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Q-DEGREES OF n-C.E. SETS

M. M. ARSLANOV AND R. SH. OMANADZE

Abstract. In this paper we study Q-degrees of n-computably enumer-
able (n-c.e.) sets. It is proved that n-c.e. sets form a true hierarchy
in terms of Q-degrees, and that for any n ≥ 1 there exists a 2n-c.e. Q-
degree which bounds no noncomputable c.e. Q-degree, but any (2n+1)-
c.e. non 2n-c.e. Q-degree bounds a c.e. noncomputable Q-degree.

Studying weak density properties of n-c.e. Q-degrees, we prove that
for any n ≥ 1, properly n-c.e. Q-degrees are dense in the ordering of
c.e. Q-degrees, but there exist c.e. sets A and B such that A − B <Q

A ≡Q ∅′, and there are no c.e. sets for which the Q-degrees are strongly
between A−B and A.

1. Introduction

In this paper we study Q-degrees of n-computably enumerable (n-c.e.) sets.
Recall (Shoenfield [2]) that a set A is Q-reducible to a set B if there is a
computable function f such that for every x ∈ ω, x ∈ A ⇔ Wf(x) ⊆ B. In
this case we say that A ≤Q B via f (or via a uniformly c.e. sequence of c.e.
sets U = {Ux}x∈ω, if for all x Ux = Wf(x)).

The relation of Q-reducibility is transitive and reflexive, so that it generates
a degree structure on 2ω. It is not hard to show that in general Q-reducibility
is incomparable with Turing (T-) reducibility, but in c.e. sets A ≤Q B implies
A ≤T B. Therefore, in c.e. sets the relation ≤Q is strictly stronger than ≤T ,
since if A ≤Q B, then ω −A is B-c.e.

A set A is n-c.e. if there is a computable function f(s, x) such that for
every x:

f(0, x) = 0,

A(x) = lim
s

f(s, x),

|{s : f(s, x) 6= f(s + 1, x)}| ≤ n.

The 2-c.e. sets are also known as the d-c.e. sets as they are differences of c.e.
sets.
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A degree a is called n-c.e. degree for n ≥ 1 if it contains an n-c.e. set, and
it is called a properly n-c.e. degree if it contains an n-c.e. set but no m-c.e.
set for any m < n.

We adopt the usual notational conventions, found, for instance, in Soare
[3]. In particular, we write [s] after functionals and formulas to indicate that
every functional or parameter therein is evaluated at stage s. In particular,
for an oracle X and a c.e. functional Φ, Φ(X; y, s) means only that at most s
steps are allowed for the computation from the oracle X to converge, whereas
Φ(X; y)[s] means also that the approximation Xs is used as the oracle, and
may mean as well that some function-value y(s) is being used as the argument
for the computation. As usual, 〈x1, x2, . . . , xn〉 means the 1-1 enumeration of
all n-tuples by integers.

2. Results

From our results it immediately follows that in n-c.e. sets (even for the
case n = 2) T-reducibility is incomparable with Q-reducibility. Therefore, the
development of the structural theory of Q-degrees of n-c.e. sets in comparison
with their T-degrees becomes one of the interesting directions in the study of
Q-degrees of n-c.e. sets.

We begin with some pathologies of the upper-semilattice of the n-c.e. Q-
degrees relative to the n-c.e. Turing degrees. It is well-known that for any
n-c.e. set (n > 1) A of properly n-c.e. degree there exists a (n − 1)-c.e. set
B such that B <T A (this is called Lachlan’s Proposition). In Theorem 1 we
establish a similar result in Q-degrees, but in the opposite direction.

Theorem 1. Let R1 ⊇ R2 ⊇ . . . ⊇ R2n+1 be c.e. sets, R1 6= ω, and let

Pk =
⋃

1≤i≤[ k+1
2 ]

{A2i−1 −A2i}, k = 1, 2, . . . , 2n + 1,

where for all i, Ai = Ri, except when k is an odd number, in which case we
have Ai = Ri for 1 ≤ i ≤ k, but Ak+1 = ∅. Then, for all k, k ≥ 1,

(a) P2k ≤Q P2k−1,
(b) P2k ≤Q P2k+1,
(c) P2k ≤Q P2k+2.

In particular, for all c.e. sets A and B, A−B ≤Q A.

The proof of this theorem immediately follows from the following proposi-
tion.

Proposition 2. Let X ⊂ ω be a set, let A, B be c.e. sets, A ⊇ B,
X ∩A = ∅ and X ∪A 6= ∅. Then

(1) X ≤Q X ∪ (A−B),
(2) X ∪ (A−B) ≤Q X ∪A.
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Proof. (1) Let f be a computable function such that for all x

Wf(x) =

{
{x} if x 6∈ A,
{x, b} otherwise.

Here b is a fixed element from X ∪A.
If x ∈ X, then x 6∈ A and Wf(x) = {x} → Wf(x) ⊆ X ∪ (A−B).
If x 6∈ X, then either x ∈ A or x 6∈ A. If x ∈ A, then Wf(x) = {x, b} →

Wf(x) 6⊆ X ∪ (A− B).
If x 6∈ A, then Wf(x) = {x} → Wf(x) 6⊆ X∪(A−B). Therefore, X ≤Q X∪

(A−B).
(2) In this case we define the function f as follows:

Wf(x) =

{
{x} if x 6∈ B,
{x, b} otherwise.

Here again b is a fixed element from X ∪A.
If x ∈ X∪(A−B), then Wf(x) = {x} → Wf(x) ⊆ X∪A. If x 6∈ X∪(A−B),

then either x ∈ B or x 6∈ B.
If x 6∈ B, then Wf(x) = {x} → Wf(x) 6⊆ X ∪ A. If x ∈ B, then Wf(x) =

{x, b} → Wf(x) 6⊆ X ∪A.
Therefore, x ∈ X ∪ (A−B) ↔ Wf(x) ⊆ X ∪A. �

It follows from Theorem 3 below that n-c.e. sets form a true hierarchy in
terms of Q-degrees. We prove the existence of a 3-c.e. set M = (A1−A2)∪A3

of properly 3-c.e. Q-degree. The proof easily generalizes to prove the existence
of a properly n-c.e. Q-degrees for all n > 1.

Theorem 3. There exists a 3-c.e. set M = (A1 − A2) ∪ A3 of properly
3-c.e. Q-degree.

Proof. We construct c.e. sets A1, A2 and A3, A1 ⊇ A2 ⊇ A3 such that the
Q-degree of M = (A1 −A2) ∪A3 does not contain d-c.e. sets.

To ensure that M is not of d-c.e. Q-degree, we meet for all e, i, j ∈ ω the
requirements

Re,i,j : M 6≤Q Wi −Wj via Θe ∨ Wi −Wj 6≤Q M via Φe ∨Wi + Wj .

Here {(Wi,Wj ,Θe,Φe, )}e,i,j∈ω is some enumeration of all possible quadruples
of c.e. sets Wi,Wj and partial computable functionals Θ and Φ.

The basic module for the requirement Re,i,j. For a convenience we
again first rewrite the requirements Re,i,j as follows:

Re,i,j : (∃ x)(x 6∈ M&WΘe(x) ⊆ (Wi −Wj) ∨ x ∈ M&WΘe(x) 6⊆ (Wi −Wj))

∨(∃x)(x 6∈ (Wi −Wj)&WΦe(x) ⊆ M ∨ x ∈ (Wi −Wj)&WΦe(x) 6⊆ M)

∨Wi + Wj .
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Now we proceeds as follows:

(1) Choose an unused candidate x = xe,i,j for Re,i,j greater than any
number mentioned in the construction thus far.

(2) Wait for a stage s such that Θe(x) ↓, and for some (least) y = ye,i,j

such that

y ∈ WΘe(x) − (Wi −Wj).

There are the following two possibilities:

Case 1. y ∈ Wj . Obviously, in this case the requirement Re,i,j is satisfied
via the witness x.

Case 2. y 6∈ Wi. In this case:

(3) Wait for a stage s′ and for some (least) z = ze,i,j such that Φe(y) ↓
and

z ∈ WΦe(ye) −M.

Again, there are the following two possibilities:

Case a. x 6= z. In this case:

(4a) Put x into M .
(5a) Force y to enter into Wi.

(Otherwise the requirement Re,i,j is satisfied.)

(6a) Protect z from other strategies from now on.
(7a) Wait for y to enter into Wj . (Now y is a permanent witness to the

success of Re,i,j because

y ∈ Wi −Wj&z ∈ WΦe(ye) −M,

which means that Wi −Wj 6≤Q M via Φe.)

Case b. x = z. In this case:

(4b) Put x into M .
(5b) Force y to enter into Wi.
(6b) Remove z(= x) from M .

Now there are following two possibilities:

Subcase (b1). y enters into Wj . In this case:

(7b1) Enumerate x into M and stop.
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Subcase (b2). y ∈ Wi −Wj . In this case the requirement Re,i,j is satisfied
via the witness x.

The explicit construction and the remaining parts of the proof now straight-
forward, so we will not give them here. �

It is easy to see that if A is a c.e. noncomputable set, then ω − A in Q-
degrees bounds no c.e. sets except computable sets. It immediately follows
that the partial orderings of T- and Q- degrees of d-c.e. sets are elementarily
non-equivalent, since by Lachlan’s proposition each noncomputable d-c.e. set
in T-degrees bounds some noncomputable c.e. set. Below in Proposition 4
we show that any (2n + 1)-c.e. non (2n)-c.e. set in Q-degrees also bounds a
noncomputable c.e. set for any n ≥ 1.

Proposition 4. Let M be a (2n + 1)-c.e. set which is not (2n)-c.e., and
M = (A1−A2)∪ . . .∪A2n+1, where A1 ⊇ A2 . . . ⊇ A2n+1 are c.e. sets. Then
there is a c.e. noncomputable set P which is Q-reducible to M .

Proof. Let A2n = {f(x) : x ∈ ω} for some computable function f , and
let g be a computable function such that for any x, Wg(x) = {f(x)}. Define
P = f−1(A2n+1). Then we have:

x ∈ P → f(x) ∈ A2n+1 → Wg(x) ⊆ M.

x 6∈ P → f(x) ∈ A2n −A2n+1 → Wg(x) * M.

Therefore, P ≤Q M .
If the set P is computable, then A2n −A2n+1 is c.e., since

A2n −A2n+1 = {x : (∃y)((x = f(y)) & y 6∈ P}.

Therefore, M is a (2n)-c.e. set, since

(A2n−1 −A2n) ∪A2n+1 = A2n−1 − (A2n −A2n+1).

Let A′
2n = A2n−A2n+1. Then A′

2n is c.e., A′
2n ⊆ A2n−1 and M = (A1−A2)∪

. . .∪ (A2n−1−A′
2n), which contradicts to the assumption of the theorem. �

Therefore, any n-c.e. for some odd n ≥ 2 set which is not an m-c.e. set for
some even m < n bounds in Q-degrees some noncomputable c.e. set. As noted
above, there are 2-c.e. sets which bound in Q-degrees no noncomputable c.e.
sets. Generalizing this observation, we now prove that for any even n > 2
there is a n-c.e. set of properly n-c.e. degree which in Q-degrees does not
bound any noncomputable c.e. sets.

Theorem 5. For any n ≥ 2 there is a (2n)-c.e. set M of properly (2n)-
c.e. Q-degree such that for any c.e. set W , if W ≤Q M , then W is com-
putable.
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Proof. For simplicity we will consider the case n = 2. The general case has
the same proof with obvious changes.

We construct c.e. sets A1, A2, A3 and A4, A1 ⊇ A2 ⊇ A3 ⊇ A4, such that
the Q-degree of M = (A1 −A2)∪ (A3 −A4) does not contain 3-c.e. sets, and
for any c.e. set W , if W ≤Q M , then W is computable.

To ensure that M is not of 3-c.e. Q-degree, we meet for all e ∈ ω the
requirements

Re : M 6≤Q Ve via Θe ∨ Ve 6≤Q M via Φe.

To ensure the last condition we meet for any e ∈ ω the following requirements:

Se : We 6≤Q M via Φe ∨ We is computable.

Here {(We,Φe, )}e∈ω is some enumeration of all possible pairs c.e. sets We

and partial computable functionals Φ.

The basic module for the requirement Re. This is similar to the
appropriate module from Theorem 3. For a convenience again we first rewrite
the requirements Re as follows:

Re : (∃ x)(x 6∈ M&WΘe(x) ⊆ Ve ∨ x ∈ M&WΘe(x) 6⊆ Ve)

∨(∃y)(y 6∈ Ve&WΦe(y) ⊆ M ∨ y ∈ Ve&WΦe(y) 6⊆ M).

Now we proceed as follows:
(1) Choose an unused candidate x = xe for Re greater than any number

mentioned in the construction thus far.
(2) Wait for a stage s such that Θe(x) ↓, and for some (least) y = ye such

that
y ∈ WΘe(x) − Ve.

(3) Wait for a stage s′ and for some (least) z = ze such that Φe(y) ↓ and

z ∈ WΦe(ye) −M.

Again, there are the following two possibilities:

Case a. x 6= z. In this case:
(4a) Put x into M , protect z from other strategies from now on.
(5a) Wait for y to enter into Ve.
Now the requirement is satisfied since y ∈ Ve and z ∈ WΦe(y) − M . If

later y leaves Ve, then the requirement is again satisfied since x ∈ M and
y ∈ WΘe(x) − Ve.

Case b. x = z. In this case:
(4b) Put x into M .
(5b) Force y to enter into Ve.
(6b) Remove z(= x) from M .
Now there are the following two possibilities:
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Subcase (b1). y leaves Ve. In this case:

(7b1) Enumerate x into M .
(8b1) Force y to enter into Ve.
(9b1) Remove x from M .

Now we have y ∈ Ve and z ∈ WΦe(ye) − M , and the requirement Re is
satisfied.

Subcase (b2). y remains in Ve. In this case we have z ∈ WΦe(ye) −M , and
again the requirement Re is satisfied.

The basic module for the requirement Se. We use an ω-sequence of
“cycles”, where each cycle k proceeds as follows:

(1) While k 6∈ We wait either for k to enter into We or for some yk ∈
WΦe(k) −M .

(2) Restrain yk (if any) from being enumerated into M and stop.

Now suppose that We ≤Q M via Φe. To prove that in this case We is
computable, for any k ∈ ω go through the k-th cycle of the strategy until
a stage s is reached where either k enters into We,s or some yk 6∈ Ms is
enumerated into WΦe(k)[s]. Then k ∈ We iff k ∈ We,s. Indeed, if k ∈ We −
We,s, then we have k ∈ We and yk ∈ WΦe(k)−M , which means that We 6≤Q M
via Φe, a contradiction.

Interactions between the requirements. We only need to consider the
case when the S-strategies activity of higher priority interfere with the activity
of R-strategies of lower priority.

The only possible conflict in activities of these strategies is the following:
an S-strategy of higher priority restrains some integer yk against M (at step
2 of the S-module), but an R-strategy of lower priority needs to enumerate yk

into M (at steps 4a, 4b and 7b1). The obvious solution of this conflict is the
following: enumerate yk into M for the R-strategy, wait for k to enter into
We in the S-strategy (if this never happens, then obviously this is okay for
the S-strategy), then remove yk from M , satisfying the requirement S, and
possibly injuring the activity of theR-strategy. For the latter we now choose a
new witness and start the activity of the R-strategy from the beginning. The
crucial point here is that we construct a n-c.e. set M for an even n, and we
can always remove the element yk from M which was previously enumerated
into M by the R-strategy.

Construction. We order the requirements Re,Se in an ω type list 〈Pn〉
and at stage s we consider the requirement Pn, s = 〈n, k〉, in our list.
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Case 1. Pn = Re for some e.
If there is no witness associated with this requirement, we choose an integer

xe bigger than all integers so far mentioned during the construction as a wit-
ness associated with the requirement Re and go to the next stage. Otherwise,
we check which step of the basic module for this requirement holds, and act
accordingly. If for an integer m in this stage we have Ms(m) 6= Ms−1(m), then
we initialize all requirements of lower priority. (An S-requirement is initial-
ized by cancelling all its cycles. An R-requirement is initialized by cancelling
of its witness and, therefore, cancelling all its restraints.)

Case 2. Pn = Se for some e.
(a) If for each k ≤ s such that k 6∈ We,s either there is an integer yk such

that yk is associated with k in a stage s′ < s or ¬∃y(y ∈ WΦe(k) −
M)[s], then go to stage s + 1.

(b) Otherwise, but for some (least) k ≤ s we have k 6∈ We,s. Then let
yk = µy(y ∈ WΦe(k) −M)[s]. Associate yk with k, restrain yk from
other strategies from now on, and go to stage s + 1.

(c) If there is a (least) k ∈ We,s such that an associated with k in a stage
s′ < s integer yk is enumerated into M by a requirement Re′ , e′ > e,
then remove yk from M , and initialize the requirement Re′ .

(d) Otherwise, go to stage s + 1.
This ends the construction.

Verification.

Lemma 6. Each requirement Pe is satisfied.

Proof. Let Pn be the first requirement which is not satisfied and let s be
the first stage after which no requirement initializes it. (It follows from the
choice of n that there is such a stage s.)

Case 1. Pn = Re for some e. In this case the requirement Pn is satisfied
with the first witness xe chosen after the stage s.

Case 2. Pn = Se for some e. Suppose that We ≤Q M via Φe. To effectively
compute We(k) for an (arbitrary) k, continue the construction until a stage
s′ > s such that either k ∈ Ws′ or an integer yk is associated with k at stage
s′. Then k ∈ We iff k ∈ We,s′ . Indeed, suppose that k ∈ We −We,s′ . Since
We ≤Q M , we have yk ∈ M , which means that a requirement Ri of lower
priority enumerates yk into M . But since k enters into We after the stage s′,
by the construction we remove yk from M , a contradiction. �

The first significant result concerning the partial-ordering of the c.e. Q-
degrees was provided by Downey, LaForte and Nies [1]. They proved that
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the c.e. Q-degrees form a dense partial order, just as in the case of the c.e.
T-degrees.

For the n-c.e. degrees, the density problem has some variants. Namely,
studying so-called weak density properties one may investigate the existence
of n-c.e. degrees a < b such that there is no m-c.e. degree c between a and
b for any m < n.

We have mentioned already that it follows from Proposition 2 that, in
particular, for all c.e. sets A and B, we have A−B ≤Q A. In Theorem 7 we
construct c.e. sets A and B such that the strong reducibility A − B <Q A
holds with several additional properties. Here we note that for c.e. sets A
and B the strong reducibility A− B <Q A is the most prevailing case. First
note, as can easily be shown, that if A is computable and infinite, then for
any c.e. noncomputable subset B ⊆ A and any noncomputable c.e. set C
we have C �Q A− B. Further, let A be any infinite noncomputable c.e. set
and B its c.e. subset such that A − B is immune (obviously, for any such A
there exists such a B). Then A �Q A− B. Indeed, if A ≤Q A− B via some
computable function f , then the c.e. set {∪Wf(x) : x ∈ A} must be finite.
Let {a0, . . . , an} be all its elements. Then for any x, x ∈ ω −A if and only if
∃s, y(∀i ≤ n)(y ∈ Wf(x),s & y 6= ai). Therefore, ω − A is a Σ0

1-set and A is
computable, a contradiction.

Below combining weak density questions with the above mentioned prop-
erty of n-c.e. sets we prove the following result:

Theorem 7. There exists a d-c.e. set A1−A2 such that A1−A2 <Q A1,
and for every c.e. set W , if A1 −A2 ≤Q W , then A1 ≤Q W .

Proof. We construct c.e. sets A1, A2, A2 ⊆ A1, such that A = A1 −A2 ≤Q

A1, the Q-degree of A does not contain c.e. sets, and (∀ c.e.W )(A ≤Q W →
A1 ≤ W ). Obviously, this is enough to prove the theorem.

To ensure that A is not of c.e. Q-degree we meet for all e ∈ ω the following
requirements:

Re : A 6≤Q We via Θe ∨ We 6≤Q A via Φe.

To satisfy the second property we meet the following requirements for all
e ∈ ω:

Se : A1 −A2 ≤Q We via Φe ⇒

⇒ (∃ uniformly c.e. sequence of c.e. sets Ue)(A1 ≤Q We via Ue).

Here {(We,Θe,Φe, )}e∈ω is an effective enumeration of all possible triples
of c.e. sets W and partial computable functionals Θ and Φ. �

The basic module for the requirement Re. This is similar to the
appropriate modules from Theorems 3 and 5. Again for a convenience we
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rewrite the requirements Re as follows:

Re : (∃ x)(x 6∈ A&WΘe(x) ⊆ We ∨ x ∈ A&WΘe(x) 6⊆ We)

∨(∃x)(x 6∈ We&WΦe(x) ⊆ A ∨ x ∈ We&WΦe(x) 6⊆ A).

Now we proceed as follows:
(1) Choose an unused candidate xe for Re greater than any number men-

tioned in the construction thus far.
(2) Wait for a stage s such that Θe(xe) ↓, and for some least ye such that

ye ∈ WΘe(xe)−We. (If this never happens, then xe is a witness to the
success of Re).

(3) Wait for a stage s′ such that Φe(ye) ↓, and for some least ze such that
ze ∈ WΦe(ye) −A. (Again, if this never happens, then ye is a witness
to the success of Re.)

There are following two possibilities:

Case a. xe 6= ze. In this case:
(4a) Put xe into A1.
(5a) Force ye to enter into We. (If this never happens, then xe is a witness

to the success of Re.)
(6a) Protect ze from other strategies from now on. (Now ye is a permanent

witness to the success ofRe because ye ∈ We&ze ∈ WΦe(ye)−A, which
means that We 6≤Q A via Φe.)

Case b. xe = ze. In this case:
(4b) Put xe into A1.
(4b) Force ye to enter into We. (If this never happens, then xe is a witness

to the success of Re).
(6b) Put ze(= xe) into A2. (Now again ye is a permanent witness to the

success of Re because ye ∈ We&ze ∈ WΦe(ye) − A, which means that
We 6≤Q A via Φe.)

The basic module for the requirement Se. Again, for convenience we
first rewrite the requirements Se as follows:

Se : (∃ x)(x 6∈ A&WΦe(x) ⊆ We ∨ x ∈ A&WΦe(x) 6⊆ We)

∨(∀x)(x ∈ A1 ↔ Ue,x ⊆ We).

Now the strategy proceeds as follows: we use an ω-sequence of “cycles”,
where each cycle k proceeds as follows:

(1) While k 6∈ A1 wait for Φe(k) ↓ and some uk ∈ WΦe(k) − We. (It is
clear that otherwise the requirement is satisfied via the cycle k.)

(2) Enumerate uk into Ue,k, open cycle k + 1.
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(3) Wait for a stage s when k enters A1. (If between steps (2) and (3) uk

enters We, then close all cycles > k and go to step (1) for a new uk.)
(4) Close all cycles > k and wait for a stage s′ when uk enters We. (If

there is no such stage s′, then again the requirement Se satisfied via
the cycle k.)

(5) Open cycles > k and close the cycle k.
The module has the following possible outcomes:
(A) Some (least) cycle k eventually waits either at step (1), or at step (4)

forever. This means that we were successful in satisfying Se through
the cycle k since in this case A 6≤Q We via Φe.

(B) Some cycle k loops from step (3) to step (1) infinitely often. This
means that k 6∈ A and WΦe(x) ⊆ We, and again we were successful in
satisfying Se through the cycle k.

(C) Otherwise, for each cycle k, either it eventually waits at step (3)
forever, or proceeds through step (5). This obviously means that for
all k, k ∈ A1 ↔ Ue,k ⊆ We. Indeed, for each k there are following two
possibilities:

Case 1. k 6∈ A1. Then cycle k eventually waits at step (3), which
means that k 6∈ A1 and uk ∈ Ue,k −We.

Case 2. k ∈ A1. Then cycle k achieves step (5), which means that
Ue,k ⊆ We.

Interactions between the requirements. Note that we enumerate inte-
gers into A1 and A2 only by the R-strategy. But nevertheless the S-strategies
activity interferes with the R-strategies. How do we get Ue,k ⊆ We, which is
needed in cycle k of the basic module for Se, when k ∈ A1, if, by aRi-strategy,
we enumerate k into A2, and if uk never enters We?

There are following two possibilities:

Case 1. i ≤ e. In this case the Ri-requirements have higher priority, and
in the Se-strategy we simply close this cycle k. Since there are only finitely
many R-requirements of higher priority, this is enough for the Se-requirement
to be satisfied: if A ≤Q We, then k ∈ A1 ↔ Ue,k ⊆ We for all except finitely
many k.

Case 2. e < i. First note that by the Ri- strategy we may enumerate k into
A2 only in step (6b) of case b. This means that at step (3) of the Ri-strategy
we first obtain ze = xe(= k) and then at step (6b) enumerate it into A2. This
lack of co-ordination between R- and S-strategies can be avoided by inserting
between steps (5b) and (6b) of R-strategy the following additional step.
(5.5b) Wait for a stage t such that for all Si-strategies of higher priority for

which some k = xe = ze with k ∈ A1, WΦi(k) ⊆ Wi[t].
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If there is no such stage t, then this means that a requirement Si of higher
priority is satisfied diagonalizing its left part (i.e., A 6≤Q Wi). Since there are
only finitely many S-requirements of higher priority, then for the success of
the R-requirement it is now enough to choose a new witness xe and proceed.

Construction. We order the requirementsRe,Se in an ω-type list 〈Pn〉n∈ω

and at stage s we consider the requirement Pn, s = 〈n, k〉, in our list.

Case 1. Pn = Re for some e.
If there is no witness associated with this requirement, we choose an inte-

ger xe bigger than all integers so far mentioned during the construction as a
witness associated with the requirement Re and go to the next stage. Other-
wise, for each witness xe of this requirement we check which step of the basic
module for this requirement holds, and act accordingly. For step (5.5b), if for
each witness xe there is an S-requirement of higher priority Si, i < e, such
that xe = k ∈ A1, but uk 6∈ Wi, then for the requirement Re we choose a new
witness xe′ and go to the next stage. Otherwise, we enumerate k into A2 and
go to the next step.

If in this stage for an integer m we have As(m) 6= As−1(m), then we
initialize allR-requirements of lower priority. (AnR-requirement is initialized
by cancelling its witness and, therefore, cancelling all its restraints.)

Case 2. Pn = Se for some e.

(a) Let k0 ≤ s be the greatest integer such that for any k ≤ k0, Φe,s(k)
is defined. (If there is no such k0, then go to stage s + 1.)

(b) For each k ≤ k0 such that k 6∈ A1,s and Ue,k,s ⊆ We,s, if there is an
(least) integer uk ∈ WΦe,s(k),s−We,s, then enumerate uk into Ue,k,s+1.

(c) Go to stage s + 1.

This ends the construction.

Verification. Let Ue,k =
⋃

s∈ω Ue,k,s. It is clear that there is a computable
function f such that Ue,k = Wf(e,k).

The proof that the Q-degree of A1−A2 does not contain c.e. sets is similar
to the appropriate claim of Theorem 5: For the sake of contradiction suppose
that Pn is the first requirement which is not satisfied and Pn = Re for some
e. Let s be the least stage after which no R-requirement of higher priority
enumerates elements into A1 or A2. Let xe be the first witness chosen for the
Re-requirement after stage s.

If xe 6∈ A1, then it follows immediately from the construction that Re

is satisfied by the witness xe. Now let xe ∈ A1. We assumed that all S-
requirements of higher priority are also satisfied. This means that there is a
stage s′ ≥ s such that for each requirement Si, i ≤ e, if there is k ∈ A but
uk ∈ WΦi(k) −Wi, then for some such k we have uk ∈ WΦi,s′ (k) −Wi,s′ . Now
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by the construction the first witness xe which is chosen at stage s′ or later,
satisfies the requirement Re.

Further, it follows from Theorem 1 that A1 − A2 ≤Q A1. Therefore, we
have A1 −A2 <Q A1.

Now suppose that Pn = Se for some e. To prove that Se is satisfied we
assume that A1 − A2 ≤Q We via Φe, i.e., Φe is total and for any k, k ∈
A1 − A2 if and only if WΦe(k) ⊆ We. Let s be the least stage such that the
R-requirements of higher priority after stage s do not enumerate elements
into A1 or A2.

We prove that for each k, k enters into A1 after stage s if and only if
Ue,k = Wf(e,k) ⊆ We.

If k 6∈ A1, then by construction Ue,k contains an element uk ∈ WΦe(k) −
We (otherwise we have k 6∈ A and WΦe(k) ⊆ We, which contradicts to our
assumption A1 −A2 ≤Q We via Φe). Therefore, Ue,k 6⊆ We.

Now suppose that k enters into A1 at a stage s0 ≥ s. By construction
we have Ue,k ⊆ WΦe(k). If Ue,k 6⊆ We, then there is an element uk such
that uk ∈ Ue,k − We. By construction this means that uk ∈ WΦe(k) − We.
But we have k 6∈ A2 since we enumerate k into A2 only if all such uk are
enumerated already into We. Therefore, k ∈ A1 − A2 and WΦe(k) 6⊆ We, a
contradiction. �

Now in Theorem 8 below we prove that adding to the construction of
Theorem 7 a variant of a permitting argument for Q-reducibility, we can
achieve that the Q-degree of A1 coincides with the Q-degree of the creating
set K.

Theorem 8. There exists a d-c.e. set A1 −A2 such that A1 −A2 <Q K,
and for every c.e. set W , if A1 −A2 ≤Q W , then K ≤Q W .

Proof. We describe the modifications needed in the construction of the
previous theorem. We have to ensure K ≤Q A1 through a variant of per-
mitting argument for Q-reducibility. For this we construct (let us denote
this strategy by P) a uniformly c.e. sequence of c.e. sets Ve such that
(∀k)(k ∈ K ↔ Vk ⊆ A1).

First let us agree that in the previous theorem witnesses forR-requirements
we choose only among even numbers. Now for any k ∈ ω, we have:

The basic module for the requirement P.
• Choose a big (bigger than all numbers mentioned so far) odd number

vk as a witness for k, enumerate vk into Vk.
• Keep it out of A1 until k enters K.
• Enumerate vk into A1 and stop.

Obviously K ≤Q A1 via V = {Vk}k∈ω. Since in Theorem 7 we choose
witnesses for R-strategies only among even numbers, and S-strategies involve
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only numbers enumerated into A1 or A2 by R-strategies, this new modified
strategy does not interfere with the activity of R- and S-strategies, except for
the following possibility: we first choose some odd number vk as a witness for k
(in the P-strategy), then at step (3) of its basic module an R-strategy obtains
vk as some ze ∈ WΦe(ye) − A, and later at step (6a) restrains it from other
strategies (to keep it out of A1 − A2), finally this new P-strategy (having
k ∈ K) enumerates vk into A1. To avoid this conflict between strategies
we could enumerate vk = ze simultaneously into A1 and A2, but some S-
strategy in its (k′ = vk)-cycle may wait (having also an appropriate integer
uk′ , see step 3 of the basic module of S-strategy) for k′ to enter into A1. Now
enumerating vk simultaneously into A1 and A2 means that k′ = vk 6∈ A, and
if uk′ 6∈ We this action kills the S-strategy. This difficulty can be avoided
by a priority ordering of the R- and S-requirements (the P-requirement is
the global requirement and does not participate in this priority ordering of
requirements). Then:

• If R has higher priority, then we enumerate vk into A1 and A2, and
meet the R-requirement and initialize the S-requirement.

• If S has higher priority, then we enumerate vk = k′ into A1, wait for
uk′ to enter into We (if this never happens, then the S-requirement is
satisfied), and then enumerate vk into A2.

Obviously this refinement of the P-strategy solves this problem. �

Theorem 9. Let V be a c.e. set such that V <Q K. Then there exist c.e.
sets A and B such that V <Q A − B <Q K and the Q-degree of A − B does
not contain c.e. sets.

Proof. We will construct c.e. sets A and B so that A ⊇ B and the Q-degree
of V ⊕(A−B) have the desired property. For convenience we suppose without
loss of generality that V contains only even numbers and will construct A and
B as subsets of the set of odd numbers. Then obviously V ⊕ (A − B) ≡Q

V ∪ (A−B).
This is ensured by the following requirements. Let n = 〈e, i, j〉.

Rn : A−B 6≤Q We via Φi or We 6≤Q V ⊕ (A−B) via Φj .

We rewrite the requirement Rn as follows:

∃x 6∈ A−B & WΦi(x) ⊆ We, or
∃x ∈ A−B & WΦi(x) 6⊆ We, or

∃y 6∈ We & WΦj(y) ⊆ V ∪ (A−B), or

∃y ∈ We & WΦj(y) 6⊆ V ∪ (A−B).

Basic module for the Rn-strategy in isolation. We use an ω-sequence
of “cycles”, where each cycle k proceeds as follows:
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(1) Pick an unused odd witness x which is larger than all integers men-
tioned so far and keep it out of A.

(2) Wait for Φi(x) ↓.
(3) Wait for some y ∈ WΦi(x) −We.
(4) Wait for Φj(y) ↓.
(5) Wait for some z ∈ WΦj(y) − {V ∪ (A−B)}.

(6a) If z is an odd number, then enumerate x into A, restrain z from being
enumerated into A and B by the requirements of lower priority. Force
y to enter into We (otherwise the requirement is satisfied). If x = z,
then enumerate z into B, otherwise (if x 6= z) keep z out of A and B.

(Now the requirement Rn is satisfied, since y ∈ We and z ∈ WΦj(y)−{V ∪
(A−B)}.)

(6b) If z is an even number, then start cycle k + 1 to run simultaneously.
(7) Wait for k ↘ K.

(If before step (7) y enters into We, then go to step (3) for a new y. If y
does not enter into We, but between steps (6) and (7) z enters into V , then
return to step (5) for a new z. In both cases stop all cycles > k and remove
all restraints of cycle k.)

(8) Enumerate x into A, stop all cycles > k.
(9) Wait for y ↘ We.

(10) Wait for z ↘ V .
(11) Open cycles > k.
(12) Wait for some z′ ∈ WΦj(y) ∩A.
(13) Enumerate z′ into B and stop.

The module has the following possible outcomes:

(A) Some (least) cycle k eventually waits either at steps (2)–(5) or at steps
(9)–(10) forever. This means that we were successful in satisfying Re

through the cycle k since in this case either A − B 6≤Q We via Φi or
We 6≤Q V ⊕ (A−B) via Φj .

(B) Otherwise, some (least) cycle k comes to step (3) infinitely often. This
means that x 6∈ A−B, but WΦi(x) ⊆ We. Therefore we are successful
in satisfying Re through the cycle k.

(C) Otherwise, some (least) cycle k comes to step (5) infinitely often.
This means that ∃y 6∈ We & WΦj(x) ⊆ V ∪ (A−B), and again we are
successful in satisfying Re through the cycle k.

(D) Some cycle k reaches the step (13). This means that we were successful
in satisfying Re through the cycle k since in this case we have y ∈ We

but z′ ∈ WΦj(y) − {V ∪ (A−B)}.
(E) Otherwise, for each cycle k, either it eventually waits at step (7)

forever, or proceeds through step (7) but then (the only remaining
possibility) it also proceeds through step (11) and never comes to
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step (12). Obviously this means that

k 6∈ K → WΦj(y) − V 6= ∅

(since it contains z),

k ∈ K → WΦj(y) ⊆ V

(since all elements of WΦj(y) enter also into V ). Since for any given k
the integer Φj(y) is computed effectively before step (7), this means
that K ≤Q V via the computable function f(k) = Φj(y), contrary to
hypothesis.

Interactions between the requirements Rn and Rm for n 6= m. The
only conflict between the requirements Rn and Rm for n 6= m is the following:
Rn wants to enumerate some x into A at step (8) which is restrained by Rm

at step (1), or Rn wants to enumerate some x into B which is restrained by
Rm at step (8).

As usual, we settle this conflict by a priority ordering of the requirements:
if n < m, then we simply close the appropriate cycles of the Rm-strategy,
by cancelling all its restraints. If m < n, then we close the cycle k of the
Rn-strategy, cancelling all its restraints.

Construction. At stage s we consider the requirement Rn, where s =
〈n, t〉 for some t ≥ 0. Let n = 〈e, i, j〉 and k = (t)0.

If there is no number which is Rn-associated with k and for each e < k
some number xn

e is Rn-associated with e, then Rn-associate with k the least
number xn

k which is greater than all numbers so far mentioned during the
construction, and go to stage s + 1. If some e < k have no Rn-associated
number, then directly go to stage s + 1.

Otherwise, suppose xn
k is associated with k.

Case 1. xn
k 6∈ As. Consider following two subcases:

Subcase 1.1. There is a y such that
(a) (y ∈ WΦi(xn

k ) −We)[s],
(b) Φj(y) ↓ [s],
(c) there is an integer z which is greater than all higher priority restraints

such that z ∈ WΦj(y) − {V ∪ (A−B)}[s].
Let yn

k be the least such y, and zn
k be the least z from c) for this yn

k .
If zn

k is an even number and k 6∈ Ks, then set As+1 = As, Bs+1 = Bs.
Otherwise (i.e., if zn

k is an odd number or if zn
k is an even number and k ∈ Ks)

set As+1 = As∪{xn
k}, Bs+1 = Bs. Initialize all requirements of lower priority.

(An R-requirement is initialized by cancelling its associated numbers and
cancelling all its restraints.)

Go to stage s + 1.
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Subcase 1.2. Otherwise. Set As+1 = As, Bs+1 = Bs, and go to stage s + 1.

Case 2. xn
k ∈ As. It follows from the construction that we enumerate

integers into A only in case 1. Therefore, in this case integers yn
k and zn

k are
already defined.

If yn
k ∈ We,s, xn

k = zn
k and zn

k is an odd number, then set As+1 = As,
Bs+1 = Bs ∪ {zn

k } and initialize all requirements of lower priority. If zk
n is

an odd number and either yn
k 6∈ We,s or xn

k 6= zn
k , then set As+1 = As,

Bs+1 = Bs and restrain zn
k by priority Rn from being enumerated into A

and B by requirements of lower priority. If zk
n is an even number, yn

k ∈ We,s,
zn
k ∈ Vs, and there is z′ ∈ WΦj(y) ∩ (A − B)[s], then set As+1 = As, Bs+1 =

Bs ∪ {z′}. If zn
k is an even number and either yn

k 6∈ We,s or zn
k 6∈ Vs, or

WΦj(y) ∩ (A−B)[s] = ∅, then set As+1 = As, Bs+1 = Bs. Go to stage s + 1.
This ends the construction.

Verification: Let A =
⋃

s∈ω As and B =
⋃

s∈ω Bs. We prove that A−B
have the desired properties.

Lemma 10. Each R-requirement restrains only finitely many odd numbers.

Proof. Let Rn=〈e,i,j〉 be the first requirement which restrains infinitely
many odd numbers and let s be the first stage after which no requirement
of higher priority restrains new odd numbers. By construction, only odd
numbers zn

k , which correspond to an associated with some k number xn
k , can

be restrained.
After stage s the requirement Rn restrains at most one number zn

k . Indeed,
if Rn restrains an integer zn

k , then by case 1 of the construction this means
that at a stage s′ ≥ s we enumerated xn

k into A having (yn
k ∈ WΦi(xn

k )−We)[s′],
Φj(yn

k ) ↓ [s′], and zn
k ∈ WΦj(y)−{V ∪(A−B)}[s′]. If yn

k ∈ WΦi(xn
k )−We, then

the requirement is satisfied since xn
k ∈ A and WΦi(xn

k ) 6⊆ We. If later yn
k enters

into We, then by case 2 of the construction at a stage > s′ we enumerate
zn
k into B and again the requirement is satisfied, since in this case we have

yn
k ∈ We and WΦj(y) 6⊆ V ∪ (A−B)[s′]. �

Lemma 11. Each requirement Rn is satisfied.

Proof. Let Rn=〈e,i,j〉 be the first requirement which is not satisfied and let
s be the first stage after which no requirement of higher priority restrains any
new number. (It follows from Lemma 10 that there is a such stage s.) If xn0

k0

and xn1
k1

are two numbers which are associated with k0 and k1 according to
the Rn0- and Rn1-requirements, then by the construction we have xn0

k0
6= xn1

k1
.

This means that any restraint of xn0
k0

does not hinder our work with xn1
k1

. (By
construction any requirement Rm of lower priority enumerates into A only
associated with some k numbers xm

k which are not equal to xn1
k1

, and Rm may
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enumerate into B an integer zm
k only if zm

k = xm
k . Therefore, we again have

xn0
k0
6= xn1

k1
.)

This means that either for some k the first integer xn
k which is associated

with k after stage s satisfies the requirement Rn, diagonalizing A−B against
We or diagonalizing We against V ⊕ (A−B), or for each k, either k 6∈ K and
there are integers y and z such that z ∈ WΦj(y)−V , or k ∈ K and WΦj(y) ⊆ V .
Since in this case for each k the integer y = y(k) is computed effectively, and
the function Φj(y(k)) is total, we have K ≤Q V , a contradiction. �
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