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JOHN FUNCTIONS, QUADRATIC INTEGRAL FORMS AND
O-MINIMAL STRUCTURES

K. KURDYKA AND J. XIAO

ABSTRACT. Let 2 be a proper subdomain of R"™, n > 2, and let 02
and dq(z) denote, respectively, the boundary of © and the Euclidean
distance of the point z € Q to R™\ Q. Denote by K (£2) the John space of
all C! functions f : @ — R with sup,cq 6a(x)|V f(z)| < +00. We study
K (Q)-functions via quadratic integral forms and o-minimal structures.

Introduction

Let © be a proper subdomain of the Euclidean space R™ (n > 2). In [Jo],
John introduced the class K(2) of all C' functions f : @ — R which have
bounded expansion

1fllx@) = sup b0(2)|Vf(z)| < +oo,
fAS

where, here and afterwards, V and dq(z) denote the gradient operator and the
Euclidean distance of the point x to the boundary 052 of Q, respectively. This
class is suggested by the well-known fact that uniformly bounded solutions to
many elliptic differential equations belong to K (), regardless of boundary
conditions. Note, however, that not every f € K () is bounded uniformly in
2. An example is the function log |z| in the punctured unit disc. This example
shows actually a general property of John’s class: A function f € K(Q) can
become unbounded at most like || f|| x(q) log da(z) as x tends to OS2

On the other hand, while studying the structure of positive solutions to
a Schrodinger equation (—A 4+ V(z))u(z) = 0, Murata [Mu] considered the
quadratic integral form
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where /G is a positive solution of the equation. This relates nicely to the
Green’s potential characterization of BMO functions on the hyperbolic do-
mains in R? (see [ALXZ] or [Go], for example). Thus we introduce the fol-
lowing definition.

Suppose that € is a proper subdomain of R with the Green function gq(-, -)
for the Laplacian A. For a C* function f : Q — R, we say that f € Kg(Q)
provided

1/2
1l ko = sup ( / |Vf<x>|299<x,y>dx) < too.
yeN Q

In this paper we focus on the problem under what conditions on €2 John
functions have the quadratic form defined above. We give an answer in Theo-
rem 3.1 for a large class of proper subdomains of R”. The domains in question
are definable in an o-minimal structure; in particular, the theorem applies to
the semi-algebraic domains in R™. The most important feature of those do-
mains (see Lemma 2.2) is that their boundary is “piece-wise Lipschitz”, with
the Lipschitz constant being arbitrary small. This enables us to construct
finitely many John functions with a positive lower bound on the expansion
sum (see Theorem 2.3). The construction, given in Section 2, suggests that
one cannot expect that the type of elementary reasoning used in [Jo] can be
extended to these special John functions. In Section 3 we apply the results
of Section 2 to the K¢ (Q2)-characteristic of K(£2) and relate them to certain
geometrical properties involving either the Green potentials or the Carleson-
like measures over the upper half space R} = R"™! x (0,400) (as a typical
o-minimal set). In the last section we consider the Harnack and Poincaré
metric versions of the John functions, but also use a quadratic integral form
(determined by the Green function and the Poincaré metric) to give a geomet-
ric condition which characterizes the uniformly perfect domains in the sense
of Beardon and Pommerenke [BePo]. In the first section we gather some basic
(old and new) properties of the John functions.

It is our pleasure to thank M. Essén, S. Janson, V. Latvala, O. Martio, P.
Orro, K.J. Wirths and G.K. Zhang for interesting discussions. Also, we are
grateful to the referee for his/her very helpful comments on the first version
of the paper.

1. Essential properties of John functions

1.1. Bounded mean oscillation. The first way to recognize the John
functions is via John-Nirenberg’s BMO-characterization (cf. [JoNi]), as shown
in [Jo].
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PROPOSITION 1.1. Let Q be a proper subdomain of R™. Then f € K()
has bounded mean oscillation in the sense that

1
fz) - E/Bf(y)dy

where the supremum is taken over all Fuclidean balls B C Q@ with volume |B].

dr < 400,

1
1.1 = su —/
(1) flsmow = sw 5 |

From now on, H(2) refers to the class of all real-valued harmonic functions
on . With this notation, we may remark that any function f € H(Q)
satisfying (1.1) must lie in K(Q); see [La] and [Os]. The concept of BMO
occurs naturally in connection with PDE’s and in many other areas; see, for
example, [Car], [CDS], and [Ste].

1.2. Global Lipschitz continuity. The second property is that all John
functions are Lipschitz continuous in a sufficiently small neighborhood of any
point in © (cf. [Jo], [La]). This can also be understood via the global Lipschitz
continuity with respect to the quasi-hyperbolic distance. Following [GeOs],
we denote by kq(z,y) the quasi-hyperbolic distance between two points x,y
in €,

ko(z,y) = ilvlf/(ég(z))*lds(z),
2l
where ds denotes the length element and the infimum ranges over all rectifiable

curves v C { joining x and y.

PROPOSITION 1.2.  Let Q be a proper subdomain of R™. Then f € K(Q)
if and only if there exists a constant C' > 0 independent of x,y € Q0 such that

(1.2) [f (@) = f(y)| < Chalz,y).

Proof. If f € K(2), then, by [Mar], for any points z,y € € there is a
quasi-hyperbolic geodesic v,,, which may be supposed to be smooth in the
arclength parameter. Let s denote arclength measured along 7, from x, and
let ¢ = ((s) denote the corresponding representation for +,,. If I denotes the
length of vy, then

! d¢(s
0= 11 < [0 T2 s < Wb [ ol o),
which implies (1.2).
Conversely, if (1.2) holds, then
C(f,kg) — sup |f(x)_f(y)| < 400

z,yEQ,x#y kQ (.23, y)
is true. Since the quasi-hyperbolic distance kg (-, -) of the ball B = B(z,r) C Q
with the center z and radius r satisfies

kB(x,y):log;v yEBv
r—lz—yl
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one has kp(z,y) > kq(z,y) when y € B, as well as

r
f(x) = f(y)| < clf, ko) log —F———, y € B.
0) = £ < el k) o -—-—
This leads to 7|V f(x)| < nc(f, kq) which implies f € K(Q2) by letting r —
5Q($) O

1.3. Asymptotic behavior. The third property is the asymptotic behav-
ior which shows that the John functions cannot asymptotically contain the
image of a nonconstant affine function on R™ (see [Min] for the holomorphic
R2-case). More precisely, we have:

PROPOSITION 1.3.  Let Q2 be a proper subdomain of R"™. If f € K (), then
there are no sequences {xx} C Q and {tx} C (0,+00) such that

(1.3) tr/da(xr) — 05 flap + trx) — f(zr) — (a, ),

where (a, x) is the standard scalar product of two points a, x in R™, and |a] = 1.

Proof. Assuming that such sequences exist, and putting gi(z) = f(zr +
trx) — f(zk), 9(x) = a -z, |a| = 1, we have

1=1|Vg(0)| = kglfoo Vgr(0)] = kﬂrfoo tr(6a () o) |V f(2k)l.

This implies that do(zx)|V f(zx)| — +00, and hence f ¢ K(Q2), a contradic-
tion. d

Moreover, it is worth mentioning that if the above non-existence result
holds for f € H(Q2), then f must lie in K (). Indeed, if || f|xq) = +oo,
then we will get a contradiction again. To see this, let {{,,} be a regular
exhaustion of €2, i.e., U:f:ol Qo = Q, Dy € i1, and each Q,, is a compact
subset of Q. Set C,, = max,eq,, dq,, (¢)|Vf(z)|. Because f is harmonic on
Q,, and dq,, (x) = 0 for x € 09, there is a point z,, € ,, such that
Cmn = 0q,, (m) |V f(m)]. Tt is easy to see that Cy,, < Cppqq1 and Cp, — +00.
Set now

Tm = 00, (Tm)/Cm,  gm(x) = f(@m +rmx) — f(Tm).

Then 7,,/dq,, (xm) — 0 and g, is defined for |z| < C,, with g¢,,(0) = 0,
IVgm (0)] = rin |V f(zm)| = 1. We will verify that {|Vg.,|} is locally uniformly
bounded. Fix any compact subset E of R"”. Because C),, — +00, there exists
a constant M = M(FE) (depending only on E) such that £ C {z € R" : |z| <
Cp} for all m > M. For x € E and m > M we have

TmCm |{E| -t
V = V =+ < — - < JE et
‘ gm(x” rm| f(xm T’mlﬂ)| - (SQ (.’L‘m 'Tml‘) B (1 Cm> ’

m

due to the following Lipschitz continuity of dq, ():

m

[0a,, (Tm + rmx) — da,, (Tm)| < rmlz|, for xm, +rmT, Tm € Qp.
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The above estimates on |Vg,, ()| tell us that {|Vg,,|} is uniformly bounded
on E. Since g,,(0) = 0, it follows that {g,,} is also locally uniformly bounded.
Consequently, {g.,} is a normal family. Thus, there is a subsequence {gm, }
which converges locally uniformly on R™ to a harmonic function g on R”.
Clearly, g(0) = 0 and |Vg(0)] = 1 and |Vg(z)| < 1 for all x € R™. The
Liouville Theorem implies that |Vg(x)| is a constant. Hence |Vg(z)| = 1. It
follows that g(z) = (a,2) = Y7, ajz;, where |a|> = 377, |a;|> = 1. This
obviously violates the non-existence assumption.

2. John functions on o-minimal domains

2.1. O-minimal structures. Recall first that a semi-algebraic set of R™
is a finite Boolean combination of the sets {f > 0}, where f is a polyno-
mial on R™. The family of all semi-algebraic sets is stable under projections
(Tarski’s Theorem) and has nice finiteness properties (see, e.g., [BCR]). These
properties are also shared by global subanalytic sets (i.e., projections of sets
defined by analytic inequalities). Clearly, semi-algebraic domains are natu-
ral objects and one can deal with them practically. Many results in semi-
algebraic (or subanalytic) geometry of R™ hold true in a more general setting,
namely the theory of o-minimal structures on the real field. This has been
of great interest since Wilkie [Wi] proved that a natural extension of the
family of semi-algebraic sets which contains the exponential function is an
o-minimal structure. For more information on this theory, see [Dr], [DMM],
[Ku2], [LiRo], [Mil] and [Sh].

We say that the collection M = J, oy My is an o-minimal structure on
(R, +,-), where each M,, is a family of subsets of R™, provided that:

(1) Each M,, is closed under finite set-theoretical operations.
(2) f Ae M,, and B € M,,, then A X B € My 4m.
(3) If A € My4p, and m : R*™™ — R” is the projection on the first n
coordinates of R™™™, then 7(A) € M,,.
(4) If f,g1,...,9x € Q[Xy,...,X,], then
{zr eR": f(x) =0,01(z) >0,...,gk(x) > 0} € M,,.
(5) M consists of all finite unions of open intervals and points.

For a fixed o-minimal structure M on (R, +,-) we say that A is an M

definable set (or definable in M ) if A € M,, for some n € N. We also say

that a map f : A — R™, where A C R", is an M definable function if its
graph is M definable.

EXAMPLE 2.1 (cf. [DrMi]). The following are useful examples of the o-
minimal structures:
(i) Semi-algebraic sets (by Tarski-Seidenberg): {z% + y* < 1}.
(ii) Global subanalytic sets (by Gabrielov): {0 < y < 1/sinz, z € (0,7)}.
(iii) (R, exp) definable sets (by Wilkie): {0 < y < exp(—1/2?), x € (0,1)}.
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(iv) (Ran,exp) definable sets (by van den Dries, Macintyre, Marker):
{2V2In(siny) < 1,2 > 0,y € (0,7)}.
(v) (RR)) definable sets (by Miller): {zVZexp(xz/y) < 1,0 < x}.

2.2. Construction of John functions. For A C R", define d4 as the
Euclidean distance to the set A, and write 9A = A\ A. Let Q be a proper
subdomain of R™ definable in some o-minimal structure M on (R, +, ). Then
the boundary 0 is also definable in M (cf. [Dr], [Ku2] or [BCR] for the semi-
algebraic case). Thus we can decompose 9 into a disjoint finite union Uf;l r;
of connected C'* submanifolds I'; of R in such a way that each T'; \ T; is union
of some of I';, dimI'; < dimI';. Moreover the manifolds I';, i = 1,..., N, are
definable in M and verify some Lipschitz type conditions.

LEMMA 2.2. There exist a decomposition 02 = Ul]il I'; and functions
fi : R*\T; — R corresponding to T, i =1,..., N, such that

(2.1) fi e K(R"\T;) Cc K(Q)
and
(2.2) inf {dpi (2)|Vfi(x)] : 0 <dr,(x) < ¢idar, (x)} >1,

where ¢; > 0 is a constant, and if OT; = 0, then dypr, = +oo by convention.

Proof. By a rather standard construction in semi-algebraic or subanalytic
geometry (which is also valid in any o-minimal category; see [Dr], [DrMi]), we
can partition the set 9 into a finite, disjoint union of the sets I';. Each T';,
after a suitable orthogonal change of variables in R"™, is of the form

[ = {(a,2") e RF x R"™F : 2" = ~;(2'), 2’ € L;},
where L; is an open, M-definable subset of R*, and v; : L; — R" % is a C!
map. Moreover, ||d ;| <n, ' € L;, where the constant 1 > 0 can be chosen
(in advance) arbitrarily small. Here d,vy; denotes the differential of +; at the
point 2’ € L;.

Now the crucial point is that by a result of Kurdyka [Kul] we may assume
that all L; have the following property (Whitney’s property): Any two points
x}, x5 € L; can be joined, in L;, by a smooth arc of length < M|z} —x%|, where
M = M(k) > 1 is a constant depending only on the dimension k. Actually,
by [KuOr] the constant M can be taken arbitrarily close to 1, but we do not
need this. So, by the Mean Value Theorem, we conclude that ~; is Lipschitz
with a constant e = Mn > 0, which will be chosen sufficiently small.

Let us fix one set I'; = I" and set L; = L and ~; = y in order to simplify
the notations. We will denote the corresponding function by fr (instead of
fi). In fact, the set L, which is an L-regular cell in the sense of Parusiriski
[Pa] (i.e., after a suitable orthogonal change of variables in R¥), is of the form

L={(&zr) € R xR : (%) < zp < Yu(d), & € LF1},
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where L*~! is an L-regular cell in R¥=1 and ¢y, 4y : L*~' — R are Lipschitz
functions such that ¢, < 1, in L*~'. One of the functions ¢ and v, may
be equal to —oco or to +o00. It is not difficult to prove the following result:

FacT 1. IfT is unbounded, then R™ \ T is simply connected.

Whenever dimI' = 0, I' = {a} is a point we set fr(z) = log|z—al. Suppose
now that dimI" = k& > 0. We first define a C* vector field Jp : R* \T' — R"
which will be the gradient of our function fr. To the end, we put

e (en©)
@ = [ TG %

Note that the above integral converges absolutely (see (2.3) and (2.4) below).
Observe also that the integrated vector field is a gradient (with respect to x)
of —k~tz—(&,7(€))|~F. Hence it is easily seen that the 1-form corresponding
to Yr is closed.

Suppose that I' is unbounded. Then, by Fact 1, it follows that R™ \ T is
simply connected. So, by the classical Poincaré Lemma, there exists a C*°
function fr : R” \ T — R such that Jp = V fr.

If I is bounded, then L is bounded too, and hence we can write fr explicitly
as follows:

frle) == [ o= (€)™ e

Let x = (2/,2") € R* xR"™* and let r = dp(x). Clearly, |z — (&,7(¢))| > r
for any £ € B(a2/,r), where B(2’/,r) is the Euclidean ball of radius r about
center z’. Thus

d¢ 1
(2:3) /LOBW,T) T @@ S X

where Y}, denotes the volume of the unit ball in R*. On the other hand, we
have

|z = (&,79())] = 2" —¢], € e R".
Consequently,

¢ B
24) /L\Bw,,«) T G @) =

where oy denotes the volume of the unit sphere in R¥. Obviously (2.3) and
(2.4) imply that fr € K(R™\T), and hence we have (2.1).

Next, we prove (2.2). For this, we introduce the notation Dr(y) = |y” —
y(y")| for any y = (v',y") € L x R**. Notice that Dr is (bi-Lipschitz)
equivalent to the distance function dp in L x R"*, since the function 7 is
Lipschitz.
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Fact 2. Ife > 0, the Lipschitz constant of 7y, is small enough, then
inf D \Y = 0
i Dr(a)[V @) = e >0,

where T(T) = {y = (y',y") € LxR"* : 0 < Dr(y) < dar(y')}.

Before proving Fact 2 let us show that it implies (2.2). Indeed, since Dr is
(bi-Lipschitz) equivalent to the distance function dr, there exists a constant
cr > 0 such that

{y e R": 0 < dr(y) < crdor(y)} c T(T).

Thus multiplying, if necessary, fr by a large constant and using the fact that
Dr is equivalent to dr, we obtain (2.2).

Hence it remains to find an € > 0 such that Fact 2 holds. Recall that the
mapping v : L — R" ¥ is e-Lipschitz. Thus for z¢ = (2/,7(2")), I' (the graph

of 7) is contained in the affine cone C7 , i.e.,

L CC; ={.y") eRF xR 1|y —y(a")| ey’ — 2|}
We will often use this fact without referring to it explicitly. Let x = (2/,2") €

L xRk 2" £ ~(2"). Put v =2 — (2/,7(2')) and r = |v|. We can take ¢ > 0
so small that

(2.5) (@ = (&7(9), o] 7o) 227, o — (€,7(9) < 2r,

for any & € B(z/,r), where B(a’,r) is any ball contained in L. Once again,
(-, -) stands for the standard scalar product in R™.
For brevity, let

e (€A
YO = T

We can write dr(z) = Vfr(z) as a sum of the following three vectors:

/ (E) de,
B(z',r)
/LmB(m’,pr)\B(xur))

= d
o /L\B(:c’,pr) w(g) 57

where p > 1 will be determined below.
It is obvious, by (2.5), that

U1

§) dg,

V2

(v1, |v|_1v> > 2_(k+3)Xkr_1.

Note that
lvs| < M(e)(pr)~,
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where M (e) is an increasing function of . Clearly, we may assume that
e < 1. Now we take p > 1 large enough so that M(1) < pxp2~*+4. Fi-
nally, we take € > 0 small enough so that (z — (§,7(£)),v) > 0 for any
¢ e LN (B« ,pr)\ B(z',r)). Put ¢ = x4x2~**% . Thus we obtain

IV fr(@)] = (v1 +v2 +vs, [o]'0) > er ™" > ¢(Dr(2) 7,

for any = = (2/,2"”) € L x R"¥ such that dpr, () < Dr(z’). This proves Fact
2 and hence Lemma 2.2. O

2.3. Exhaustive John functions. We state now the main result of this
section.

THEOREM 2.3. Let Q be a proper subdomain of R™. If Q is definable in

some o-minimal structure M on (R, +,-), then there exist finitely many C>
functions f; € K(Q),i=1,...,N, such that

(2.6) inf da(x Zwﬁ )| > 0.

Proof. We apply Lemma 2.2 to get that each I';, ¢ = 1,..., N, is associated
with a function f; : R®\T; — R such that f; € K(Q) and dr,(z)|V fi(z)| > 1
holds in {z € R™ : 0 < dr,(z) < ¢;dar,(z)}, where ¢; > 0 is a constant. If
dT'; = 0, then, by convention, we put dgr, = +o0.

We now prove (2.6) by induction on N. From the partition constructed in
Lemma 2.2 it follows that at least one of the sets I'; is a point. Hence the
case N = 1 is trivial, since 9Q = {a} for some a € R™ and (2.6) holds for
Q=R"\{a}.

Suppose that N > 1 and that 'y has a maximal dimension. Then I'y
must be open in 9 and consequently 0Q) = vaz_ll I'; is closed in 0f). Hence
Q' =R™\ 09 is open in R™.

Let z € R", dq(x) > 0. To prove (2.6) we will consider three cases.

Case 1. If dq(x) = dr,(z) and dry (x) < endary (x), then, by (2.2), we
have

dry (2)|Vfn(2)] = 1.

Case 2. If dq(x) = dry(z) and dry(z) > cndory (), then dg(z) >
endqr(x) since dary (@) > daqr (z) = dq/ (). So, by induction, we have

N-1
Zsz )| = endor (@ Z IV fi(z)| = enAn-1,

1=

where Ay_1 > 0 is the infimum of (2.6) corresponding to €.
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Case 3. If dq(x) = dr,(x) for some i < N — 1, then dq(z) = do (), and
hence by induction

This completes the proof of Theorem 2.3. O

REMARK 2.4. Theorem 2.3 is an o-minimal generalization of the key re-
sult, Proposition 5.4, in [RU] (which is established by using complex analysis
on the unit disc of R?). It is clear that there exists an essential difference
between two situations (differentiable versus holomorphic).

3. Quadratic forms via Green potentials

3.1. The general cases. In general, the Green function of a proper sub-
domain  of R™ for the Laplacian A is defined by go(z,y) = —p(z—y) —gy(x),
where

IOg |1‘|, n =2,
3.1 ) =
( ) p( ) {|I|2n’ n23’
and g, (z) is a function (differentiable on € and continuous on 2) solving the
boundary value problem

Au(z) =0, x €,
u(z) = —plx —y), x €N

It is very difficult to give an explicit formula for go(:,-). However, if € is

either a ball or the upper half space of R™, then gq(-,-) can be computed

explicitly; see [AiEs, p. 65], for example. Clearly, not all domains definable

in an o-minimal structure have the Green functions, but there are still many

o-minimal domains (explained below) which have their Green functions.
Recall that L is an open cell in R™ if L is of the form

L={(Z,2,) eR" " xR : 0n(Z) < 3 < ¢n(F), T € L'},

where L™~ is an L-regular cell in R* !, o, ¢, : L" ™! — R are C! functions
such that ¢,, < 1, in L™ !. One or both functions ¢,, and 1,, may be equal
to —oo or to +o0o. In R the open cells are open intervals. If M is an o-
minimal structure on (R,+,-) we say that L is definable in M if L € M.
This is equivalent to the condition that L™~! and ¢,,, %, are definable in M.
Furthermore, it is known that every open subset of R™ definable in M is a
finite union of open cells which are definable in M. For these facts see [Dr].

Let € be an open set in R™. The classical sufficient condition for € to
be regular (with respect to the Dirichlet Problem) is the following: For any
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x € 0f) there exists an open cone A with the vertex at  and a neighborhood
U of = such that

(*) KﬂUﬂﬁz{x}.

FEvery open cell L C R"™ is reqular, so, in particular, it has the Green
function. This can be verified by showing by induction that L has the above
cone property (). In fact, if n = 1, then () is trivial since L is an open
interval. Let € OL. Then 2 € L™ x R or z belongs to the graph of ¢,, or
Yp. In the first case, z = (%, x,,), where & € L™, so we find (by induction)
a cone A’ C R"! which satisfies (x). Take B = {(§,y,) € R*"! xR :
|y — zn| < |7 — Z|}. Then A = (A’ x R) N B is a cone with vertex at z,
which implies condition (). The second case is obvious since ,, and v, are
C! functions.

To see when K () is of the quadratic integral form mentioned in the in-
troduction, we recall the definition of K¢ (€2). Given a proper subdomain €2
of R™ with the Green function gq(,), a C! function f : @ — R belongs to
Kqg(Q) if and only if

1/2
1l = sup ( / IVf(w)IQQQ(m,y)dx> < too.
yeN Q

THEOREM 3.1. Let Q be a proper subdomain of R™ with the Green func-
tion ga(-,+). Suppose that Q is definable in some o-minimal structure M on
(R,+,-). Then there exists a constant C > 0 depending only on Q such that

I fllke@) < Cllfllx for all f € K(Q) if and only if

(3.2) Cy(Q) = sup/ﬂ(ég(x))ﬂgsz(m,y)dx < o0.

yeQ

Proof. The sufficiency is simple. To prove the necessity, we apply Theorem
2.3 to obtain N functions fi, fa,..., fx € K() such that

(3.3) m = inf Sa(2)(IV (@) + [Va(@)| + - + [V fv(2)]) > 0.

If | fllka@) < Cllfllx) holds for all f € K(2) and some constant C' > 0
depending only on Q, then ||fjllxs@) < Cllfillk@)y, j = 1,2,...,N. From
(3.3) it follows that

m / (ba(z ggxydx<2N/Z|VfJ )2 ga(z,y)dz

< C22NZHJ‘J'II§<<Q>,

Jj=1

which implies (3.2). The proof is complete. O
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REMARK 3.2. It is clear that the sufficiency part of Theorem 3.1 holds for
general domains with the Green functions. More importantly, the condition
Cy(Q) < 400 defines a class of proper subdomains of R". Those domains
with the property (3.2) are called GP-domains (Green potential domains).

COROLLARY 3.3. Let 2 be a proper subdomain of R™ with the Green func-
tion ga(-,-). Then K(Q)NH(Q) D Kg(Q)NH(QY). Moreover, K(Q)NH () =
Ko () N H(Q) whenever Q is also a GP-domain.

Proof. Fix a point y € Q and its Euclidean ball B = B(y,r) with radius

r = 0a(y). The Green function of B obeys
log L, n=2,
z =yl

(3.4) g(z,y) = 1 1

|z —y[n—2 =2

n > 3.

Let f € Kq(Q)NH(S). Then an elementary estimation and the subharmonic-
ity of |V f|? show that there exists a constant C; > 0 depending only on n
such that

1% = / IV £(2)g5(2.y)dz > C1 (r[V f(y)])".
B(y,r/2)

This means f € K(Q) N H(?) and thus K(Q) N H(Q) O Kg(Q) N H(Q).

Further, if Q is a GP-domain, with the help of Theorem 3.1, we then have

K(Q)NH() C Kag(2) N H(Q), and hence K(Q) N H(Q) = Ka() N H(Q).

This completes the proof. O

3.2. The upper half space. In the sequel, we consider R, a typical
M-definable domain. For this purpose, we introduce a generalized Carleson
measure on R}, For p € (0,+00), a positive Borel measure dy on R’} is said
to be a p-Carleson measure provided

u(S(D)
()"

where the supremum is taken over all Carleson boxes S(I) = I x (0,4(I)] C
R? based on cubes I C R"~! with edges parallel to the coordinate axes of
R"~! where ¢(I) stands for the edge length of I. The case p = 1 is the
so-called Carleson measure. Moreover, if the supremum in (3.5) is taken over
all a(> 0)-Carleson boxes S, (I) = I x (a,a + £(I)], then du is called a strong
p-Carleson measure. Obviously, a strong p-Carleson measure must be a p-
Carleson measure, but not conversely. For the case of the unit disc, see [Zhu,
Ex.6, p. 188].

In the rest of this section, the notations g(z,y) and d(x) will stand for the
Green function of R?} and the distance of the point z € R’} to the boundary

(3.5) sup
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OR = R"!, respectively. Also, § stands for the symmetric point of y € R’}
with respect to R~ that is to say, if y = (y1,...,¥n), then 4 = (y1,..., —Yn)-

LEMMA 3.4. Let du be a positive Borel measure on R and let p €
(0,400). Then du is a p-Carleson measure if and only if

1/2
_ o) \*
(3.6) ey = ySeuR% (/Ri <|x _ :l]") dﬂ@)) < +oo.

Proof. See Lemma 4.1 in [EJPX]. O

THEOREM 3.5. Let f be a C' function on R and let dus(z) =
\Vf(z)?6(x)dz. If f € Ka(RT), then duy is a 1-Carleson measure. Con-
versely, if duy is a strong 1-Carleson measure, then f € Kg(R%).

Proof. Note that

wle=t
(3.7) 9(z,y) = 1 Y 1

=y =g

and that there is a constant C5 > 0 depending only on n such that

(1) g(x,y)Z%, n>2,
(38) @) gloy) < —2200W) n>3,

Tz — Pl -y

(3) g(z,y) < (_210g0> d(x)d(y)

- O<e<l, < lzzul o
1—¢2 |l —g|2’ ’ ’

lz—y|*

see [AiEs, p. 68] and [Ga, p. 289].
If f e Kg(R?%), then (1) of (3.8), together with Lemma 3.4, gives immedi-
ately the desired assertion. Conversely, if duy is a strong 1-Carleson measure,

then
s.\ "
liglll == sup (—”f ) < +00.
Sa(hcry \ (€(1))

Since the case n = 2 is similar, it is enough to consider the cases n > 3. By
(3.6) and (2) of (3.8), we have
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[ 195 Pote s
R

n
+

“+oo
< Cy Z/
k=072~

VI (o) da

R+ < |z —y|/|z—g|<2—F |z — g[2|lz —y["2

+oo
< 0222(n_2)(k+1)/ |Vf(x)|2 (5(x)5gyn)> de
k=0 2=+ <[g—y|/|z—g|<2—* lz — 9|
+oo
- 8(z)o(y)
< C 2(n 2)(1€+1)/ Vf(x 2 (— dr
i kzzz le—y|<2-R+15(y) /(127 ) VIO S
rear | IV /()] ( 5(””)5?’» da
2-2<|a—y|/|Jz—gl<1 |z — 7
“+o0
< Cals(y) -y 2 IV (@)26(x)d + Csluy |
P |lz—y|<2-k+25(y)
+oo
= C3(5(y)' Y 2D (B (y, 227%6(y))) + Csllpy |17
k=2
+oo
< Cu Y 27 FllpgllF + Callug 3.
k=0

Here C3 and C} are positive constants independent of y. As a result, f €
Ka(RY). O

COROLLARY 3.6. Let f € H(R?) and dvy(z) = |V f(z)[*(0())?dz. Then
the following statements are equivalent:

(i) f e K(R?Y).
(i) dvy is an n/(n — 1)-Carleson measure.

(iii) f satisfies

sup [ 1950 (gle.) ™ (50)) 7= die < +oc.
R

yERY il

Proof. ()& (ii). If f € K(R"), then for any Carleson box S(I) C R,
IV f(@)[*(8(x))?da < 1| f1le g ) (€CD))",
S(I) +

which implies that dvy is an n/(n — 1)-Carleson measure.
Conversely, if dvy is an n/(n — 1)-Carleson measure, then

1/2
pr(S())
Nesllln/n—1y == sup | ———H" < +00.
/=0 S(I)CR™ (e(n)
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The Submean Value Property of |V f|? shows that there exists a constant
C5 > 0 depending on the dimension n so that for the Carleson box S(I) with
center y € R’} and edge length 25(y),

5(y)
N Mg 17 -y = /S (I)IVf(x)l2(5(x))2d:czC5|Vf(y)l2 / Lt

Hence f lies in K(R7).

(i)e(iii). If (iii) holds, then (3.8) and Lemma 3.4 imply that (ii) holds.
Hence (i) follows. On the other hand, if f € K(R?), then an elementary
calculation shows that dvy is a strong n/(n — 1)-Carleson measure. Moreover,
the argument of Theorem 3.5 yields (iii) at once. O

REMARK 3.7.  We have actually proved that the results on K (R} )N H (R")
in Corollary 3.6 correspond nicely to the analogous results on BMOH (R'})
the class of the Poisson harmonic extensions to R’} of functions in BMO(R" ™!
see Carleson [Car| and Leutwiler [Le2].

)

4. Harnack metric and uniformly perfect domains

4.1. The Harnack metric. For a proper subdomain 2 of R", write
HT(Q) for the set of all positive harmonic functions on Q. The Harnack
density on € is given by

(4.1) no(z) = sup [Vlog f(x)].
feH (@)

Since the Harnack and quasi-hyperbolic densities are comparable on balls of
R™ (cf. [Ko] or [Lel]), it follows that

(4.2) no(z) < n(da(z) ™"

We now use the Harnack density to define K,,(f2) as the space of all C*
functions f on Q satisfying

1f 11, 2) = sgg(m(ﬂc))’llvf(ﬂf)l < Fo0.

From (4.2) it follows that if f € H*(Q) then log f is in K(Q), and that
K,(Q) C K(Q) with |- | k@) <72l ||k, ) However, we will see that not all
John functions have the K, (Q)-property.

THEOREM 4.1. Let Q be a proper subdomain of R™. Then there exists a
constant C > 0 depending only on ) such that || f||x, ) < C|fllx) for all
f € K(Q) if and only if

(4.3) Cy(©) = inf no(w)da(x) > 0.
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Proof. The sufficiency is obvious. As to the necessity, assume that there is
a constant C' > 0 depending only on 2 such that for all f € K(Q),

(4.4) 1 £l %, ) < Cllfllx@)-

Now, fix zg € © and pick a point yo € 9Q such that dq(zo) = |20 — yo|. Then
the function fo(x) = log |z —yo| belongs to K () and || fol| k() < 1. By (4.4)
we get || foll x, (@) < C and nq(z)|z — yo| > C~', which, in particular, implies
(4.3) (by choosing = = xg). O

REMARK 4.2. (4.3) actually defines a class of proper subdomains of R™.
We call a domain satisfying (4.3) an HM-domain (Harnack metric domain).
Obviously, the unit ball and the upper half space of R™ are HM-domains.
In the case n > 3, many Holder domains are HM-domains (cf. [SmSt]). In
fact, more is true: If n > 3, then every proper subdomain of R™ is an HM-
domain. To see this, let 29 € 2, and choose yg € IQ with dq(z¢) = |xo — yol.
If f(x) = |z —yo|*™ for x € Q, then f € H(Q) and hence |V log f(z0)| =
(n—2)/]zo—yo|. As a consequence, 1o (xo)da (o) > n—2andso Cp(2) > n—2.
The authors thank the referee for pointing out this argument.

4.2. The Poincare metric. We next consider planar domains. In partic-
ular, we find that the quasi-hyperbolic metric and the Poincaré metric enable
us to distinguish the John functions.

From now on, R? is identified with the finite complex plane C and z and
y are viewed as complex numbers. A proper subdomain © of R? is called
hyperbolic if its universal covering surface is the unit disk . Suppose that
Aq(z) is the Poincaré density on €2, determined by

(4.5) Aa(pW)IP' W) = Apoly) =1 —y*)~", yeDb.

Note that x = p(y) is a universal covering map from D onto Q and (4.5)
is independent of the choice of y. The Schwarz Lemma easily yields that
this density is decreasing; i.e., if two hyperbolic domains ©; and 9 satisfy
Q1 C Qg, then Ag,(x) < Ag,(x) for z € Oy (cf. [BePo]). The following
inequalities on dq(z), no(z) and Ao (x) are well known:

(4.6) da(r) < (Aa(2) ™! < 2(na(2) ™Y
see, for instance, [GeOs] and [Ko]. Nevertheless, when €2 is simply connected,
da(r), (Aa(x))~t and (no(x))~! are comparable.

As before, we use the Poincaré density to define the space K (Q2) consisting
of all C* functions on the hyperbolic domain € in R? with

1f s = Slelg(AQ(x))*l\Vf(x)\ < +oo.
Theorem 4 of [Os] shows that log A\g € K (). It is clear that K, (Q2) C K(£2)

with || - k@) < || - [[k\()- Therefore it is natural to compare K (£2) with
Ky (Q).
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THEOREM 4.3. Let Q be a hyperbolic domain in R%2. Then there is a
constant C' > 0 depending only on Q0 such that || f||x, ) < C|fllx ) for all
f e K(Q) if and only if
(4.7) C)\(Q) = inf )\Q(:L‘)ég(l') > 0.

e

Proof. The sufficiency is trivial, so it remains to show the necessity. Assume
that there exists a constant C' > 0 depending only on € such that || f| &, ) <
C|fllk (o) for all f € K(£2). Fix a point 2o € € and pick a point yo € 92 such
that dq(zo) = |xo — yol|. It is known that the function fy(x) = log |z — yol| is a
member of K (£2). Thus, the above hypothesis implies that fy € Kx(Q) with
||f0||K>\(Q) < CHfoHK(Q), and (4.7) follows. U

REMARK 4.4. A hyperbolic domain in R? is called uniformly perfect (UP)
if (4.7) holds. Obviously, an HM-domain is a UP-domain. Also, the proof of
Theorem 4.3 actually reveals that K ()N H(Q) = K(Q)N H(Q) if and only
if Q is a UP-domain. In other words, even harmonic functions can distinguish
between the quasi-hyperbolic metric and the Poincaré metric.

The concept of UP-domains comes originally from [BePo]. Several char-
acterizations of such domains can be found in [Po]. However, the following
result gives a special geometric description of these domains.

THEOREM 4.5. Let Q be a finitely connected hyperbolic domain in R2.
Then Q is a UP-domain if and only if every component of 02 contains at
least two points.

Proof. The sufficiency is essentially known (cf. [Masl] and [Mas2]), so
it remains to prove the necessity, which is quite complicated. To this end,
suppose that Cx(Q) is positive. Thus, Aq and d, ! are comparable. Further,
such a domain cannot have any isolated boundary point; otherwise, if y were
an isolated boundary point, by taking a punctured Euclidean ball B(y,r) \
{y} C Q we would get that

Aa(z)dq(z) < r(logr —log |z —y[)™* — 0

as ¢ — y, and hence C\(Q2) = 0, a contradiction.
In what follows, we will prove

(4.8) Crg(Q) = sup/ ()\Q(x)gg(x,y))de < 400,
yeQ JQ
where, here and afterwards, go(z,y) denotes still the Green function of Q for
the Laplacian A.
Observe that C\(2) and C) 4(€) are conformally equivalent. Thus, without
loss of generality, we may suppose that € is a regular domain, i.e., a hyperbolic
domain bounded by finitely many simple closed analytic curves. Furthermore,
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we put R2 = R? U {oo} and R2\ Q = Ujz1 Gy, where {G;}7, are all the
components of R2 \ Q. Hence each G, is simply connected, but also has at
least three boundary points. -

Now, choose compact subsets {£;}72; and {F;}72; of Q such that

E;NQ CIntF; (interior of F}), j=1,2,...,m,
Fj N Gk = (07 ] 7& kv
U;n=1 E; =Q.
We will show that for each j =1,2,...,m,
(4.9) M; = sup {Aa(z)ga(z,y) : (xz,y) € (Q\ F;) x (E; NQ)} < +o0.

Assume that ¢ is a conformal map from D onto Q, = R2 \ Gk, k =
1,2,...,m. Fory € O0E; N Q and x € Q sufficiently close to Gj, we have
da(xz) = dq, (x) and

Aa(z)ga(, y) < 4xp(u)gp(u, v)|¢y (u)] ',

where z = ¢ (u) and y = ¢ (v). Since ¢y can be extended continuously and
conformally beyond 0D (the unit circle) and

lim Ap(u)gp(u,v) = (1 — [v]*)/ (2] —v]?),

u—et

(4.9) follows. Here we have used the fact that go(z,y) = 0 whenever y € 0G,
(owing to the regularity of Q).
Since y € ), we can pick j so that y € E; and

(4.10) / ()\Q(m)gg(x,y))2dx§ Q| sup MZ.
Q\F; 1<k<m

We also have

@ [ (Ag<x>gg<x,y>)2dxg<5£ js?@) [ 00, @, (@)

J

Noting that
Aa(z) < do, ()

, xT€EQ,
A, () = da(x)
and dq(x) = dq,(x) as x — 0Q N F}, we get
(4.12) N; = sup Aa(®) < 400

xE€F; /\Qj (x)
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However, it follows from the conformal invariance of Ao, and go, that

(4.13) /F]. (/\Qj (J?)gﬂj (Jj’y))2dx < /D\{v} ()\D(u)gm(u7v))2du

1 2
<or / S LI
Using (4.10)—(4.13), we get (4.8).

Let us return to the proof that every component of ) contains at least
two points. If not, then there would be a component of 0 consisting of a
single point, say {yo}. By taking a small Euclidean ball B(yg,r) for which
B(yo,7) \ {0} C ©, and using a remark in [Masl], we obtain

c(Q) = inf Ao (z)dq () log da(z) > 0.
0= gl gy 2 (@)00(@) o8 G0 ()

For y € B(yo,7) \ {yo} and a suitable small r, we get

/Q(Ag(x)gﬂ(x’y))‘zdx . (C(Q))z/ ( 9B(yo.)\ w0} (T ) )2@

Blyo,r\{wo} \|7 = yo|log|z — o

The last integral tends to +oo as y approaches yo. This contradicts (4.8).
Therefore the proof is complete. O
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