial sequence of length 2 generates an ideal of linear type, we can use the Induction Theorem [1, Theorem 4]. So, by the Induction Theorem, $\langle g_1, g_2, g_3 \rangle$ is a c-sequence if and only if the following conditions hold for every k > 1:

(a) $(g_1, g_2)(g_1, g_2, g_3)^k : g_3^{k+1} = (g_1, g_2) : g_3;$ (b) for any $z_1, z_2 \in (g_1, g_2, g_3)^k$ with $z_1g_1 + z_2g_2 = 0$, there are $c_1, c_2 \in (g_1, g_2, g_3)^k$ $(g_1, g_2, g_3)^{k-1}$ with $c_1g_1 + c_2g_2 = 0$, such that $c_1g_3 + z_1 \in (g_1, g_2)^k$ and $c_2g_3 + c_3g_3 + c_3g$ $z_2 \in (g_1, g_2)^k$.

H. KULOSMAN

We first show that the condition (a) holds. We can assume that g_1, g_2 are relatively prime, i.e., $f_{123} = 1$, since f_{123} is a nonzero divisor which is a factor in each of the three monomials. We can also assume, by symmetry and the fact that (i) \Leftrightarrow (iii) is already proved, that the condition for weak relative regularity is $[g_1, g_3] = [g_1, g_3^2]$. Note that now for any $s \ge 1$, if $l + m = s, l \ge 1, m \ge 0$, then

(6)
$$[g_1^l g_2^m, g_3^s] = [g_1^l, g_3^s] [g_2^m, g_3^s]$$
$$= [g_1^l, g_3^l] [g_2^m, g_3^s]$$
$$= [g_1, g_3]^l [g_2^m, g_3^s]$$

Hence,

$$\frac{g_1^l g_2^m}{[g_1^l g_2^m, g_3^s]} = \frac{g_1^l}{[g_1, g_3]^l} \frac{g_2^m}{[g_2^m, g_3^s]}$$

Hence,

(7)
$$\frac{g_1}{[g_1,g_3]} \Big| \frac{g_1^l g_2^m}{[g_1^l g_2^m, g_3^s]}.$$

Also, note that for any $s \ge 1$,

(8)
$$\frac{g_2}{[g_2,g_3]} \Big| \frac{g_2^s}{[g_2^s,g_3^s]}.$$

The ideal $(g_1, g_2)(g_1, g_2, g_3)^k$ is generated by the monomials $g_1^l g_2^m g_3^n$, where $l+m+n=k+1, l+m \ge 1, l, m, n \ge 0$. We show that each of the monomials

(9)
$$\frac{g_1^l g_2^m g_3^n}{[g_1^l g_2^m g_3^n, g_3^{k+1}]}$$

is divisible by one of the monomials $\frac{g_1}{[g_1,g_3]}, \frac{g_2}{[g_2,g_3]}$. If n = 0, this follows from the above relations (7), (8) since either $l \ge 1$ or l = 0, m = k + 1. Suppose $n \ge 1$. Then the monomial (9) is equal to

(10)
$$\frac{g_1^l g_2^m}{[g_1^l g_2^m, g_3^{k+1-n}]},$$

with $k + 1 - n \ge 1$, so we can again apply (7), (8). Thus, the condition (a) holds.

We now show that the condition (b) holds. By [4, p. 485], from $z_1g_1 + z_2g_2 = 0$ and $c_1g_1 + c_2g_2 = 0$ we have $z_1 = ag_2, z_2 = -ag_1, c_1 = bg_2, c_2 = -bg_1$ for some $a, b \in \mathbb{R}$. Hence, the condition (b) can be formulated in the following way:

(b') for every $k \ge 1$, for every $a \in (g_1, g_2, g_3)^k : (g_1, g_2)$, there is a $b \in (g_1, g_2, g_3)^{k-1} : (g_1, g_2)$ such that $a + bg_3 \in (g_1, g_2)^k : (g_1, g_2)$.

It is easy to see that $(g_1, g_2)^k : (g_1, g_2) = (g_1, g_2)^{k-1}$. We show that since $\langle g_1, g_2, g_3 \rangle$ is weakly relative regular, we have

$$(g_1, g_2, g_3)^k : (g_1, g_2) = (g_1, g_2, g_3)^{k-1}.$$

This is clear for k = 1. Suppose that $k \ge 2$. Then $(g_1, g_2, g_3)^k : g_1$ is generated by the monomials $\frac{g_1^l g_2^m g_3^n}{[g_1^l g_2^m g_3^n, g_1]} (l + m + n = k)$, that are equal to:

(11)
$$g_1^{l-1}g_2^mg_3^n, \quad \text{if } l \ge 1;$$

(12)
$$g_2^m \cdot \frac{g_3^n}{[g_3^n, g_1]}, \quad \text{if } l = 0, m \ge 1;$$

(13)
$$\frac{g_3^k}{[g_3^k, g_1]}, \quad \text{if } l = m = 0.$$

Similarly, $(g_1, g_2, g_3)^k : g_2$ is generated by the monomials $\frac{g_1^l g_2^m g_3^n}{[g_1^l g_2^m g_3^n, g_2]} (l + m + n = k)$, that are equal to:

(14)
$$g_{1}^{l}g_{2}^{m-1}g_{3}^{n}, \quad \text{if } m \ge 1;$$
$$g_{1}^{l} \cdot \frac{g_{3}^{n}}{[g_{3}^{n},g_{2}]}, \quad \text{if } m = 0, l \ge 1;$$
$$\frac{g_{3}^{k}}{[g_{3}^{k},g_{2}]}, \quad \text{if } l = m = 0.$$

In each of (11) and (14) we have all of the monomials $g_1^p g_2^q g_3^r$ with p+q+r = k-1, so each of the ideals $(g_1, g_2, g_3)^k : g_1$ and $(g_1, g_2, g_3)^k : g_2$ contains $(g_1, g_2, g_3)^{k-1}$. Since the sequence $\langle g_1, g_2, g_3 \rangle$ is weakly relative regular, then for all $k \geq 2$ either $\frac{g_3^k}{[g_3^k, g_1]} = \frac{g_3^k}{[g_3, g_1]}$ or $\frac{g_3^k}{[g_3^k, g_2]} = \frac{g_3^k}{[g_3, g_2]}$. Without loss of generality, we assume $\frac{g_3^k}{[g_3^k, g_1]} = \frac{g_3^k}{[g_3, g_1]}$, then note that $g_3^{k-1} | \frac{g_3^k}{[g_3^k, g_1]}$ for all $k \geq 2$. It follows that (12) and (13) are elements of $(g_1, g_2, g_3)^{k-1}$, and hence that $(g_1, g_2, g_3)^k : g_1 = (g_1, g_2, g_3)^{k-1}$. We conclude that

$$(g_1, g_2, g_3)^k : (g_1, g_2) = ((g_1, g_2, g_3)^k : g_1) \cap ((g_1, g_2, g_3)^k : g_2)$$

equals $(g_1, g_2, g_3)^{k-1}$ as required.

Now, the condition (b') is equivalent with:

(b") for every $k \ge 2$, for every $a \in (g_1, g_2, g_3)^{k-1}$ there is a $b \in (g_1, g_2, g_3)^{k-2}$ such that $a + bg_3 \in (g_1, g_2)^{k-1}$.

Any $a \in (g_1, g_2, g_3)^{k-1}$ can be written as $a = F(g_1, g_2) + g_3^l G(g_1, g_2, g_3)$, $l \ge 1$, where F and G are homogeneous polynomials of degrees k-1 and k-l-1. Now if we put $b = -g_3^{l-1}G(g_1, g_2, g_3)$, we will have $a + bg_3 \in (g_1, g_2)^{k-1}$. So the condition (b) holds.

Thus, (i) \Leftrightarrow (ii).

This finishes the proof of the theorem.

EXAMPLE 3.2. Consider the sequence $\langle x, y^2, yz \rangle$, where x, y, z are variables. It is not a d-sequence (by [11, Theorem 2.1]), but it is a c-sequence (by Theorem 3.1). However, if we change the order, the sequence $\langle x, yz, y^2 \rangle$ is a d-sequence.

EXAMPLE 3.3. Consider the sequence $\langle xy, z^2u, yzu^2 \rangle$, where x, y, z, u are variables. As before, it is a c-sequence, but not a d-sequence. Moreover, it is not a d-sequence in any order.

REMARK 3.4. A monomial sequence $\langle g_1, g_2, g_3 \rangle$ is a regular sequence if and only if g_i and g_j are relatively prime whenever $i \neq j$. It is then an unconditioned regular sequence.

COROLLARY 3.5. Let $\langle g_1, g_2, g_3 \rangle$ be a monomial sequence. The following are equivalent:

(i) $\langle g_1, g_2, g_3 \rangle$ is an unconditioned c-sequence;

(ii) $\langle g_1, g_2, g_3 \rangle$ is an unconditioned proper sequence;

(iii) $g_i = df_i$ (i = 1, 2, 3), where d is a monomial and $\langle f_1, f_2, f_3 \rangle$ is a regular monomial sequence.

Proof. (ii) \Rightarrow (iii): From (1) and the assumption that $\langle g_1, g_3, g_2 \rangle$ is proper, i.e., that $[g_1, g_3]|g_2$, we get $f_{13} = 1$. Similarly, $f_{23} = 1$.

(iii) \Rightarrow (i) and (i) \Rightarrow (ii): clear.

REMARK 3.6. By [11, Corollary 3.3], a monomial sequence $\langle g_1, g_2, g_3 \rangle$ is an unconditioned d-sequence if and only if $g_i = df_i$ (i = 1, 2, 3), where d is a monomial, $\langle f_1, f_2, f_3 \rangle$ a regular monomial sequence and d relatively prime with f_1, f_2, f_3 . Hence, an unconditioned c-sequence is not necessarily a d-sequence.

Acknowledgment. I would like to thank the referee for a very careful reading of the paper and valuable comments.

References

- [1] D. Costa, Sequences of linear type, J. Algebra **94** (1985), 256–263. MR 0789548
- [2] M. Fiorentini, On relative regular sequences, J. Algebra 18 (1971), 384–389. MR 0277517
- [3] W. Heinzer, A. Mirbagheri, L. J. Ratliff Jr. and K. Shah, Parametric decomposition of monomial ideals, II, J. Algebra 187 (1997), 120-149. MR 1425562
- [4] J. Herzog, A. Simis and W. Vasconcelos, Approximation complexes of blowing-up rings, J. Algebra 74 (1982), 466–493. MR 0647249
- [5] J. Herzog, A. Simis and W. Vasconcelos, Koszul homology and blowing-up rings, Commutative algebra (Trento, 1981), Lecture Notes in Pure and Applied Mathematics, vol. 84, Dekker, New York, 1983, pp. 79–169. MR 0686942
- [6] C. Huneke, On the symmetric and Rees algebra of an ideal generated by a d-sequence, J. Algebra 62 (1980), 268–275. MR 0563225
- [7] C. Huneke, Symbolic powers of prime ideals and special graded algebras, Comm. Algebra 9 (1981), 339-366. MR 0605026

- [8] C. Huneke, The theory of d-sequences and powers of ideals, Adv. Math. 46 (1982), 249–279. MR 0683201
- M. Kühl, On the symmetric algebra of an ideal, Manuscripta Math. 37 (1982), 49–60. MR 0649563
- [10] H. Matsumura, Commutative ring theory, Cambridge University Press, Cambridge, 1989. MR 1011461
- [11] Z. Tang, On certain monomial sequences, J. Algebra 282 (2004), 831-842. MR 2101086
- [12] G. Valla, On the symmetric and Rees algebras of an ideal, Manuscripta Math. 30 (1980), 239–255. MR 0557107

HAMID KULOSMAN, UNIVERSITY OF LOUISVILLE, NATURAL SCIENCE BUILDING, ROOM 328, LOUISVILLE, KY 40292, USA

E-mail address: h0kulo01@louisville.edu