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A BRUNN-MINKOWSKI THEORY FOR MINIMAL
SURFACES

YVES MARTINEZ-MAURE

Abstract. The aim of this paper is to motivate the development of
a Brunn-Minkowski theory for minimal surfaces. In 1988, H. Rosen-

berg and E. Toubiana studied a sum operation for finite total curvature
complete minimal surfaces in R3 and noticed that minimal hedgehogs
of R3 constitute a real vector space [14]. In 1996, the author noticed
that the square root of the area of minimal hedgehogs of R3 that are
modelled on the closure of a connected open subset of S2 is a convex

function of the support function [5]. In this paper, the author (i) gives
new geometric inequalities for minimal surfaces of R3; (ii) studies the
relation between support functions and Enneper-Weierstrass represen-

tations; (iii) introduces and studies a new type of addition for minimal
surfaces; (iv) extends notions and techniques from the classical Brunn-

Minkowski theory to minimal surfaces. Two characterizations of the

catenoid among minimal hedgehogs are given.

1. Introduction and statement of results

The set Kn+1 of convex bodies of the (n+1)-Euclidean vector space Rn+1 is
usually equipped with Minkowski addition and multiplication by nonnegative
real numbers. The theory of hedgehogs consists of considering Kn+1 as a
convex cone of the vector space

(
Hn+1,+, ·

)
of formal differences of convex

bodies of Rn+1. More precisely, it consists of:
1. considering each formal difference of convex bodies of Rn+1 as a hy-

persurface of Rn+1 (possibly with singularities and self-intersections),
called a ‘hedgehog’;

2. extending the mixed volume V :
(
Kn+1

)n+1 → R to a symmetric
(n+ 1)−linear form on Hn+1;

3. considering the Brunn-Minkowski theory in Hn+1.
The relevance of this theory can be illustrated by the following two princi-

ples:

Received July 10, 2003; received in final form February 18, 2004.
2000 Mathematics Subject Classification. 53A10, 52A40.

c©2004 University of Illinois

589



590 YVES MARTINEZ-MAURE

1. to study convex bodies by splitting them into a sum of hedgehogs to
reveal their structure;

2. to convert analytical problems into geometrical ones by considering
certain real functions on the unit sphere Sn of Rn+1 as support func-
tions of a hedgehog (or of a ‘multi-hedgehog’, see below).

The first principle permitted the author to disprove an old conjectured
characterization of the 2−sphere [9] and the second one to give a geometrical
proof of the Sturm-Hurwitz theorem [11]. The reader will find a short intro-
duction of the theory in [12]. For an elementary survey of hedgehogs with a
smooth support function, see [8].

The idea of defining geometrical differences of convex bodies goes back to
H. Geppert who gave a first study of hedgehogs in R2 and R3 (under the
German names ‘stützbare Bereiche’ and ‘stützbare Flächen’) [1]. The name
‘hedgehog’ came from a paper by R. Langevin, G. Levitt and H. Rosenberg
[3] who implicitly considered differences of convex bodies of class C2

+ (i.e.,
of convex bodies whose boundary is a C2-hypersurface with positive Gauss
curvature) as envelopes parametrized by their Gauss map. Let us recall the
main points of their approach.

The boundary of a convex body K ⊂ Rn+1 of class C2
+ is determined by

its support function h : Sn → R, u 7→ sup {〈x, u〉 | x ∈ K} (which must be of
class C2) as the envelope Hh of the family of hyperplanes given by

〈x, u〉 = h(u).

Now, this envelope Hh is well defined for any h ∈ C2 (Sn;R) (which is
not necessarily the support function of a convex hypersurface). Its natu-
ral parametrization xh : Sn → Hh, u 7→ h(u)u + (∇h) (u), can be interpreted
as the inverse of its Gauss map in the sense that, at each regular point xh (u)
of Hh, u is a normal vector to Hh. This envelope Hh is called the hedgehog
with support function h.

The notion of hedgehog of R3 can be extended by considering hedgehogs
whose support function is only defined (and C2

)
on some spherical domain

Ω ⊂ S
2. Among hedgehogs defined on the unit sphere S2 punctured at a

finite number of points, we can consider those that are minimal, that is, those
whose mean curvature H is zero at all the smooth points. The condition that
a hedgehog Hh ⊂ R2 is minimal means simply that its support function h
satisfies the equation

4Sh+ 2h = 0,

where 4S is the spherical Laplace operator on S2 (see [4]). In other words,
a minimal hedgehog Hh (modelled on S2 punctured at a finite number of
points) is a trivial hedgehog (i.e., a point) or a (possibly branched) minimal
surface with total curvature −4π that is parametrized by the inverse of its
Gauss map.
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A study of minimal hedgehogs has been given by H. Rosenberg and E.
Toubiana [14]. Concerning linear structures on the collections of minimal
surfaces in R3 and R4, the reader is also referred to the paper by A. Small
[17].

Geometric inequalities for minimal hedgehogs (resp. N-hedge-
hogs) in R

3. In this paper, we are interested in the extension to minimal
surfaces of notions and techniques from the Brunn-Minkowski theory. The
idea of developing a Brunn-Minkowski theory for minimal surfaces of R3 arises
naturally from the fact that a (reversed) Brunn-Minkowski type inequality
holds for minimal hedgehogs.

Let K be the closure of a (nonempty) connected open subset of S2 and let
Hk be a minimal hedgehog modelled on K. Then the area of xk (K) is finite
and given by

Area [xk (K)] = −
∫
K

Rk dσ,

where σ is the spherical Lebesgue measure on S2 and Rk the ‘curvature func-
tion’ ofHk, that is, 1/Kk, where Kk is the Gauss curvature ofHk (regarded as
a function of the normal). Now, if Hl is another minimal hedgehog modelled
on K, then

(1.1)
√
A(k + l) ≤

√
A(k) +

√
A(l),

where A(h) = Area [xh (K)]. In fact, we can regard the set of hedgehogs
modelled (up to a translation) on K as a real vector space endowed with a
prehilbertian structure for which the norm is given by the square root of the
area. Consider the set of support functions (of a minimal hedgehog) modelled
on K and identify two such functions k and l when xk (K) and xl (K) are
translates of each other. Then the quotient set H (K) inherits a real vector
space structure and we have the following result.

Theorem 1.1 ([5]). The map
√
A : H (K) → R+, h 7−→

√
Area [xh (K)],

is a norm associated with a scalar product A : H (K)2 → R, which may be
interpreted as an algebraic mixed area:

∀ (k, l) ∈ H (K)2
, (Mixed Area)[xk (K) , xl (K)] := A (k, l) .

By the Cauchy-Schwarz inequality we have

(1.2) A(k, l)2 ≤ A(k) ·A(l).

Corollary 1.2. As a consequence, the area A : H (K) → R+, h 7−→
Area [xh (K)], is a strictly convex map, and thus, for any nonempty convex
subset K of H (K), the problem of minimizing A over K has at most one
optimal solution.
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Remark 1.1. Inequality (1.1) (resp. (1.2)) has to be compared with the
following Brunn-Minkowski inequality (resp. Minkowski inequality). For any
pair (K,L) of convex bodies of R3, we have (see, for instance, [15])√

A (K + L) ≥
√
A (K) +

√
A (L)

and
A (K,L)2 ≥ A (K) ·A (L) ,

where A (H) (resp. A (K,L)) is the surface area (resp. the mixed surface
area) of the convex body H ⊂ R3 (resp. of the pair (K,L)).

The author has obtained similar inequalities for various classes of hedgehogs
as a consequence of an extension of the Alexandrov-Fenchel inequality [6].

Remark 1.2. Let H
(
S

2
)

be the real vector space of support functions of
minimal hedgehogs defined (up to a translation) on the unit sphere punctured
at a finite number of points. To each h ∈ H

(
S

2
)

let us assign the positive
Borel measure µh defined on S2 by

∀Ω ∈ B
(
S

2
)
, µh (Ω) = −

∫
Ω

Rh dσ,

where B
(
S

2
)

denotes the σ-algebra of Borel subsets of S2. Then we notice
that the map

m : H
(
S

2
)
→
{√

µ
∣∣µ is a positive Borel measure on S2

}
, h 7−→ √µh,

satisfies the following properties:
(i) ∀h ∈ H

(
S

2
)
,m (h) = 0⇐⇒ h = 0H(S2);

(ii) ∀λ ∈ R,∀h ∈ H
(
S

2
)
,m (λh) = |λ|m (h) ;

(iii) ∀ (k, l) ∈ H
(
S

2
)2
,m (k + l) ≤ m (k) +m (l).

Remark 1.3. Let Hk and Hl be two hedgehogs whose support function
is defined (and C2

)
on some spherical domain Ω ⊂ S2. On this domain, we

can define their mixed curvature function by

R(k,l) :=
1
2

(Rk+l −Rk −Rl) .

The symmetric map (α, β) 7→ R(α,β) is bilinear on the vector space of hedge-
hogs modelled on Ω [10]. Given any u ∈ Ω, the polynomial function Pu (t) =
Rk+tl (u) thus satisfies Pu (t) = Rk (u) + 2tR(k,l) (u) + t2Rl (u) for all t ∈ R.

When k and l are the support functions of two convex bodies of class C2
+,

Pu (t) must have a zero, so that

R(k,l) (u)2 ≥ Rk (u) ·Rl (u)

and hence √
Rk+l (u) ≥

√
Rk (u) +

√
Rl (u),
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by noticing that R(k,l) > 0.
When Hk and Hl are minimal hedgehogs, Pu (t) is nonpositive on R, so

that
R(k,l) (u)2 ≤ Rk (u) ·Rl (u)

and hence √
−Rk+l (u) ≤

√
−Rk (u) +

√
−Rl (u).

Note that A (k, l) =
∫
K
R(k,l)dσ for all (k, l) ∈ H (K)2 and that inequality

(1.2) can be deduced from the inequality R(k,l)
2 ≤ Rk ·Rl.

Inequality (1.1) can be extended to some asymptotic areas of embedded
ends in R

3. The (possibly branched) complete minimal surfaces of finite
nonzero total curvature in R3 can be regarded as ‘multi-hedgehogs’ provided
they have only a finite number of branch points [14]: the (possibly singular)
envelope of a family of cooriented planes of R3 is called an N -hedgehog if,
for an open dense set of u ∈ S2, it has exactly N cooriented support planes
with normal vector u. Hedgehogs with a C2 support function are merely
1-hedgehogs.

We know that embedded ends of a minimal surface of R3 are flat or of
catenoid type (i.e., asymptotic to a planar or catenoid end). More precisely
(see [16]), each embedded end is the graph (over the exterior of a bounded
region in an (x1, x2)-plane orthogonal to the limiting normal at the end) of a
function of the form

u (x1, x2) = a ln (r) + b+
cx1 + dx2

r2
+O

(
1
r2

)
, r =

√
x2

1 + x2
2,

with a = 0 when the end is flat.
Let E be an embedded flat end of a minimal surface of R3 and let P be its

asymptotic plane. Define the asymptotic area of E by

As [E] =
∫∫

∆

(√
1 + ux1 (x1, x2)2 + ux2 (x1, x2)2 − 1

)
dx1dx2 ∈ [0,+∞] ,

where u : ∆ → R, (x1, x2) 7→ u (x1, x2) is the function whose graph is equal
to E. Given any increasing sequence (Kn) of compact subsets of P such that
Kn → ∆, As [E] may be interpreted as the limit of

Area
[
π−1 (Kn) ∩ E

]
−Area [Kn] ,

where π denotes the orthogonal projection onto the asymptotic plane.

Theorem 1.3 ([5]). The asymptotic area of every embedded flat end of a
minimal surface S ⊂ R3 is finite.

Note that hedgehogs never have flat ends: if an end is flat, then the limiting
normal at the end is a branch point of the Gauss map so that the surface
cannot be a hedgehog (see, for instance, [4]). Let E be an embedded flat end
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of a minimal N -hedgehog, where N ≥ 2. After a rotation, we may assume
the limiting normal at the end is n = (0, 0,−1). Then E admits a Weierstrass
representation (g (z) , f(z)dz) of the form

g(z) = zN and f(z) =
α

z2
+

+∞∑
k=0

ckz
k,

where α is nonzero [4]. (In the next subsection, the reader will find an in-
troduction and some remarks on the Weierstrass representation of minimal
surfaces in R3.) Given r ∈ ]0, 1[, the pieces of minimal N–hedgehogs defined
(up to a translation) by a parametrization of the form

Xf : D = {z ∈ C |0 < |z| ≤ r} → R
3,

z = x+ iy 7→ Re

(∫
1
2
f(z)

(
1− z2N

)
dz,

∫
i

2
f(z)

(
1 + z2N

)
dz,

∫
f(z)zNdz

)
,

where f (z) = (α/z2) +
∑+∞
k=0 ckz

k (α may be 0), constitute a real vector
space (EN ,+, ·), where addition is defined by Xf1 +Xf2 = Xf1+f2 and scalar
multiplication by λ ·Xf = Xλf . Let us denote by Sf the surface parametrized
by Xf : D → R

3.

Theorem 1.4. For every Sf ∈ EN , define As (f) by

As (f) :=
∫∫

D

(1− 〈N(z), n〉)
∥∥∥∥(∂Xf

∂x
× ∂Xf

∂y

)
(z)
∥∥∥∥ dxdy,

where

N(z) =
2

|z|2N + 1

(
Re
(
zN
)
, Im

(
zN
)
,
|z|2N − 1

2

)

is the unit normal at Xf (z) if
(
∂Xf
∂x ×

∂Xf
∂y

)
(z) 6= 0 and where D is identified

with {
(x, y) ∈ R2

∣∣∣0 <√x2 + y2 ≤ r
}
.

(i) If Sf is an embedded flat end, then As (f) is its asymptotic area
As [Sf ].

(ii) The map
√
As : EN → R+, Sf 7−→

√
As (f), is a norm associated

with a scalar product (which may be interpreted as a mixed algebraic
asymptotic area).
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Addition of minimal surfaces and Enneper-Weierstrass represen-
tation. It is well known that any minimal surface S ⊂ R

3 (possibly with
isolated branch points) can be locally represented in the form

(1.3)



X1(x, y) =
1
2

Re
[∫ z

z0

(
1− g (ζ)2

)
f (ζ) dζ

]
+ c1,

X2(x, y) =
1
2

Re
[∫ z

z0

i
(

1 + g (ζ)2
)
f (ζ) dζ

]
+ c2,

X3(x, y) = Re
[∫ z

z0

g (ζ) f (ζ) dζ
]

+ c3,

where f (z) is an arbitrary holomorphic function on an open simply connected
neighbourhood U of z0 ∈ C and g (z) an arbitrary meromorphic function on
U such that, at each pole of order n of g (z), f (z) has a zero of order at least
2n, the integral being taken along any path connecting z0 to z = x+ iy ∈ C
in U , and naturally, c1, c2 and c3 denote real constants. Recall that (see, e.g.,
[13])

N (z) :=

(
∂X
∂x ×

∂X
∂y

)
(x, y)∥∥∥(∂X∂x × ∂X

∂y

)
(x, y)

∥∥∥
=

2
|g (z)|2 + 1

(
Re [g (z)] , Im [g (z)] ,

|g (z)|2 − 1
2

)
,

is the (unit) normal to the surface at X (x, y) = (X1(x, y), X2(x, y), X3(x, y))
and g (z) its image under the stereographic projection σ : S2−{(0, 0, 1)} → C,

(x, y, t) 7→ x+iy
1−t . Thus, X : U → R

3, z = x+iy 7→ (X1(x, y), X2(x, y), X3(x, y)),
is a hedgehog (that is, X can be interpreted as the inverse of the stereographic
projection of its Gauss map) if and only if g (z) = z. The simplest choice
of ‘Weierstrass data’ (g (z) , f (z) dz) = (z, dz) gives Enneper’s surface. Re-
call that this surface and the catenoid, which is given by (g (z) , f (z) dz) =(
z, dz/z2

)
, are the only two complete regular minimal surfaces that are hedge-

hogs (see, e.g., [13]).
Representation (1.3) can be generalized to generate all minimal surfaces of

R
3: if S ⊂ R3 is a minimal surface (possibly with isolated branch points), M

its Riemann surface and g = σ◦N : M → C∪{∞} the stereographic projection
(from the north pole) of its Gauss map, then S can be represented in the form
(1.3) for some holomorphic function f on M and some fixed z0 ∈M .

Given any two (possibly branched) minimal surfaces S1 and S2 modelled
(up to a translation) by Weierstrass data (g(z), f1 (z) dz) and (g(z), f2 (z) dz)
on a Riemann surface M (and thus sharing the same ‘Gauss map’ g (z)), we
can define their sum S1 +S2 as the (possibly branched) minimal surface given
(up to a translation) by (g(z), (f1 (z) + f2 (z)) dz). For any minimal surface
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S modelled (up to a translation) by Weierstrass data (g (z) , f (z) dz) on M
and for any complex number λ, we can define the minimal surface λS as the
minimal surface given (up to a translation) by (g(z), λf (z) dz). Of course, in
order for z 7→ Re

[∫
φλ (z) dz

]
to be well-defined on M , where

φλ (z) := λf (z)
(

1
2

(
1− g (z)2

)
,
i

2

(
1 + g (z)2

)
, g (z)

)
,

we need that no component of φλ has a real period on M , that is,

Periodγ [φλ] := Re
∮
γ

φλ(z)dz = 0R3 ,

for all closed curves γ on M , but in the case when this period condition is not
satisfied, we may consider the minimal surface λS modelled on the universal
covering space of M (i.e., C or the open unit disc). By hypothesis, φ1 has no
real period on M since S is modelled on M . It follows that for any λ ∈ R the
surface λS is also modelled on M (since φλ clearly has no real period on M if
λ ∈ R). Thus, minimal surfaces modelled (up to a translation) by Weierstrass
data (g (z) , f (z) dz) on a common Riemann surface M and sharing the same
‘Gauss map’ g (z) constitute a real vector space EM (which can be identified
with the space of all holomorphic functions f (z) having a zero of order at
least 2n at each pole of order n of g (z) and satisfying

Periodγ

[
f

(
1
2
(
1− g2

)
,
i

2
(
1 + g2

)
, g

)]
= 0R3

for all closed curves γ on M).
Recall that (i) the associate surfaces to a minimal surface S modelled (up to

a translation) by Weierstrass data (g (z) , f (z) dz) on a Riemann surfaceM are
the surfaces Sθ = eiθS given (up to a translation) by

(
g(z), eiθf (z) dz

)
, where

θ ∈
[
0, π2

]
; and (ii) the conjugate surface S∗ to S is the associated surface Sπ/2.

Clearly, S∗ and Sθ are (locally) parametrized by
X∗ (z) = − Im

[∫
φ (z) dz

]
and Xθ = (cos θ)X − (sin θ)X∗, where φ :=

f
(

1
2

(
1− g2

)
, i2
(
1 + g2

)
, g
)

and X (z) := Re
[∫
φ (z) dz

]
. In other words,

we have Sθ = (cos θ)S − (sin θ)S∗, where the surfaces are modelled on the
universal covering space of M in the case when φ has a real period on M .

Remark 1.4. Every hedgehog Hh ⊂ Rn+1 has a unique representation in
the form

(1.4) Hh = Hc +Hp,

where Hc is centred (i.e., centrally symmetric with centre at the origin) and
Hp projective (i.e., modelled on Pn (R) = S

n/(antipodal relation)). This rep-
resentation is given by

h = c+ p,
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where

c (u) =
1
2

(h (u) + h (−u)) and p (u) =
1
2

(h (u)− h (−u)) .

In the same way, every minimal hedgehog Hh ⊂ R3 has a unique represen-
tation in the form (1.4). If Hh is given by Weierstrass data (z, f (z) dz), then
Hc and Hp are given (up to a translation) by the following decomposition of
f (z):

f (z) = fc (z) + fp (z) ,

where

fc (z) =
1
2

(
f(z) +

1
z4
f

(
−1
z

))
,

fp (z) =
1
2

(
f(z)− 1

z4
f

(
−1
z

))

(see [18] for the determination of fp (z)). Let us consider the case of Enneper’s
surface, whose support function is given by

h(u) =

(
x2 − y2

)
(2r − t)

2(r − t)2
,

where r =
√
x2 + y2 + t2 and u = (x, y, t) ∈ S2 ⊂ R3. In this case, we get

c(u) =
x2 − y2

(x2 + y2)2 and p(u) =
t
(
x2 − y2

)
(2r2 + x2 + y2)

2 (x2 + y2)2

(resp. fc (z) = 1
2

(
1 + 1/z4

)
and fp (z) = 1

2

(
1− 1/z4

))
and we notice that (i)

Hc has 5 planes of symmetry (with equations x = 0, y = 0, z = 0, x+ y = 0
and x − y = 0), 4 curves of double points lying on the plane z = 0, and 4
branch points (namely

(
1/
√

2, 1/
√

2, 0
)

and the points deduced from it by
symmetry); (ii) Hp is Henneberg’s surface (which is thus the ‘projective part’
of Enneper’s surface). Figure 1 below shows the central symmetrization of
Enneper’s surface.
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Figure 1

Relation between Enneper-Weierstrass representation and sup-
port function. We have the following result.

Theorem 1.5. Let X : U 3 z0 → R
3, z 7→ Re

[∫ z
z0
φ (ζ) dζ

]
, where

φ (z) := f (z)
(

1
2

(
1− g (z)2

)
,
i

2

(
1 + g (z)2

)
, g (z)

)
,

be the Weierstrass representation of a piece of a minimal surface (possibly
with isolated branch points) such that

N : U → N (U) ⊂ S2,

z 7→ N (z) =
2

|g (z)|2 + 1

(
Re [g (z)] , Im [g (z)] ,

|g (z)|2 − 1
2

)
,

is a diffeomorphism of U onto N (U). Then X (U) can be regarded as a hedge-
hog Hh whose parametrization xh : N (U) → Hh ⊂ R3 is given by xh = ∇ϕ,
where ϕ : v 7→ ‖v‖h (v/ ‖v‖) is the positively 1-homogeneous extension of h to
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tu
∣∣u ∈ N (U) and t ∈ R∗+

}
[8]. Given g(z), the support function h and the

holomorphic function f are related by

(1.5) φ (z) =
2g′ (z)

1 + |g (z)|2
(Lϕ)N(z)

(
vg (z)

)
,

where (Lϕ)N(z) is the endomorphism of C3 that is represented in the standard
basis by the Hessian matrix (Hessϕ)N(z) of ϕ at N (z) and vg (z) = (1, i, g (z)),
so that

f (z) =
2g′ (z)(

1 + |g (z)|2
)2

[
tVg (z) · (Hessϕ)N(z) · Vg (z)

]
,

where Vg (z) is the column matrix tvg (z).

LetHh ⊂ R3 be a minimal hedgehog defined by Weierstrass data (z, f (z) dz)
on the sphere S2 punctured at a finite number of points. From (1.5) it follows
that

f (z) =
2

z
(

1 + |z|2
) [(∇ϕt) (N (z)) .Vg (z)

]
,

where ϕt is the partial derivative of ϕ with respect to the third coordinate in
the standard basis of R3 and ∇ϕt = (ϕxt, ϕyt, ϕt2) is its gradient. Changing
the orientation of the normal, this gives

f̃ (z) =
2

z
(

1 + |z|2
) [(∇ϕ̃t) (N (z)) .Vg (z)

]
,

where f̃ (z) = −(1/z4)f (−1/z) and ϕ̃ (u) = −ϕ (−u). Noting thatN (−1/z) =
−N (z) and comparing f (−1/z) with f̃ (z), we get easily

ϕt2 (N (z)) = Re
[
z2f (z)

]
.

Now, inflection points of level curves of a hedgehog Hh ⊂ R
3 (with a

support function of class C∞) are given by

ϕt2 (u) = 0, ∇ϕt (u) 6= 0 and Rh (u) 6= 0,

where ϕ (u) = ‖u‖h (u/ ‖u‖). (By ‘inflection point’ of a level curve C ⊂ Hh
we mean a point where C has a contact of order ≥ 2 with its tangent line.)
Therefore we have:

Corollary 1.6. Let Hh ⊂ R3 be a nontrivial minimal hedgehog defined
by Weierstrass data (z, f (z) dz) on the unit sphere S2 punctured at a finite
number of points. The inflection points of level curves of Hh are given by

Re
[
z2f (z)

]
= 0, z 6= 0 and f (z) 6= 0.

It follows easily that the hedgehog Hh is necessarily a catenoid if it is complete
and if no level curve of Hh has an inflection point.
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Orthogonal-projection techniques. Let Hh ⊂ R3 be a hedgehog with
support function h ∈ C2

(
S

2;R
)
. We can get information on Hh by consid-

ering its images under orthogonal projections onto planes. We proceed as
follows. For any u ∈ S2 we consider the restriction hu of h to the great circle
S

1
u = S

2 ∩ u⊥, where u⊥ is the linear subspace orthogonal to u. This restric-
tion is the support function of a plane hedgehog Hhu ⊂ u⊥, which is merely
the image of xh

(
S

1
u

)
under the orthogonal projection onto u⊥:

Hhu = πu
[
xh
(
S

1
u

)]
,

where πu is the orthogonal projection onto the plane u⊥. The index of a point
x ∈ u⊥ −Hhu with respect to Hhu (i.e., the winding number of Hhu around
x) gives us information on the curvature of Hh on the line {x}+ Ru:

Theorem 1.7 ([7]). Let x be a regular value of the map xuh = πu ◦ xh :
S

2 → u⊥. The index of x ∈ u⊥ −Hhu with respect to Hhu is given by

ihu (x) =
1
2

(
νh (x)+ − νh (x)−

)
,

where νh (x)+ (resp. νh (x)−) is the number of v ∈ S2 such that xh (v) is an
elliptic (resp. a hyperbolic) point of Hh lying on the line {x}+ Ru.

Recall that the index ih (x) of a point x with respect to a plane hedgehog
Hh can be related to the number of cooriented support lines of Hh passing
through x:

Theorem 1.8 ([7]). For any hedgehog Hh ⊂ R2 we have

∀x ∈ R2 −Hh, ih(x) = 1− 1
2
nh(x),

where nh(x) is the number of cooriented support lines of Hh passing through
x, i.e., the number of zeros of the map hx : S1 → R, u 7−→ h(u)− 〈x, u〉.

Theorem 1.7 admits an analogue for minimal hedgehogs:

Theorem 1.9. Let Hh ⊂ R3 be a complete minimal hedgehog modelled on
S

2 punctured at a finite number of points e1, . . . , en(corresponding to its ends)
and let u ∈ S2 be such that S1

u ⊂ S2 − {e1, . . . , en}. Then, for any regular
value x ∈ u⊥ − Hhu of the map xuh = πu ◦ xh : S2 − {e1, . . . , en} → u⊥, we
have

ihu (x) +Nu
h (x)+ =

∑
ek∈S+u

d (ek) ,

where S+
u ⊂ S2 is the halfsphere defined by 〈u, v〉 > 0, Nu

h (x)+ the number of
v ∈ S+

u − {ej |〈ej , u〉 > 0} such that xh (v) ∈ {x}+Ru and d (ek) the winding
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number of the end with limiting normal ek. Replacing u by −u, it follows that

ihu (x) +Nu
h (x)− =

∑
ek∈S−u

d (ek) ,

where S−u ⊂ S2 is the halfsphere defined by 〈u, v〉 < 0 and Nu
h (x)− the number

of v ∈ S−u − {ej |〈ej , u〉 < 0} such that xh (v) ∈ {x}+ Ru. Consequently,

ihu (x) =
1
2

(N (h)−Nu
h (x)) ,

where Nu
h (x) = Nu

h (x)− + Nu
h (x)+ is the number of v ∈ S2 − {e1, . . . , en}

such that xh (v) ∈ {x} + Ru and N (h) the total spinning of Hh, that is,
N (h) =

∑n
k=1 d (ek).

Corollary 1.10. Let Hh ⊂ R3 be a complete nontrivial minimal hedge-
hog. If Hh does not intersect a pencil of lines that fill up a right circular cone,
then Hh is a catenoid.

Theorem 1.9 can be generalized as follows. Consider a minimal multi-
hedgehog Hh ⊂ R3 given by a Weierstrass representation X : U→ R

3 and let
N : Ω→S2 be its Gauss map (regarded as a map defined on the set Ω of regular
points of X). The support function h can be regarded as a function of z ∈ Ω
and defined by: ∀z ∈ Ω, h (z) = 〈X (z) , N (z)〉. For any u ∈ S2 such that S1

u

contains no limiting normal at an end of Hh let hu be the restriction of h to
N−1

(
S

1
u

)
. If X

[
N−1

(
S

1
u

)]
contains no parabolic point of Hh, then hu can be

interpreted as the support function of the family of plane multihedgehogs, say
Hhu , that constitute the image of X

[
N−1

(
S

1
u

)]
under the orthogonal projec-

tion onto the plane u⊥. The index of a point x ∈ u⊥ −Hhu with respect to
the family of multihedgehogs Hhu can be defined as the algebraic intersection
number of almost every oriented half-line of u⊥ with origin x with the family
of multihedgehogs equipped with their transverse orientation.

Theorem 1.11. Let Hh ⊂ R3 be a complete minimal multihedgehog having
n ends with limiting normals e1, . . . , en. Let X : U → R

3 be a Weierstrass
representation of Hh and let N : Ω → S

2 be its Gauss map (regarded as a
map defined on the set Ω of regular points of X). Let u ∈ S2 be such that
S

1
u ⊂ S2−{e1, . . . , en} and such that X

[
N−1

(
S

1
u

)]
contains no parabolic point

of Hh. Then, for any x ∈ u⊥ −Hhu such that the line {x}+Ru contains no
branch point of Hh, we have

ihu (x) +Nu
h (x)+ =

∑
{k|〈ek,u〉>0}

dk,
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where Nu
h (x)+ is the number of z ∈ N−1 (S+

u ) such that X (z) ∈ {x} + Ru
and dk the winding number of the kth end. Replacing u by −u, it follows that

ihu (x) +Nu
h (x)− =

∑
{k|〈ek,u〉<0}

dk,

where Nu
h (x)− is the number of z ∈ N−1 (S−u ) such that X (z) ∈ {x} + Ru.

Consequently,

ihu (x) =
1
2

(N (h)−Nu
h (x)) ,

where Nu
h (x) = Nu

h (x)−+Nu
h (x)+ is the number of z ∈ U such that X (z) ∈

{x} + Ru and N (h) the total spinning of Hh, that is, N (h) =
∑n
k=1 dk. In

particular, the total spinning of Hh has the same parity as Nu
h (x).

2. Further remarks and proof of results

Proof of Theorem 1.4. (i) If Sf is an embedded flat end, then As (f) is its

asymptotic area As [Sf ] for 〈N(z), n〉
∥∥∥(∂Xf∂x ×

∂Xf
∂y

)
(z)
∥∥∥ dxdy is the area of

the orthogonal projection, onto the asymptotic plane, of the element of area∥∥∥(∂Xf∂x ×
∂Xf
∂y

)
(z)
∥∥∥ dxdy on the end.

(ii) We know that (see, e.g., [13])

∀z = x+ iy ∈ D,
∥∥∥∥(∂Xf

∂x
× ∂Xf

∂y

)
(z)
∥∥∥∥ =

|f (z)|

(
1 + |z|2N

)
2

2

,

so that

As (f) =
∫∫

D

(1− 〈N(z), n〉)
∥∥∥∥(∂Xf

∂x
× ∂Xf

∂y

)
(z)
∥∥∥∥ dxdy

=
∫∫

D

|f (z)|2 |z|2N 1 + |z|2N

2
dxdy.

Consequently,
√
As : EN → R+ is a norm associated with the scalar product

given by

As (f1, f2) =
∫∫

D

Re
[
f1 (z) f2 (z)

]
|z|2N 1 + |z|2N

2
dxdy. �

Remark 2.1. Recall that the Gauss curvature of a minimal surface S
modelled (up to a translation) by Weierstrass data (g (z) , f (z) dz) on a Rie-
mann surface M is given by (see, e.g., [13])

KS = −

 4 |g′|

|f |
(

1 + |g|2
)2


2

.
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If the surface S is different from a plane, we define its curvature function by
RS := 1/KS outside the isolated zeros ofKS . Consequently, it is natural to de-
fine the mixed curvature function of two (possibly branched) minimal surfaces
S1 and S2 modelled (up to a translation) by Weierstrass data (g(z), f1 (z) dz)
and (g(z), f2 (z) dz) on M (and thus sharing the same ‘Gauss map’ g (z)) by

R(S1,S2) (z) = −Re
[
f1 (z) f2 (z)

]
(

1 + |g (z)|2
)2

4 |g′ (z)|


2

.

Note that R(S1,S2) = 0 if and only if the surface S2 is homothetic to the
conjugate surface S∗1 to S1. We have obviously the inequalities R(S1,S2)

2 ≤
RS1 · RS2 and

√
−RS+S2 ≤

√
−RS1 +

√
−RS2 , which generalize those of

Remark 1.3.

Remark 2.2. For any h ∈ H
(
S

2
)
, denote by rh (u) the common absolute

value of the principal radii of curvature of Hh at xh (u). In other words, define
rh by rh =

√
−Rh, where Rh is the curvature function of Hh.

Let K be the closure of a (nonempty) connected open subset of S2 and
let Hh ⊂ R3 be a hedgehog modelled on K. The Cauchy-Schwarz inequality
gives

Area [xh (K)] ≥ MK (h)2

Area [K]
,

where MK (h) =
∫
K
rhdσ. This inequality has to be compared with the

Minkowski inequality

S ≤ M2

4π
,

where S is the surface area and M the integral of mean curvature of a convex
body K ⊂ R3 (see [15]). Recall that if K is a convex body of class C2

+, then
M is simply given by

M =
1
2

∫
S2

(R1 +R2) dσ,

where R1 and R2 are the principal radii of curvature of K. The above
Minkowski inequality was extended in [6] to any hedgehog whose support
function is of class C2 on S2.

Proof of Theorem 1.5. For all z = x+ iy ∈ U we have

X (z) = xh [N (z)] = (∇ϕ) [N (z)] ,

and thus
Xξ (z) = (Lϕ)N(z) (Nξ (z)) ,
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where Nξ (z) = ∂
∂ξ [N (x+ iy)], Xξ (z) = ∂

∂ξ [X (x+ iy)] and ξ = x or y.
Note that

Nξ (z) =
2

1 + |g (z)|2
[(Pξ, Qξ, PPξ +QQξ) (z)− (PPξ +QQξ) (z)N (z)] ,

where g (z) = P (x, y) + iQ (x, y), Pξ = ∂P
∂ξ and Qξ = ∂Q

∂ξ . As ϕ is positively
1-homogeneous, we have

(Lϕ)N(z) (N (z)) = 0,

and we thus get

Xξ (z) =
2

1 + |g (z)|2
(Lϕ)N(z) [(Pξ, Qξ, PPξ +QQξ) (z)] .

Now, direct calculation gives

Re

[
2g′ (z)

1 + |g (z)|2
(Lϕ)N(z)

(
vg (z)

)]

=
2

1 + |g (z)|2
(Lϕ)N(z) [(Px, Qx, PPx +QQx) (z)] ,

Im

[
2g′ (z)

1 + |g (z)|2
(Lϕ)N(z)

(
vg (z)

)]

= − 2
1 + |g (z)|2

(Lϕ)N(z) [(Py, Qy, PPy +QQy) (z)] ,

so that

φ (z) = Xx (z)− iXy (z) =
2g′ (z)

1 + |g (z)|2
(Lϕ)N(z)

(
vg (z)

)
. �

Proof of Theorem 1.9. It suffices to prove the relation

ihu (x) +Nu
h (x)+ =

∑
ek∈S+u

d (ek) ,

for any regular value x ∈ u⊥−Hhu of xuh = πu ◦ xh : S2−{e1, . . . , en} → u⊥.
Let (x1, x2, x3) be the standard coordinates in R3. Without loss of gener-

ality, we can identify u⊥ with the plane given by the equation x3 = 0 (and
thus with the Euclidean vector plane R2

)
and assume that x is its origin 0R2 .

The index ihu (x) is the winding number of Hhu around x ∈ u⊥ −Hhu . It is
given by

ihu (x) =
1

2π

∫
Hhu

ω,

where ω is the closed 1-form defined by

ω(x1,x2) =
x1dx2 − x2dx1

x2
1 + x2

2
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on R2−{0R2}. This index ihu (x) can also be regarded as the winding number
of xh

(
S

1
u

)
around the oriented line, say Dx (u), passing through x and directed

by u. In other words, ihu (x) is given by

ihu (x) =
1

2π

∫
xh(S1u)

ω,

which can be checked by an easy calculation. Writing Σ+
u = S

+
u−{ej |ej ∈ S+

u },
we thus have

ihu (x) =
1

2π

∫
∂S

ω,

where S denotes the surface xh [Σ+
u ] equipped with its transverse orientation.

Let {f1, . . . , fL} be the set consisting of all ej such that 〈ej , u〉 > 0, i.e., ej ∈
S

+
u . Since x is a regular value of the map xuh = πu◦xh : S2−{e1, . . . , en} → u⊥,

there exists a small closed disc, say D, centred at x whose inverse image under
(xuh)+ : S+

u − {f1, . . . , fL} → u⊥, v 7→ xuh (v), is empty or admits a partition
of the form [

(xuh)+
]−1

(D) =
K⋃
k=1

Dk,

where K = Nu
h (x)+ and Dk is such that the map πu ◦ xh defines a diffeo-

morphism from Dk onto D for all k ∈ {1, . . . ,K}. As f1, . . . , fL are limiting
normals at ends of the complete minimal hedgehog Hh, there exist small dis-
joint spherical discs41, . . . ,4L punctured at f1, . . . , fL that are disjoint from
S

1
u and from each Dk (1 ≤ k ≤ K). Now, Stokes’s formula gives∫

∂S

ω =
K∑
k=1

∫
∂Sk

ω +
L∑
l=1

∫
∂Σl

ω,

where Sk (resp. Σl) denotes the surface xh (Dk) (resp. xh (4l)) equipped
with its transverse orientation. As Hh is a (possibly branched) minimal sur-
face, the maps xh : Dk → Sk are orientation reversing and thus the orthogonal
projections of the oriented curves ∂Sk into the (x1, x2)-plane have winding
number −1 around x. Consequently,

K∑
k=1

∫
∂Sk

ω = −Nu
h (x)+

.

To complete the proof, it suffices to notice that we have also
L∑
l=1

∫
∂Σl

ω =
L∑
l=1

d (fl) =
∑
ek∈S+u

d (ek) ,

from the definition of the winding number of an end. �

The proof of Theorem 1.9 can be easily adapted to obtain a proof of The-
orem 1.11; the details are left to the reader.
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Proof of Corollary 1.10. By assumption, there exists a line D that does
not intersect Hh and that is such that no limiting normal at an end of Hh
belongs to the vector plane that is orthogonal to D. Let u ∈ S2 be a unit
vector parallel to the line D and define x by {x} = D ∩ u⊥. According to
Theorem 1.9 we have

ihu (x) =
1
2

(N (h)−Nu
h (x)) =

N (h)
2

> 0.

Theorem 1.8 now implies ihu (x) = 1 and thus N (h) = 2. The proof is com-
pleted by showing that Hh must be a catenoid if N (h) = 2. This was proved
by Hoffman and Karcher (see [2, Corollary 3.2]) for a connected complete
minimal immersed surface M ⊂ R3 with finite total curvature and their proof
remains valid if we drop the assumption that M has no branch points. �

The author wishes to thank Eric Toubiana for helpful comments and con-
versations during the preparation of the paper.
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