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HOMOLOGY LENS SPACES IN TOPOLOGICAL
4-MANIFOLDS

ALLAN L. EDMONDS

Abstract. For a closed 4-manifold X4 and closed 3-manifold M3 we

investigate the smallest integer n (perhaps n =∞) such thatM3 embeds
in #nX4, the connected sum of n copies of X4. It is proven that any

lens space (or homology lens space) embeds topologically locally flatly

in #2(CP 2# CP
2
), in #4S2 × S2 and in #8CP 2.

1. Introduction

For any closed 4-manifold X4 and closed 3-manifold M3 one can define
a simple numerical invariant, the X4-genus of M3, denoted gX4(M3), by
saying gX4(M3) ≤ n provided M3 embeds in #nX

4, the connected sum of
n copies of X4. It follows that 0 ≤ gX4(M3) ≤ ∞ and that gX4(M3) = 0
if M3 embeds in S4, while gX4(M3) = ∞ if M3 embeds in no #nX

4 for
any integer n. Here we understand our manifolds to be topological manifolds
and our embeddings to be locally flat. There is also an analogous invariant
gDIFFX4 (M3) where one requires X4 and the embedding to be smooth, and we
endow the 3-manifold with its essentially unique smooth structure. Certainly
gX4(M3) ≤ gDIFFX4 (M3) for any smooth 4-manifold.

For example consider the case X = S2 × S2. It is known that any closed
orientable 3-manifold M3 embeds smoothly in some #nS

2 × S2, so that
gDIFFS2×S2(M3) < ∞. It will be shown here that gS2×S2(L(p, q)) ≤ 4 for ev-
ery lens space L(p, q). We doubt that the DIFF S2 × S2-genus of lens spaces
is bounded.

It is also known that any lens space L(p, q) embeds smoothly in some
#nCP 2, so that gDIFFCP 2 (L(p, q)) < ∞. But not every 3-manifold embeds
smoothly in some #nCP 2, by gauge-theoretic considerations. For example,
the Poincaré homology 3-sphere does not embed smoothly in #nCP 2 for
any positive integer n. It will be shown here that gCP 2(L(p, q)) ≤ 8. It is not
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known whether this is a sharp bound, but it is known [2] that gCP 2(L(8k, 1)) =
5 for k > 2. Again, we doubt very much that gDIFFCP 2 (L(p, q)) is bounded.

One interest in the embedding questions considered here stems from work
of F. Fang [3] who showed that if a 3-manifold M3 embeds in #nCP 2, then
the open 4-manifold M3 × R admits uncountably many smooth structures.
See [3] for more references to the problem of constructing uncountably many
smooth structures on suitable open 4-manifolds.

Now when a 3-manifold M3 embeds in a closed, simply connected 4-
manifold X4, M3 bounds in X4 (since H3(X4) ≈ H1(X4) = 0), splitting X4

into two compact submanifolds U and V with ∂U = M = ∂V . Taking into
account orientations, assuming that U and V inherit orientations from one on
X4 and that M3 (which must then admit an orientation) is oriented, then we
can assume that ∂U = M3, while ∂V = −M3. Thus, to show that M3 embeds
in any particular X4 it suffices to show that M3 and −M3 bound appropriate
(preferably simply connected) manifolds U and V such that U

⋃
M V ∼= X4.

To recognize U
⋃
M V as X4 it helps to be in the topological category, where

one can apply Freedman’s classification in terms of the intersection pairing
(and the Kirby-Siebenmann triangulation obstruction).

Our starting point will be the following result.

Theorem 1.1. Any 3-dimensional homology lens space L(p, q) bounds a
compact, simply connected, topological 4-manifold with b2 ≤ 2.

By exercising due care we can show that a homology lens space always
bounds suitable 4-manifolds to show that it embeds in certain relatively small
connected sums.

Theorem 1.2. Any 3-dimensional homology lens space L(p, q) embeds
topologically locally flatly in #2(CP 2# CP

2
), in #4S

2×S2, and in #8CP 2.

If p is odd or if q ≡ ±1 mod p, then L(p, q) actually embeds in #5CP 2.
But, as noted above, it is known that L(8k, 1) does not embed in #4CP 2

when k > 2. (See [2].)

Conjecture 1.3. For any simply connected 4-manifold X4 and for any
homology lens space L(p, q), the X4-genus gX4(L(p, q)) <∞.

For X4 indefinite, this follows easily from the present work, so it essentially
reduces to considering X4 with a definite intersection pairing that does not
split nontrivially as an orthogonal sum. The same conjecture may be posed
for any rational homology 3-sphere in place of the lens space L(p, q). In
contrast F. Fang [3] has shown that there exist 3-manifolds with large first
Betti number b1 that do not embed in any positive definite, simply connected,
4-manifold.
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All the results about topological embeddings of lens spaces derived in this
paper apply equally well to any homology lens space, that is, a 3-manifold M3

withH1(M3) finite cyclic. In particular, a “homology lens space L(p, q)” refers
to any 3-manifold with H1 = Zp and linking form equivalent to ((p − q)/q),
or, after changing orientation, (q/p).

2. Intersection pairings and linking forms

The crucial invariants we must study are the linking form associated with
a 3-manifold, the intersection pairing associated to a 4-manifold bounded by
the 3-manifold, and the relationship between the two.

2.1. Intersection numbers and linking numbers. We refer to the
classic book of Seifert and Threlfall [1934], Sections 73-77, for generalities
and basic definitions of intersection numbers and linking numbers, in the con-
text of polyhedral manifolds.

2.2. Intersection pairings and linking forms. By an abstract intersec-
tion pairing we understand a finitely generated free abelian group F together
with a symmetric bilinear mapping S : F × F → Z (S for “Schnittzahlen”).
We will only be concerned with nondegenerate intersection pairings, such that
the associated adjoint homomorphism adS : F → Hom(F,Z) has nonzero de-
terminant, or equivalently has finite index image. It is often convenient to de-
scribe such pairings by square integer matrices that give the adjoint adS with
respect to some basis of F and the corresponding dual basis for Hom(F,Z).
Our main geometric example of such an intersection pairing is the second
homology of a simply connected 4-manifold with connected boundary, where
the boundary is a rational homology 3-sphere, under the usual intersection
number. On the algebraic side any symmetric integer matrix with nonzero
determinant determines such an intersection pairing. And all such algebraic
intersection pairings can be realized by smooth 4-manifolds, by attaching 2-
handles to the 4-ball along a suitable framed link.

By an abstract linking form we understand a finite abelian group G together
with a symmetric bilinear mapping V : G × G → Q/Z (V for “Verschlin-
gungszahlen”). We will only be concerned with nonsingular linking forms,
such that the associated adjoint homomorphism adV : G→ Hom(G,Q/Z) is
an isomorphism. One can describe such a linking form by a suitable matrix
of rational numbers, by choosing, say, generators for G, and indicating the
pairings of pairs of these generators. See also the end of this section.

Our main geometric example of such a linking form is the linking form of a
3-manifold. Let M3 be a closed oriented 3-manifold and let T1(M3) denote the
torsion subgroup of the first homology H1(M3), with integer coefficients. We
define the classical linking form VM3 : T1(M3) × T1(M3) → Q/Z as follows:
Suppose that α, β ∈ T1(M3). Represent α and β by disjoint 1-cycles, or even
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simple closed curves A and B. There is a positive integer n such that nβ = 0 in
H1(M3). Thus there is a 2-cycle C with ∂C = nB. Then VM3(α, β) = A ·C/n
in Q/Z. One argues that the linking form is well-defined, independent of all
the choices made in the course of its definition. The linking form is symmetric
and is nonsingular, in the sense that the associated homomorphism T1(M3)→
Hom(T1(M3),Q/Z) is an isomorphism, by Poincaré Duality and Universal
Coefficients.

2.3. Presentation of linking forms. Suppose that M3 = ∂W 4, where
W 4 is a compact oriented simply connected 4-manifold. Every closed oriented
3-manifold bounds such a 4-manifold. Consider the homology long exact
sequence of the pair (W 4,M3):

0 −→ H2(M3) i−→ H2(W 4)
j−→ H2(W 4,M3) ∂−→ H1(M3) −→ 0

Lemma 2.1. If j(ξi) = niαi (i=1,2) where n1n2 6= 0, then VM3(∂α1, ∂α2)
= −1

n1n2
S(ξ1, ξ2) in Q/Z, where S denotes the intersection pairing on H2(W 4).

Also, if u ∈ H2(M3) and η ∈ H2(W 4) = H2(W 4,M3), then ∂(η)·u = η(i(u)).

The last condition is null in the case the boundary is a rational homology
sphere or, equivalently, the intersection pairing in nondegenerate. One says
that H2(W 4) together with the intersection pairing S presents H1(M3). In
general a nondegenerate intersection pairing (F,S) presents a linking form
(G,V) if there is a short exact sequence

0 −→ F
adS−→ Hom(F,Z) ∂−→ G −→ 0

such that if adS(ξi) = niαi (i=1,2) where n1n2 6= 0, then V(∂α1, ∂α2) =
−1
n1n2
S(ξ1, ξ2) in Q/Z. Another way of writing this (compare Turaev [1984],

Section 3) is V(∂α1, ∂α2) = −S−1(α1, α2) in Q/Z. Here S−1 denotes the
restriction of the rational bilinear pairing whose associated homomorphism is
(adS ⊗Q)−1 : Hom(F,Q) = Hom(F,Z)⊗Q→ F ⊗Q.

One consequence of Wall’s analysis [13] of linking forms is that any abstract
linking form is presented by some abstract intersection pairing. For example,
(q/p) is presented by a matrix whose size depends on a certain continued
fraction decomposition of q/p. Geometrically this corresponds to expressing
a lens space as the boundary of an appropriate plumbing manifold, whose
second Betti number depends on the length of the corresponding continued
fraction. One of our goals is to bound the rank of such presentations.

2.4. Topological realization of algebraic presentations. Here we de-
scribe known conditions for translating a presentation into a 4-manifold with
given boundary.

Given an abstract intersection pairing, described, say, by a symmetric inte-
ger matrix with nonvanishing determinant, then this intersection pairing can



HOMOLOGY LENS SPACES IN TOPOLOGICAL 4-MANIFOLDS 831

easily be realized by a compact simply connected smooth 4-manifold obtained
by attaching 2-handles to the 4-ball along any framed link whose linking ma-
trix is the given symmetric integer matrix. In this way one hardly controls the
corresponding boundary, except to say that its linking pairing is determined
as above. It turns out that in the topological category one can say much more,
actually prescribing the boundary in advance. Boyer [1] and Stong [11] have
independently proven the following result, which extends Freedman’s original
realization result for closed simply connected 4-manifolds.

Theorem 2.2. If the geometric linking form (H1(M3),V) is presented by
an abstract intersection pairing (F,S), then M3 is the boundary of a simply
connected topological 4-manifold X4 with H2(X4) = F and S as intersection
pairing.

One corollary of this result is that if a given 3-manifold N3 bounds a simply
connected 4-manifold Y 4, then any other 3-manifold M3 with the same linking
form bounds a topological 4-manifold X4 with the same intersection pairing
as Y 4. Going further, the work of Boyer actually characterized when two
simply connected 4-manifolds with given boundary are homeomorphic.

So, in the topological category, the question of what kinds of simply con-
nected 4-manifolds have a given boundary is in fact reduced to a purely alge-
braic one about existence of suitable presentations of linking forms.

Remark 2.3. When the intersection pairing on F has odd type, the work
of Boyer and of Stong shows that both a zero and a nonzero Kirby-Siebenman
stable triangulation obstruction in H4(X4,M3; Z2) can be realized.

Both Boyer and Stong dealt with general closed oriented 3-manifolds, not
just rational homology spheres, as considered here. In the present case a
rather simpler proof is available, which we sketch for the reader’s convenience
(cf. Boyer [1], Section 8).

Sketch proof of Theorem 2.2. Given a presentation (F,S) of the linking
form on H1(M3), we can realize (F,S) by a framed link in the 3-sphere.
Attaching 2-handles to the 4-ball along this framed link produces a smooth,
compact, simply connected 4-manifold V 4 with intersection pairing (F,S).
The boundary ∂V 4 = N3 is a 3-manifold with a linking form equivalent to
that of the given 3-manifold M3. Passing to the dual handle decomposition,
we see that V 4 can be described as being obtained from N3 × I by attaching
2-handles along a framed link in N3 = N3 × {1}, and then capping off with
a 4-handle. We can choose a framed link in M3 that mirrors this link in N3,
in the sense that the elements of the link represent corresponding elements in
first homology and all linking numbers and framings agree with those in N3.
If we add 2-handles to M3×I along this framed link in M3×{0}, we obtain a
compact, smooth 4-manifold W 4, with one boundary component M3 and the
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other boundary component a homology 3-sphere Σ3. By Freedman we can cap
off Σ3 with a compact contractible topological 4-manifold ∆4. In particular
X4 = W 4 ∪ ∆4 is a compact simply connected, topological 4-manifold with
boundary M3 and intersection pairing equivalent to (F,S). �

3. Minimal presentations of (q/p)

In this section we will derive smallest possible presentations of the inde-
composable linking forms (q/p).

3.1. Rank 1 forms. Here we determine which rank 1 linking forms are
presented by rank 1 intersection pairings.

A rank 1 linking form on Z/p can be described by a 1×1 matrix (q/p), where
q is prime to p and q is well-defined up adding a multiple of p and multiplying
by a square of a unit mod p. It is the linking form of the lens space L(p, q).
Such a linking form can always be presented by some intersection pairing.
One way to do this is to develop a continued fraction expansion of p/(p− q),
as in Hirzebruch et al. [7]. Say it is [a1, . . . , an]. This defines a plumbing
4-manifold P 4[a1, . . . , an], which has an intersection pairing of rank n and
has oriented boundary L(p, q). As p and q vary, the rank n does not stay
bounded. We seek a way of controlling the rank.

The 1×1 intersection pairing (p) is positive definite and realizes the linking
form (−1/p). We state this as follows:

Theorem 3.1. The linking form (q/p) is realized by a rank 1 matrix [a]
if and only if ∓q is a quadratic residue mod p (and a = ±p).

3.2. Rank 2 forms. We begin the study of rank 2 presentations with a
general realization statement, which provided the original starting point for
this paper.

Theorem 3.2. If p and q are relatively prime integers, then the abstract
linking form (q/p) : Z/p×Z/p → Q/Z is presented by a non-degenerate rank
2 abstract intersection pairing S : Z2 × Z2 → Z of odd type.

Proof. For the purposes of the proof we may assume that p is positive.
Note that we may also replace q by −q if we wish. If b and d are integers,
then the matrix

G =
[
q/p b
b d

]
understood mod Z also gives the linking form (q/p). If one can choose the
integers b and d so that detG = ±1/p, then G−1 is integral and S = −G−1

presents (q/p).
Now detG = dq/p− b2, so this amounts to solving the equation dq− pb2 =

±1 for b and d. Actually we have a little more freedom, since q is only defined
modulo p.
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One of q, −q, p+ q, or 3p+ q must be congruent to 3 mod 4. Thus we may
assume that q ≡ 3 mod 4. Now consider the arithmetic progression q + 4np,
n = 1, 2, . . .. By Dirichlet’s theorem on primes in an arithmetic progression
(see [8], for example), some q + 4np is prime. Therefore we can assume that
q is a prime congruent to 3 mod 4. But then, since −1 is not a square mod q,
either p or −p must be a square mod q and the proposition follows. �

Remark 3.3. Note that we have shown that (±q/p) is presented by the
intersection pairing

S = −G−1 =
[
−dp bp
bp −q

]
and in particular has a diagonal entry that is negative and odd.

4. First topological applications

Here we combine the theorem of Boyer and Stong with the algebraic result
of the preceding section to find small coboundaries for lens spaces and other
3-manifolds.

Corollary 4.1. If p is a positive integer and q is an integer prime to p,
then any homology lens space L(p, q) is the boundary of a simply connected
topological 4-manifold, with b2 = 1 if and only if ±q is a quadratic residue
mod p.

Corollary 4.1 is originally due to O. Saeki [9], who studied homology lens
spaces that bound simply connected topological or differentiable 4-manifolds
with b2 = 1, without the present regard for orientations. In particular he
found lens spaces that bound such 4-manifolds topologically but not smoothly,
using first µ invariants and also Donaldson theory. Earlier R. Fintushel and R.
Stern [4] studied the problem of when a lens space bounds such a 4-manifold
smoothly and found both further obstructions and some explicit constructions.

Corollary 4.2. If p is a positive integer and q is an integer prime to p,
then any homology lens space L(p, q) is the boundary of a simply connected
topological 4-manifold, with b2 ≤ 2.

We note that the rank 2 presentation matrix above is necessarily of odd
type, as the diagonal entry ±q is odd.

Corollary 4.3. Any homology lens space L(p, q) admits a topological
embedding in #2(CP 2# CP

2
).

Proof. We have seen that L(p, q) bounds a simply connected 4-manifold
of odd type and with b2 = 2. The double of such a 4-manifold is precisely
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#2(CP 2# CP
2
). This follows from Freedman’s classification of simply con-

nected topological 4-manifolds together with the observation that the mod 2
Kirby-Siebenmann invariant of the double vanishes by additivity. �

5. Even intersection pairings and applications

Here we investigate presenting a linking form by an even intersection pair-
ing. We use an algebraic analog of the geometric notions of “blow-up” and
“blow-down”. If V is an intersection pairing, then we will refer to V ⊕ 〈+1〉
and V ⊕ 〈−1〉 as being blow-ups of V . If v ∈ V and v · v = ±1, then
v⊥ = {u ∈ V : u · v = 0} is an orthogonal summand of V and we say that
v⊥ is obtained from V by blowing down v. Notice in particular that V and
its blow-ups and blow-downs all present the same linking form, as would the
orthogonal sum of V with any unimodular pairing.

Recall that if V is an intersection pairing, then an element v ∈ V is said
to be characteristic if one has v ·w ≡ w ·w mod 2 for all w ∈ V . An element
that is not characteristic is called ordinary. It is easy to see that characteristic
elements always exist. (Geometrically, the mod 2 choices for characteristic
elements correspond to spin structures on the boundary manifold.) A key
point is that if v ∈ V is characteristic, then the induced pairing on v⊥ is of
even type. Similarly, if V has odd type and v ∈ V is not characteristic, then
the induced pairing on v⊥ is again of odd type.

Proposition 5.1. The rank 1 linking form (q/p) is presented by a rank
4 intersection pairing of even type.

Proof. We know that (q/p) is presented by a rank 2 pairing V of odd type.
Now V contains characteristic elements v ∈ V . If one could choose v such
that v ·v = ±1, then (q/p) would be presented by the rank 1 pairing v⊥, which
would be of even type. This cannot happen in general, since, in particular,
we would need p even. But in any case consider V ⊕ [ 0 1

1 0 ]. Characteristic
elements in [ 0 1

1 0 ] are of the form w = 2ke1 + 2`e2 and w ·w = 4k`, which can
be any multiple of 4. Thus in V ⊕ [ 0 1

1 0 ] there are characteristic elements of
the form v + w such that (v + w)2 = −1, 0, 1, or 2. If (v + w)2 = ±1, then
pass to the orthogonal complement (v + w)⊥, which is even, of rank 3, and
presents (q/p). Otherwise, first add on an additional 〈+1〉 or 〈−1〉 and an
additional basis vector e to v+w to get a characteristic element u = v+w+e
in V ⊕ [ 0 1

1 0 ]⊕ (±1), such that u2 = ±1. Passing to u⊥ then provides a rank
4 even pairing presenting (q/p), as required. �

Corollary 5.2. If p is a positive integer and q is an integer prime to
p, then any homology lens space L(p, q) admits a topological embedding in
#n S

2 × S2, n ≤ 4.
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Proof. We have seen that L(p, q) bounds a simply connected 4-manifold of
even type and with n = b2 ≤ 4. The double of such a 4-manifold is precisely
#n S

2 × S2, by Freedman’s classification of simply connected topological 4-
manifolds. �

6. Definite intersection pairings and applications

Here we investigate presenting a linking form by a definite intersection
pairing. It is not too hard to do this, but we have to exert some effort to keep
the resulting rank as small as possible. We begin with some lemmas useful
in applying the blow-up/blow-down procedure introduced in the preceding
section.

Lemma 6.1. Suppose that V is an odd intersection pairing that is not
positive definite. Then there is v ∈ V such that v · v < 0 and v · v is odd.

Proof. There is a u ∈ V such that u · u < 0 and there is w ∈ V such that
w ·w is odd. We only need to consider further the case that u · u is even and
w · w > 0; otherwise we are done. Replacing w by −w if necessary we may
also assume that u · w ≤ 0.

Now let v = w + ku, k ∈ Z. We compute that

v · v = w · w + 2ku · w + k2u · u
from which it is clear that v · v is odd and that for sufficiently large k we also
have v · v < 0. �

Lemma 6.2. Suppose that V is an odd intersection pairing that is not
positive definite. Then there is u ∈ V such that u · u = −n < 0, u is ordinary
(actually 2-divisible), and n− 1 is not of the form 4a(8b+ 7).

Proof. There is a v ∈ V such that v · v = −(2k + 1) < 0 for some integer
k. Set u = 2v. Then u · u = 4v · v < 0. Also u is ordinary, since there is some
w ∈ V such that w · w is odd, while u · w = 2v · w is even. Finally, setting
n = −u ·u, we have n− 1 = 4(2k+ 1)− 1 = 8k+ 3, which is never of the form
4a(8b+ 7). �

Corollary 6.3. If V is an intersection pairing of odd type that is not
positive definite, then there is v ∈ V ⊕ 3 〈+1〉 such that v · v = −1 and v is
ordinary.

Proof. By the preceding result there is u ∈ V such that u · u = −n < 0, u
is ordinary (and, in fact, 2-divisible), and n− 1 is not of the form 4a(8b+ 7).
By number theory (see [6], for example), n − 1 can be written as a sum of
3 squares, n − 1 = a2

1 + a2
2 + a2

3. Set v = u + a1e1 + a2e2 + a3e3, where
e1, e2, and e3 form a standard orthonormal basis for 3 〈+1〉. Then v · v =
u · u + a2

1 + a2
2 + a2

3 = −n + n − 1 = −1 and v is ordinary since there is
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w ∈ V ⊂ V ⊕ 3 〈+1〉 such that w · w is odd, but v · w = u · w is even since u
is 2-divisible. �

Proposition 6.4. The rank 1 linking form (q/p) is presented by a positive
definite intersection pairing of rank ≤ 6 and of odd type.

Proof. We know that (q/p) is presented by a rank 2 pairing V of odd
type. If V happens to be positive definite, then we are done. There are two
remaining cases, depending on whether V is indefinite or negative definite.

First suppose that V is indefinite. Then V contains an ordinary element
v ∈ V such that v ·v = −n < 0. If we could choose v such that v ·v = −1, then
(q/p) would be presented by the rank 1 form v⊥. In general this is impossible
to achieve. We can, however, blow up the form, passing to V ⊕ 3 〈+1〉, which
still represents (q/p). Here we can find an ordinary v ∈ V ⊕ 3 〈+1〉 such that
v · v = −1. Passing to v⊥, we obtain a positive definite integral pairing of
rank 2 + 3− 1 = 4 presenting (q/p).

Finally we must consider the case when (q/p) is presented by a negative
definite rank 2 pairing V of odd type. In this situation we do much the same
as before. We need to blow down twice, however. In order to do this, we must
blow up 3 〈+1〉 twice. The net effect is to produce a positive definite pairing
of rank 2+3+3−1−1 = 6 and odd type presenting (q/p). It should be noted
that in any particular case we seem to be able to do better than this, and we
know of no case where the full rank 6 possibility is actually required. �

Remark 6.5. If (q/p) is represented by a rank 2 positive definite odd
pairing, then (−q/p) is represented by a rank 2 negative definite odd pair-
ing, hence by a rank ≤ 6 positive definite odd pairing. (And, of course, if
(q/p) is represented by a rank 2 negative definite odd pairing, then (−q/p)
is represented by a rank 2 positive definite odd pairing, while (−q/p) is then
represented by a rank ≤ 6 positive definite odd pairing.) If (q/p) is repre-
sented by a rank 2 indefinite odd pairing, then (−q/p) is also represented by a
rank 2 indefinite odd pairing, hence both are represented by rank ≤ 5 positive
definite odd pairings, according to the proof of the theorem.

Corollary 6.6. If p is a positive integer and q is an integer prime to
p, then any homology lens space L(p, q) admits a topological embedding in
#nCP 2, for some n ≤ 8.

Proof. Replacing q by −q if necessary, we know that either L(p, q) bounds
a simply connected 4-manifold of odd type and with positive definite intersec-
tion pairing and b2 = 2, while −L(p, q) bounds a simply connected 4-manifold
with positive definite intersection pairing and b2 ≤ 6; or L(p, q) and −L(p, q)
both bound simply connected 4-manifolds with positive definite intersection
pairings of odd type and b2 ≤ 4. In either of the two cases, the union of the
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two 4-manifolds along the lens space yields a simply connected 4-manifold,
with b2 ≤ 8. Thus in either case we obtain an embedding of L(p, q) in a
closed, simply connected 4-manifold with positive definite intersection pair-
ing of odd type and rank at most 8. It follows from the classification of
unimodular intersection pairings of low rank that the intersection pairing is
diagonalizable. By Freedman’s classification theorem, it only remains to be
sure the Kirby-Siebenmann stable triangulation obstruction vanishes. This
is taken care of by Remark 2.3 above, since we can, if necessary, change the
Kirby-Siebenmann invariant of one of the two pieces to make the global in-
variant vanish. Then Freedman’s classification theorem shows that we have
#nCP 2. �
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