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A TANGENCY PRINCIPLE AND APPLICATIONS

F. FONTENELE AND SERGIO L. SILVA

ABSTRACT. In this paper we obtain a tangency principle for hypersur-
faces, with not necessarily constant r-mean curvature function H,, of
an arbitrary Riemannian manifold. That is, we obtain sufficient geo-
metric conditions for two submanifolds of a Riemannian manifold to
coincide, as a set, in a neighborhood of a tangency point. As applica-
tions of our tangency principle, we obtain, under certain conditions on
the function H,, sharp estimates on the size of the greatest ball that
fits inside a connected compact hypersurface embedded in a space form
of constant sectional curvature ¢ < 0 and on the size of the smallest
ball that encloses the image of an immersion of a compact Riemannian
manifold into a Riemannian manifold with sectional curvatures limited
from above. This generalizes results of Koutroufiotis, Coghlan-Itokawa,
Pui-Fai Leung, Vlachos and Markvorsen. We also generalize a result of
Serrin. Our techniques permit us to extend results of Hounie-Leite.

1. Introduction

Let N"*! be a complete Riemannian manifold with metric (, ), Levi-
Civita connection V and the usual exponential mapping exp: TN — N.
Consider a hypersurface M™ of N"*!. Given p € M"™ and a fixed unitary
vector 79 that is normal to M™ at p, we can parametrize a neighborhood of
M™ containing p and contained in a normal ball of N*t! as

(1.1) o(x) = exp,(z + p(z)no),

where the vector x varies in a neighborhood W of zero in T,M and pn: W — R
satisfies ;1(0) = 0. Observe that p is unique. Consider now a local orientation
n: W— T:(W)M of M™ with 1(0) = 79. Denote by A, the second funda-
mental form of M™ in the direction n(x). Choosing the principal curvatures of
M™ at each © € W so that A (z) < Aa(z) < -+ < A, (), the functions A; be-
come continuous functions on W. Denote by A(z) = (A1(x), A2(x),..., A\ (x))
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the principal curvature vector at x € W. The r-mean curvatures H,, 1 < r <
n, are given by

(1.2) H.(x) = —

where o,.(A(z)) is the value at A(z) of the r-elementary symmetric function
or: R™ — R defined by

(1.3) (21,22, oy 2n) = Z Ziy Zig - Zip
11 <t <+ <ip

Denote by I', the connected component in R™ of the set {o, > 0} that

contains the vector ag = (1,1,...,1). Observe that I',, is precisely the positive
cone O™, defined by
(1.4) O" ={(z1,22,...,2n) ER" | ;>0 for1<i<n},

and that O™ C I, for 1 < r < n. In fact, we will show in Section 2 that, more
generally, Iy C T for 1 <r <n—1.

DEFINITION. Let M7* and M# be hypersurfaces of N"! that are tangent
at p, i.e., which satisfy T, M, = T),M>. Fix a unitary vector 7o that is normal
to M7 at p. We say that M7]" remains above MJ in a neighborhood of p
with respect to 7o if, when we parametrize M* and M% by ¢! and ¢? as
in (1.1), the corresponding functions p! and p? satisfy p!(z) > p?(z) in a
neighborhood of zero.

We note in passing that this definition is equivalent to requiring that the
geodesics of N™*1 that are normal to the hypersurface which is totally geodesic
at p (namely, exp,(W)), in a neighborhood of p intercept M3 before M.

In this paper we obtain the following tangency principle:

THEOREM 1.1. Let M}* and MY be hypersurfaces of N**1 that are tan-
gent at p and let no be a unitary vector that is normal to M{* at p. Suppose
that M{* remains above M3 in a neighborhood of p with respect to ng. De-
note by H(x) and H2(x) the r-mean curvature at v € W of M and MY,
respectively. Assume that, for some r, 1 < r < n, we have H2(z) > H}(x)
in a neighborhood of zero; if r > 2, assume also that \%(0), the principal cur-
vature vector of Ms at zero, belongs to I'.. Then M and M3 coincide in a
neighborhood of p.

For hypersurfaces with boundaries, as a consequence of the proof of Theo-
rem 1.1, we obtain the following tangency principle:

THEOREM 1.2.  Let M7* and MY be hypersurfaces of N1 with boundaries
OM; and OM,, respectively. Suppose that M and M3, as well as OMy and
OMs, are tangent at p € OM; N OMsy, and let ng be normal to M{" at p.
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Suppose that M remains above MY in a neighborhood of p with respect to ng.
Denote by H}(x) and H?(x) the r-mean curvatures at x € W of M}* and M},
respectively. Assume that, for some r, 1 < r < n, we have H(z) > H}(z)
in a neighborhood of zero. If v > 2, assume also that \?(0), the principal
curvature vector of Mo at zero, belongs to I'y.. Then M7 and Mg coincide in
a neighborhood of p.

In connection with the above results see also Remark 4.4.

In order to state our applications, we need to introduce some notations.
Denote by B,(po) a geodesic closed ball centered at py and of radius p in the
ambient space, and let Q7! be the (n + 1)-dimensional simply connected
space form of constant curvature c. Consider the functions

t\/—c coth(t\/—c), ¢ <0,
(15) ,U‘C(t) = 17 c= Ov
t\/c cot(t\/c), c¢>0.

As a first application of Theorem 1.1, we obtain the following result.

THEOREM 1.3. Let M™ be a compact connected embedded hypersurface of
Q"L ¢ < 0. Suppose that |H,| > [uc(p)/p]” on M™ for some p > 0. Then
the largest sphere which fits inside M™ has radius less than p, unless M™ is a
sphere.

Theorem 1.3 generalizes Theorem 1 in [11] and a result due to Blaschke
([3]; see also Theorem 3 in [11]). As a second application of Theorem 1.1,
we generalize a result of Serrin, stated as Theorem 1 in [14], in the following
theorem.

THEOREM 1.4. Let M™ be a compact connected hypersurface in QU1 with
boundary OM contained in the closed ball B,(pg). Suppose that, for some
p >0, we have |H,| < [uc(p)/p]” and that M™ is contained in the closed ball

»(po); if ¢ > 0, suppose further that p < w/2+\/c. Then M" is contained in
B‘r(pO)'

S|

From Theorem 1.1 we also obtain the following result.

THEOREM 1.5. Let F: M"™ — N"*! be a smooth isometric immersion
of a compact connected Riemannian manifold into a Riemannian manifold
N1 Suppose that F (M) is contained in a closed normal ball B,(po) centered
at po and of radius p. Let ¢ be the supremum of the sectional curvatures of
Nt on B,(po); if ¢ > 0, assume also that p < w/2/c. If |H,| < [uc(p)/p)",
then F(M) is the boundary of B,(po) and B,(po) is isometric to an open ball
of radius p in QUHL.
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COROLLARY 1.6. Let F: M™ — N"*! be a smooth isometric immersion
of a compact connected Riemannian manifold into a Riemannian manifold
N1 with sectional curvature function satisfying Ky < ¢ for some real con-
stant c. Suppose that F (M) is contained in a closed normal ball B,(po). If
¢ > 0, assume furthermore that p < w/2+/c. If |H,| < [pe(p)/p]” then F(M)
is the boundary of B,(po) and B,(po) is isometric to an open ball of radius p
in QUL

For the case of mean curvature, i.e., the case r = 1, Theorem 1.5 was
obtained by Markvorsen in [13]. We point out that Coghlan, Itokawa, and
Kosecki [6], assuming sup,,; |[H| = pc(p)/p for the length of the mean curva-
ture vector H of an immersion G: M™ — N™ such that G(M) C B,(po),
concluded that F' must be a minimal immersion on the boundary of B,(po).
Here M™ is a complete connected Riemannian manifold with scalar curvature
bounded away from —oo, c¢ is the supremum of the sectional curvature over
B,(po), and p < w/2+/c if ¢> 0.

When N+ is the space form Q7 *!, rigidity theorems similar to Theorem
1.5 were obtained by Koutroufiotis [11] and Coghlan and Itokawa [5] for sec-
tional curvature, by Pui-Fai Leung [12] for Ricci curvature, and by Vlachos
[15] for all r-mean curvatures.

2. Elliptic operators and hyperbolic polynomials
For d = (n(n +1)/2) + 2n + 1, write an arbitrary point p at R? as

p= (7’11,...77’17“7"22,...Tgn,...,T‘(n_l)n,Tnn,T‘l,...,Tn,Z,l'l,...,{En)
or, in short, as p = (ry;, 7, 2,2) with 1 <i<j<nand ¢ = (z1,...,2,). A
C'-function ®: T' — R defined in an open set I' of R? is said to be elliptic in
pelif

n

0P
(2.1) Z —(p)&&; >0 for all nonzero (§1,62,...,&,) € R™.
i<j=1 9T
We say that @ is elliptic in I" if @ is elliptic in p for all p € I'. Given a function
f: U — R of class C? defined in an open set U C R" and = € U, we associate
a point A(f)(z) in RY by setting

where f;;(z) and f;(z) stand for fafwj (x) and g—gi(x), respectively. Saying

a
that the function @ is elliptic with respect to f means that A(f)(x) belongs
to I and @ is elliptic in A(f)(x) for all x € U. For elliptic functions we have
the following maximum principle (see [1]).

MAXIMUM PRINCIPLE. Let f, g: U — R be C%-functions defined in an
open set U of R™ and let ®: T C R? — R be a function of class C*. Suppose
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that @ is elliptic with respect to the functions (1—1t)f +tg, t € [0,1]. Assume
also that

(2.3) O(A(f)(x)) = @(Alg)(x)) for all x €U,

and that f < g on U. Then f < g on U unless f and g coincide in a
neighborhood of any point xg € U such that f(xz) = g(xo).

To obtain this above maximum principle, which in the case n = 2 is stated
in [11], one linearizes in a well-known fashion,

D(A(f)(@)) = 2(Ag)(x)) = L(f — g)(x) = 0,

and then applies Hopf’s maximum principle for linear operators to conclude
that if f(xo) = g(xo) for some 2o € U then f and g coincide in a neighborhood
of zg in U.

For our proofs we will also need the following result from [7]. Let P: R™ —
R be a homogeneous polynomial of degree m and let a € R™ be a fixed vector.
We say that P is a-hyperbolic or hyperbolic with respect to the vector a if
the s-polynomial P(sa + z) has m real roots for all x € R™. In [7], Garding
proved that the set

(2.4) C(Pa)={ze€R"| P(sa+x)#0, forall s >0}

is an open convex cone that coincides with the connected component of
{P # 0} containing a and that if P is a-hyperbolic, then the homogeneous
polynomial of degree m — 1 given by

"\ 0P

Q) = L P(sa+ w)luco =30y

P ()

—(z

=1 3xj

is also a-hyperbolic and C(P,a) C C(Q,a).
Applying this result to the n-elementary symmetric function o,,, which is

ap-hyperbolic with respect to ag = (1,1,...,1), and observing that

1 qn—r
de)—»(

(=)l denr on(sa+ Blsmo-

it is not difficult to see that the homogeneous polynomials o, of degree r,
1 < r < n, are ap-hyperbolic and that the sets T, = C(0,,a9),1 < r < n,
satisfy

(2.5) r,cr,.,c---crly.

As we have already noted in the Introduction, I',, is precisely the positive cone
O". Garding also established an inequality for hyperbolic polynomials from
which it is possible to prove (see [4], Proposition 1.1) that

oo,

8%

(2.6) Do, = >0 on I, 1<i<n, 1<r<n.
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3. r-mean curvatures and ellipticity

Given a hypersurface M™ of a complete Riemannian manifold N**! and
p € M™, parametrize M"™ in a neighborhood of p as in (1.1). Our goal now
is to find a function ®, defined in some open set of R%, d = w +2n+1,
that contains the origin so that

Hr(x) = q)r(ﬂlj(m)vuz(x)au(x)ax) = @T(A(,U,)(Qf)), xeW.
To this end we fix an orthonormal basis e;, e, ..., e, in T,M and introduce
coordinates in T,M by setting = DI | z;¢; for all z in T, M. Note that
the function p satisfies ;(0) = 5£-(0) = 0, 1 < i < n. Recall that n: W —
T(pl(W)M is a local orientation of M™ with 7(0) = 79 and A, ,) is the second
fundamental form of M™ in the direction n(z). Denote by @;(x) the vector
9% (). Tf A(z) = (aij(x)) is the matrix of Ay (z) in the basis @;(z), 1 < i <n,

ox;

then A(z) satisfies A, ,)pi(r) = 27 aji(x)p;(x). It is not difficult to verify
that

(3.1) A(x) = I(z) (),

where I(x) and I1(x) are the matrices given by

I(z)i; = (pi(z), pj())
and
I1(z)ij = (Apa)pi(2), 0 (@) = (Ve 05), » n(2))-

LEMMA 3.1. There ezists an n X n-matriz valued function A defined in
an open set R((+1/2)+n o A7 of R? such that

(3-2) Alpig (), i), p(x), 2) = Alx), = e W.

Proof. We consider the entries in the matrices I(z) and II(z) given by
(3.1). For simplicity of notation, we set v(z) = >."" _| Zmem + p(z)no. Since

pi(w) = d(exp,)v(a)(€i + pi(z)m0),
the n x n-symmetric matrix I(x) can be written as a function of z, u(x) and
wi(x), 1 <i <n. Note that the point p, the orthonormal basis e;,1 < i < n,
in T,M, and no are fixed. In the matrix I(x) we replace, for all i, p;(z) by
r;, w(x) by z, and x; by y;. We obtain an n x n-symmetric matrix F(r;, z,y;)
which has an inverse at points such that d(exp,)(s>r_ yie;424) IS a linear
isomorphism. Take the maximal connected open set A in R"*! that contains
the origin and so that if (z,y1,...,yn) € N then d(exp,)(s>r  ye;42n) 1
a linear isomorphism. The existence of such a set N follows from the fact
that d(exp,)o is the identity. Thus, restricting I to R” x A and setting

F(ri,z,y;) = F(ri, z,y:) "', we have
I(z)™' = F(pi(a), p(x),2;), xeW.
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We now consider the entries in the n x n-symmetric matrix II(z). Observe
first that

(33) <V<Pi<pj 3 77>gc = <V<Pid<expp>veja 77>1'
+ puij (2)(d(exDy)v(@) N0 > N(2)) + 115 (x) (Vo d(exp,)uno, 1) -

The vector-valued function n(z) depends on z, u(z) and the first order deriva-
tives of p(x), since n(z) is determined by the basis ¢;,1 < ¢ < n, and the
metric of N1 at ¢(x). Let G(rij,7:,2,y;) be the n x n-symmetric matrix
defined as follows: if k& < then G(r;,r;, 2,¥i)w is obtained from II(z)w by
replacing, on the right hand side of (3.3), ugi(x) by ki, tm(x) by 7m, p(x)
by z, and finally x,, by ym,1 < m < n; that is, if £ <, then

(34) G(Tij, Tis 2, yz)kl = <Vwkd(epr)v€l ; 77>(m72,y1:)

+ 10 (d(€xDy)o0 s M) (v z) + 71 (Ved(€xpy)omo,m) s

where

v(z,y:) = Z Ymem + 200, Yr(ri,2,y:) = d(expp)v(z,yi)(ek +7510)

m=1
and n(r;, z,¥;) is a unitary vector that is normal to the hyperplane spanned
by ¥, (14, 2,9:), 1 < m < n. Hence the n x n-symmetric matrix G(r;, ri, 2, ;)
defined in R((n+1)/2)+n o Af gatisfies

I (z) = G(pij(z), pi(x), p(w), 24).
Taking

(3'5) A(Tz‘j,ﬁ, Zvyi) = F(Tm Z,yi)G(Tz’jaTia Z»yi)»

we obtain an nXn-matrix valued function A in the open subset R +1)/2)+n 5
N of R? such that A(p;(x), pi(z), u(z),x) = A(x), 2 € W. O

We point out that, since F'(r;, z,y;) is a definite positive symmetric matrix
and G(rij, 75, 2,y;) is symmetric, the matrix fl(rij,ri,z,yi) given by (3.5) is
diagonalizable (see e.g. [8], p. 120); that is, there exists an n X n-invertible
real matrix P, depending on (r;;,7;,2,¥;), such that P‘lﬁ(rij,ri,z,yi)P is
diagonal.

PROPOSITION 3.2. There exists a function ®,: RO TD/2+n o AF L R
satisfying

(3.6) O, (A(p) (@) = Py (pij(2), pi(), p(x), ) = Hp ().
Proof. Consider the function ®, defined by

(3.7) P, = %ar oMo A.
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Here M(A) = (A1(A), X2(A), ..., An(A)), where Ay (A) < Ap(A) < -+ < M\o(A)
are the eigenvalues of A. Now, (3.6) is an immediate consequence of (3.7),
(1.2) and (3.2). O

If A is an arbitrary n x n-real matrix, the eigenvalues \;(A4), 1 < i <mn, of
A are not necessarily real, but we can consider

(o7 0 A)(A) = 0 (A1(A), A2(A), ..., A\ (4)),

where o, is given by (1.3). The value (o, o A)(A) does not depend on the
order of the eigenvalues of A we choose. The function o, 0o A: M"(R) — R
defined in the set of all n x n-real matrices is differentiable since (o, o A)(A)
is a homogeneous polynomial of degree r in the entries of A.

In order to establish some ellipticity properties of ®,., we will need the
following lemma.

LEMMA 3.3. If Ag € M™(R) is symmetric and A\(Ap) € T, then

38) Y 900N (4 Veies >0 for all nonzero (€16, .., 6n) € R™.
ij=1 04y

Proof. We divide the proof into three steps.

Step 1. Suppose that A, is a diagonal matrix with distinct eigenvalues. In
this case, it is well known that the functions A;, 1 < ¢ < n, are differentiable
in a neighborhood of Ay, in M™(R). Therefore,

(o, 0 N) 30T 8
(3.9) aTkl Z azl 8Akl (AO)

Let E* be the matrix defined by (Ekl) = 0k; 015. Using the multilinearity

of the determinant, we see that the matrlceb A and Ay + tE*! have the same
characteristic polynomial for all ¢ and k # [. This implies that

o\
0A

We now compute the above derivatives for £ = [. Consider first the unique
permutation 6 of {1,2,...,n} such that Ag(;) = (Ao);;. Since the functions
Ai, 1 <i < n, are differentlable in a neighborhood of Ao, we have that in a
neighborhood of zero the functions \;(Ag+t Ekk), 1 <i < n, are differentiable
functions of t. Moreover, for ¢ sufficiently small, the eigenvalues \;(Ag+t E¥¥),
1 < i < n, are distinct since the values \;(A4g) are distinct by assumption.
Consequently, for small ¢, we have

(3.10) (A4g) =0 for k#1 and 1<i<n.

)\g(j)(Ao + tEkk) = (A() + tEkk)jj.
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Therefore,
d 0, k+#60"1(%)
—Xi(Ag +t EM)|jmg =< ’
dt (Ao + )t=0 {17 k= 0-1(0),
and so
O\ 0, k+#60-1%),
3.11 Ap) =
( ) 6Akk( ) {1, k= 0_1(i).
From (3.9), (3.10) and (3.11), it follows that
(o, 0 A) 0, k#1,
0A Dyiyor(MAo)), k=1.

The last equality and (2.6) show that (3.8) holds.
Step 2. Suppose Ay is diagonal. In this case, define A(t) by

0, k#1,
At = + 75
(Ao)er + 50 k=1

For small nonzero ¢t we have:
(i) A(¢) is diagonal with distinct eigenvalues;
(i) A(A()) € Ty
(iii) There exists an unique permutation € of {1,2,...,n} such that
Ao (A(t)) = A(t)j; for 1< j <n.

By Step 1 we have

090 sy _ [0 k£
A | Dowyor(MA®)), k=1

Since o, is of class C! and lim;_.o A(A(t)) = A\(Ap), we conclude that

000N yy_ [0, kA1,
0AR Dg(k)O‘T(A(Ao)) >0, k=I,

and that (3.8) holds.

Step 8. Suppose that Ay is symmetric. In this case, there exists an or-
thogonal matrix P so that P'AyP is diagonal. Observe that A\(P'AgP) =
AM(Ap) € T, and that (0,0 \)(P*AP) = (0,0 A)(A) for all matrices A. Setting
C = P*AP, we have

d(o, 0 N) = 000N, 0C;
GTM(AO) = “2':21 W(P AoP) DA, (Ao)
"L (o, 0\
B Z (aT,)(PtAOP) P Pj-

i,j=1
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Thus,
" 9o, 0\ " 9(or0\
> 20N apaa= 3 27N pagpppias
k=1 ki i kel=1 g
. d(ay o )‘) t
=N 222 (Pt Ay Pwsw;,
”2:31 9C;i; ( oP)w )

where w = P'¢ # 0 for £ # 0. Since the right hand side of the above expression
is positive by Step 2, we have proved Lemma 3.3. O

We observe that, in Lemma 3.3, we can replace the assumption A(4g) € T,
by the less restrictive assumption that Dyo,.(A(4p)) > 0,1 < k < n. This
is an immediate consequence of the proof of Lemma 3.3. We note also that
Lemma 3.3 is a reformulation of a result in [2]. We have included a proof here
only for the convenience of the reader.

ProprosITION 3.4. The functions ®,.: R(n+1)/2)4n o AF R,2<r<

n, are elliptic at any point p° = (r?j,r?,zo,x?) in the open set 0, = (Ao

A)~NT,), such that F(r0,2°,29) is the identity. The function ®, is elliptic
over RMnH+1)/2)+n 5 A,

Proof. The set €, is open because A o A is continuous and I, is open.
Assume first that » > 2. For k <[, we have

8(aro)\of~1) po)z i a(O’TO)\>(A 0)8;1,,“5 po.

(8:12) Orm 0Anm; 0T

m,t=1

We now compute the numbers %@0). By the definition of A, we have

Api(rij 1, 2, ¥i) = ZF(rivzvyi)méG(rijariaZvyi)ét~
¢

Since F(r?, 2% 2?) is the identity, we obtain that

812177115 0y _ 0,0 .0 G o _8Gmt 0
e )—;Fm,z @ me g (0) = o ).

It is not hard to verify that
Gt , {w(T?, 20,29),  if(8mrbi + Omibi) # 0,

3.13 =
( ) org: ) 0, otherwise,

where w(r?, 20, 2?) is given by

w(rd, 2%, 29) = <d (epr)v(ZO,xg) no , n(r, zo,m?)>
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with v(z ,x?) S 2V 4+ 2%9. Since at any point (r?, 2%, 29) € R™ x N,
n(r?, 2%, 29) is a unitary vector that is orthogonal to the space spanned by the

vectors
Ve(ri, 2% 27) = d (exp,),, o o) (e +7im0), 1< L<m,

0 .0

and d (expp)v(zO 2) is an linear isomorphism, the function w(r?, 2% 29) does
0

not change sign on R"” x N. Since w(0,0,0) = 1, we conclude that w(r?, 20, z9)
is positive in R™ x . Now (3.12) becomes

w(r?, 20, 20 (Yoot | dleno Ny J(p0))  if k< |

d(o,oNo A Orp arin
(Tm)(pO) _ )
w(r, 20, 20) A2 (A(p0)), if k=1

Since F(r?, 2%, 29) is the identity matrix, the matrix A(p°) = G(p°) is sym-

metric. Consequently,

n

3 As (7'?» ZO» x?) (o, 0 N)
§kél = €1
lcg;l 6T ( ) B (:"L) k,lZ:1 8rkl ( ( )) kSl

is positive for all nonzero vector (£1,&,...,&,) € R™ by Lemma 3.3. This
proves Proposition 3.4 for r > 2.
If r =1, we have, by (3.5) and (3.7),

1 ~ 1

at any point in RO +1)/2)+7 5 A7 Using (3.13) and the fact that F does not
depend on 7y, it is not difficult to verify that
o
G = =N R forall (1,6, ).
k,l

k<l

Since F is a definite positive symmetric matrix at any point of R(*(n+1)/2)+n 5
N, we obtain the ellipticity of ®; over R(("+1)/2)+7 s« A/ This completes the
proof of Proposition 3.4. (]

4. Proofs of the main results

For the proof of Theorem 1.1, we will need the following lemma.
LEMMA 4.1. Ifp€el, andv € O" thenp+tv €T, for all t > 0.

Proof. If the conclusion does not hold, then there exists ty > 0 such that
or(p+tv) > 0in [0,t) and o.(p + tov) = 0. This implies that Lo, (p +
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tv)|s=¢ < 0 for some t' € (0,ty). But

d n
Ear(p—i— tv)|my = i:ZlDior(p—i—t’v) v; >0

by (2.6). Thus we have obtained a contradiction. O

Proof of Theorem 1.1. Restricting W if necessary, our assumptions and
(3.6) imply

O, (A(p*)(2)) = Hy (x) 2 Hy (2) = & (A(p')(2)), z € W.

In order to apply the Maximum Principle of Section 2 and conclude that p'
coincides with 2 in a neighborhood of zero, we will prove that, by restricting
W if necessary, the function @, is elliptic with respect to the functions (1 —
t)u? +tut, t € [0,1]. To this end, observe first that if u: W — R is a function
satisfying ©(0) = 0 and p;(0) = 0 for 1 < i < n, then F(u;(0),1(0),0) =
F(0,0,0) is the identity matrix and, consequently,

A(A(U> 0w = A(/Jij (0),0,0,0)5 = G(Mij(0)7 0,0,0)z
= <v6kd(epr)vel|m:0 ) 770> + p12(0)

D
= <Ed(expp)v(tek)el|t=07 770> + pr1(0)

D D
= ( 73 7:0Pp(v(ter) + ser)li=o,5=0, M0 ) + 1141(0)

D
= <Ed(expp)s elek:|s:0 3 770> + :U/kl(o)
by (3.3). Therefore,

A((L =) A(p?)(0) + t A (") (0))re = A((1 = £) p13;(0) + £ 14;(0),0,0,0) ¢
= <£d(epr)s ezek‘s:Oa 770> + (1 - t) ,uil(()) + tullcl(o)

= A(A(p?)(0))rr + t (142(0) — 1 (0));
that is,

A((1 =) A(p?)(0) + ¢ A(p')(0)) — A(A(1?)(0))
— ¢ [(Hess ) (0) — (Hess 2)(0)].
Since p' > p? in a neighborhood of zero, u!(0) = 0 = p2(0) and p(0) = 0,

for 1 <i<mn,j=1,2, we have (Hess u!')(0) — (Hess z?)(0) > 0 in the sense
that

Z (Hess pu' — Hess p1%) i (0)6x& > 0 for all (&1,&s,...,&,) € R™.
k=1
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We deduce
A((L = 1) A(p®)(0) + t A(n*)(0)) — A(A(e?)(0)) 2 0, ¢ € [0,1].
Hence (see [8], p. 130), for 1 <i < n we have
A(A((L =) A(E®)(0) + t A(p')(0))) = Mi(A(A)(0)) = 0, t € [0,1],
and thus
AA((L =) A(p?)(0) + ¢ A1) (0))) = AA(A(1?)(0)) € O, 0 <t <1,

where O is the closure of O". Thus, by Lemma 4.1, A\(A((1 — t) A(?)(0) +
t A(u*)(0))) belongs to I'r, 0 <t < 1. Proposition 3.4 then shows that ®,. is
elliptic at the points given by (1 —t) A(?)(0) + ¢t A(u*)(0), t € [0,1]. Since
ellipticity is an open condition and {2, is open, restricting W if necessary, we
conclude by continuity and by the compactness of [0, 1] that @, is elliptic at
the points (1 — t) A(u?)(z) + t A(u')(z), z € W, t € [0,1]. This means that
®,. is elliptic with respect to the functions (1 —t)u? +tpu', t € [0,1]. The
Maximum Principle now enables us to conclude that p; and s coincide in a
neighborhood of zero. This proves Theorem 1.1. O

For the remaining proofs we will make use of the fact that the functions
e (t)/t are monotone decreasing on ¢ > 0.

Proof of Theorem 1.3. Let 0B,/ (po) be the largest sphere that fits inside
M™. Suppose that p’ > p. Then, p.(p’)/p < pe(p)/p and thus

T / T
(4.1) \H,| > [“—(p)} > [&lp)} on M™.
P P

Since M™ is compact and embedded, we can orient M™ by the normals point-
ing inward and find a point ¢ € M™ where all principal curvatures are posi-
tive; that is, the principal curvature vector of M™ at g belongs to the positive
cone O™ C I'.. Let A\: M"™ — R" be the continuous function that asso-
ciates to each point in M™ its principal curvature vector with the choices
A1 < Ao < --- < A, Since, by assumption, H,. does not change sign on M™,
and H,.(q) > 0, we deduce that H, > 0 on M™. Hence, A(M™) is a connected
compact set in R™, contained in the connected component of { o, > 0} that
contains O", and therefore A(M™) C T',.. Observe now that M™ and 0B, (po)
are tangent at p. We can apply Theorem 1.1 and conclude that M™ and
0B, (po) coincide in a neighborhood of p, since [u.(p")/p']" is precisely the

constant value of the r-mean curvature of 0B,/ (po), oriented by the normals
pointing inward, at any point. But this contradicts (4.1). Therefore, p’ < p.
If equality holds here, then Theorem 1.1 applies again and shows that M™
and 0B, (po) coincide in a neighborhood of points of tangency, and a stan-
dard argument using the connectedness ensures that these hypersurfaces are
identical. O
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Proof of Theorem 1.4. If p < 7, then there is nothing to prove. Suppose
that p > 7 and M"™ ¢ B;(po). In this case, if p is a point in M™ farthest
from po, then p € M —OM, p' = d(po,p) > 7 and B, (po) is the smallest ball
centered at po enclosing M™. Here d(po,.) stands for the distance function
from pg in the space form Q"*!. The farthest point p from py, since it is an

interior point of M™, is a point where M™ and 0B, (po) are tangent. Orient

M™ at p with the unitary normal vector 1o pointing inward to 9B, (po). Since
P < pand u.(t)/t is positive and monotone decreasing on ¢, we have over M™

o[ 2w

Since [pe(p")/p']" is the constant value of the r-mean curvature of 9B, (po),

oriented by the normals pointing inward, we can apply Theorem 1.1 and
conclude that M™ coincides with 0B, (po) in a neighborhood of p. Arguing
via connectedness, we obtain that M — M is contained in 0B, (py). But OM
is also contained in 0B, (po), contradicting the relation OM C B,(py) and
T<p. O

Proof of Theorem 1.5. Consider the function g = 3d,,(.)?, where dp,(.)
stands for the distance function from py on N™*1. Note that the function
g is differentiable in a neighborhood of B,(py). Let ¢: M — R be given
by ¢ = g o F. The function ¢ is differentiable since F'(M) is contained in
the closed normal ball B,(py). We now show that B,(po) is the smallest ball
centered at py that contains F'(M). If this is not the case, there exists a closed
ball B,/ (pg) with p’ < p that contains F(M). Let p € M™ be a point such
that d,,(F(p)) = p’. It is well known that if n is the unitary vector that is

normal to M™ at p, pointing inward to 0B, (po), then

_ grad gp(p)
|grad grp) |

with |grad gr(,)| = dp, (F(p)) = p. Here grad gr(,) is the value at F(p) of
the gradient of g in N™*1. It follows from Lemma 2.5 in [10] and the fact
that, for fixed ¢, p.(t) is monotone decreasing in ¢, that the Hessian of ¢ in p
satisfies

Hess o (X, X) = pe(dp, (F (p))) (X, X) + (grad g (), (X, X))

for all X € T, M, where « is the second fundamental form of F" at p. Consider
now an arbitrary principal curvature \; of A, with unitary principal direction
e;. Since ¢ attains a maximum at p, we deduce that

0 > Hess pp(eq,e5) > pe(p’) — p' i,
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that is, A; > uc(p’)/p’. Consequently, we have

NT T
Ho(p) > {Nc(;ﬂ)} S [uc(p)} ’
p p
which contradicts the hypothesis. Therefore, p" = p and B,(po) is the smallest
ball centered at py that contains F(M). Observe that if we consider the

constant function defined as the restriction of g to 0B,(po), then proceeding
as above we deduce that for 0B,(py), oriented by the normals pointing inward,
at any point all principal curvatures are greater than or equal to p.(p)/p. This

implies that at any point the principal curvature vector of 0B,(py) belongs

to O™ and that the r-mean curvature H). of 0B,(po) satisfies

H; > {“(p)] =
p
By Theorem 1.1, this implies that F'(M) and 0B,(po) coincide in a neigh-
borhood of F(p). Arguing via connectedness, we conclude that F(M) is the
boundary of B,(pg). Since now M™ has all principal curvatures greater than
or equal to u.(p)/p and, by assumption, |H,| < [u.(p)/p]", it follows that all
principal curvatures are equal to p.(p)/p. In particular, if H is the mean cur-
vature vector function on M™ then |H| = u.(p)/p. Theorem 1.5 now follows
from Proposition 3.4 in [13]. O

REMARK 4.2. It is clear from the proofs of our results that when r is even
we can assume the less restrictive hypothesis H, < [u.(p)/p]" in Theorems
1.4 and 1.5.

REMARK 4.3. It follows from Theorem 1.1 that, in any ambient space, if a
hypersurface remains on one side of another hypersurface in a neighborhood
of a tangency point and both hypersurfaces have the same constant mean
curvature, then they coincide in a neighborhood of such a point.

REMARK 4.4. 1In [9], J. Hounie and M.L. Leite have obtained tangency
principles for hypersurfaces in Euclidean space satisfying H,, = 0. The proofs
of their tangency principles are based on the fact that such hypersurfaces
satisfy a nonlinear equation G, (Hess u,grad ;) = 0 and on algebraic results.
In any Riemannian manifold, if we have a hypersurface with H,. = 0 then, as
we have seen above, the nonlinear equation ®,(A(p)(x)) = 0 is also satisfied.
This fact permits us to extend their tangency principles, stated as Theorem
0.1 and Theorem 0.2, to hypersurfaces in any Riemannian manifold. The
proofs are identical.
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