BMO RESULTS FOR OPERATORS ASSOCIATED TO HERMITE EXPANSIONS

KRZYSZTOF STEMPAK AND JOSÉ LUIS TORREA

Abstract

We prove $B M O$ and L^{∞} results for operators associated to the heat-diffusion and Poisson semigroups in the multi-dimensional Hermite function expansions setting. These include maximal functions and square function operators. In the proof a technique of vector valued Calderón-Zygmund operators is used.

1. Introduction

In the d-dimensional Euclidean space $\mathbb{R}^{d}, d \geq 1$, consider the system of multi-dimensional Hermite functions

$$
h_{\alpha}(x)=h_{\alpha_{1}}\left(x_{1}\right) \cdot \ldots \cdot h_{\alpha_{d}}\left(x_{d}\right)
$$

where $\alpha=\left(\alpha_{1}, \ldots, \alpha_{d}\right), \alpha_{i} \in\{0,1, \ldots\}, x=\left(x_{1}, \ldots, x_{d}\right)$, and

$$
h_{k}(s)=\left(\pi^{1 / 2} 2^{k} k!\right)^{-1 / 2} H_{k}(s) \exp \left(-s^{2} / 2\right), \quad k=0,1, \ldots
$$

are the one-dimensional Hermite functions, and $H_{k}(s)$ denotes the k th Hermite polynomial. The system $\left\{h_{\alpha}\right\}$ is complete and orthonormal in $L^{2}=$ $L^{2}\left(\mathbb{R}^{d}\right)$; it consists of eigenfunctions of the d-dimensional harmonic oscillator (Hermite operator)

$$
L=-\Delta+|x|^{2}, \quad \Delta=\sum_{i=1}^{d} \frac{\partial^{2}}{\partial x_{i}^{2}}
$$

More specifically, one has

$$
L h_{\alpha}=(2|\alpha|+d) h_{\alpha}
$$

Received February 17, 2005; received in final form October 11, 2005.
2000 Mathematics Subject Classification. Primary 42B20. Secondary 42C10.
The research of the first author was supported in part by KBN grant \#2 P03A 02825. The research of the second author was supported by European Network Harmonic Analysis HPRN-CT-2001-00273-HARP and Ministerio Ciencia y Tecnologia BFM 2002-04013-C0202.
where $|\alpha|=\alpha_{1}+\cdots+\alpha_{d}$. The operator L is positive and symmetric in L^{2} on the domain $C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$. It may be easily shown that the operator \mathcal{L} given by

$$
\mathcal{L}\left(\sum\left\langle f, h_{\alpha}\right\rangle h_{\alpha}\right)=\sum(2|\alpha|+d)\left\langle f, h_{\alpha}\right\rangle h_{\alpha}
$$

on the domain

$$
\operatorname{Dom}(\mathcal{L})=\left\{f \in L^{2}: \sum\left|(2|\alpha|+d)\left\langle f, h_{\alpha}\right\rangle\right|^{2}<\infty\right\}
$$

is a self-adjoint extension of L, has the discrete spectrum $\{2 n+d: n=$ $0,1, \ldots\}$ and admits the spectral decomposition

$$
\mathcal{L} f=\sum_{n=0}^{\infty}(2 n+d) \mathcal{P}_{n} f, \quad f \in \operatorname{Dom}(\mathcal{L})
$$

where the spectral projections \mathcal{P}_{n} are $\mathcal{P}_{n} f=\sum_{|\alpha|=n}\left\langle f, h_{\alpha}\right\rangle h_{\alpha}$.
The heat-diffusion semigroup $\left\{T_{t}\right\}_{t>0}$, associated to \mathcal{L}, is defined by

$$
\begin{equation*}
T_{t} f(x)=e^{-t \mathcal{L}} f(x)=\sum_{n=0}^{\infty} e^{-t(2 n+d)} \mathcal{P}_{n} f(x), \quad f \in L^{2} \tag{1.1}
\end{equation*}
$$

The Poisson semigroup $\left\{P_{t}\right\}_{t>0}$, associated to \mathcal{L}, is given by

$$
\begin{equation*}
P_{t} f(x)=e^{-t \mathcal{L}^{1 / 2}} f(x)=\sum_{n=0}^{\infty} e^{-t(2 n+d)^{1 / 2}} \mathcal{P}_{n} f(x), \quad f \in L^{2} \tag{1.2}
\end{equation*}
$$

In [7] the action of T_{t} and P_{t} was extended onto $L^{q}(w)$ spaces, $1 \leq q<\infty$, $w \in A_{q}$, and L^{∞} by using the series in (1.1) and (1.2) (they are pointwise convergent for every $x \in \mathbb{R}^{d}$). It was then shown that for any $f \in L^{q}(w)$, $1 \leq q<\infty, w \in A_{q}$, or $f \in L^{\infty}, T_{t} f(x)$ and $P_{t} f(x)$ are, respectively, equal to the heat-diffusion and the Poisson integral of f, defined by

$$
\begin{equation*}
g(t, x)=\int_{\mathbb{R}^{d}} G_{t}(x, y) f(y) d y, \quad f(t, x)=\int_{\mathbb{R}^{d}} P_{t}(x, y) f(y) d y \tag{1.3}
\end{equation*}
$$

where

$$
\begin{equation*}
G_{t}(x, y)=(2 \pi \sinh (2 t))^{-d / 2} \exp \left(-\frac{1}{4}\left(\tanh (t)|x+y|^{2}+\operatorname{coth}(t)|x-y|^{2}\right)\right) \tag{1.4}
\end{equation*}
$$

and

$$
\begin{equation*}
P_{t}(x, y)=\frac{t}{\sqrt{4 \pi}} \int_{0}^{\infty} G_{s}(x, y) s^{-3 / 2} e^{-t^{2} / 4 s} d s \tag{1.5}
\end{equation*}
$$

are the heat-diffusion and Poisson kernels. Apart from investigating the operators $f \rightarrow g(t, x)$ and $f \rightarrow f(t, x)$ for fixed $t>0$ we also proved results for the maximal operators

$$
\begin{equation*}
T^{*} f(x)=\sup _{t>0}|g(t, x)|, \quad P^{*} f(x)=\sup _{t>0}|f(t, x)| ; \tag{1.6}
\end{equation*}
$$

cf. [7, Theorems 2.6 and 2.8].

In [8] we investigated L^{p} behaviour of the square functions

$$
\begin{equation*}
\tilde{g}(f)(x)=\left(\int_{0}^{\infty}\left|\frac{\partial}{\partial t} g(t, x)\right|^{2} t d t\right)^{1 / 2}, \quad g(f)(x)=\left(\int_{0}^{\infty}\left|\frac{\partial}{\partial t} f(t, x)\right|^{2} t d t\right)^{1 / 2} \tag{1.7}
\end{equation*}
$$

and

$$
\begin{equation*}
g_{\nabla}(f)(x)=\left(\int_{0}^{\infty}|\nabla f(t, x)|^{2} t d t\right)^{1 / 2} \tag{1.8}
\end{equation*}
$$

where

$$
\nabla=\nabla_{H}=\left(\delta_{1}^{-}, \ldots, \delta_{d}^{-}, \frac{\partial}{\partial t}, \delta_{1}^{+}, \ldots, \delta_{d}^{+}\right)
$$

denotes the Hermite-type full gradient, $\delta_{j}^{ \pm}=\partial_{x_{j}} \pm x_{j}$ are the Hermite-type derivatives and

$$
\left|\nabla P_{t} f(x)\right|=\left(\left|\frac{\partial}{\partial t} P_{t} f(x)\right|^{2}+\sum_{j=1}^{d}\left(\left|\delta_{j}^{-} P_{t} f(x)\right|^{2}+\left|\delta_{j}^{+} P_{t} f(x)\right|^{2}\right)\right)^{1 / 2}
$$

is the Euclidean norm of the vector $\nabla P_{t} f(x)$ in $\mathbb{R}^{2 d+1}$.
The essential aim of the present paper is to investigate the action of the aforementioned operators: T_{t} and $P_{t}, t>0$ fixed, the maximal operators T^{*} and P^{*}, the square functions \tilde{g}, g and g_{∇}, on the spaces L^{∞} and $B M O$. It will be shown that (1.3) extends to $B M O$ functions; hence for $f \in B M O$, (1.6), (1.7) and (1.8) make sense. It is, however, far from being clear that for any $f \in B M O$ the objects in (1.6), (1.7) and (1.8) are finite x-a.e.; we shall prove that this is the case.

A characteristic feature of these operators is that they do not map $B M O$ into $B M O$ with a control of the $B M O$ seminorm. A reason for this is that the image of 1 (1 represents the function on \mathbb{R}^{d} identically equal one) either under the action of these operators or under the action of their vector valued linearizations is not a constant function. This feature is a major difference between the situation we consider here and the classic (Euclidean) situation.

Apart from this feature, in the classic case a dichotomy similar to that from [1, Theorem 4.2 (b)] takes place also for some maximal functions (different from the Hardy-Littlewood maximal function) and some square functions. Recall that Bennet, DeVore and Sharpley proved for the Hardy-Littlewood maximal operator M on \mathbb{R}^{d} that, given $f \in B M O$, either $M f(x)=\infty x$ a.e. or $M f(x)<\infty x$-a.e., and, in the latter case, $\|M f\|_{B M O} \leq C\|f\|_{B M O}$. The same statement is certainly true for the maximal operator $M_{\varphi} f(x)=$ $\sup _{t>0}\left|f * \varphi_{t}(x)\right|$ with φ satisfying some mild regularity conditions (which includes the cases $\varphi=W_{1}$ and $\left.\varphi=P_{1}\right)$, since for such a $\varphi, C^{-1} M f(x) \leq$ $M_{\varphi} f(x) \leq C M f(x)$; cf. the end of Section 4 for an example.

A similar situation occurs for the square function operators. Wang [10] proved that for the classic full gradient g-function g_{∇} based on the Euclidean

Poisson kernel $\left\{P_{t}(x)\right\}_{t>0}$, given $f \in B M O$ either $g_{\nabla}(f)(x)=\infty x$-a.e., or $g_{\nabla}(f)(x)<\infty x$-a.e., and, in the latter case, $\left\|g_{\nabla}(f)\right\|_{B M O} \leq C\|f\|_{B M O}$. Even though not explicitely stated by Wang, the same result holds for the g function based on the Gauss-Weierstrass kernel $\left\{W_{t}(x)\right\}_{t>0}$. Moreover, it was observed by Kurtz [5] that the same statement is true for other LittlewoodPaley operators, namely the area integral $S(f)$ and the g_{λ}^{*} function, $\lambda>1$.

In the situation we consider such a dichotomy does not take place. In Section 4 we prove that for every $f \in B M O, T^{*} f(x)<\infty x$-a.e. In Proposition 5.1 we prove that the square functions given in (1.7) and (1.8) are finite x-a.e. for every $f \in B M O$.

This paper constitutes the final version of research started by both authors a couple of years ago. Meanwhile in [3] a $B M O$ space related to Schrödinger operators was defined and investigated. This new $B M O$ space can be seen as a good substitute of the classic $B M O$ space, especially when boundedness of operators connected with Schrödinger operators is treated. In the case of the potential $V(x)=|x|^{2}$, our present paper and [3] should be seen as complementary papers treating similar boundedness problems by different techniques.

The letter B will be frequently used to denote a ball $B=B\left(x_{o}, r\right)$ in \mathbb{R}^{d} with center x_{o} and radius r. If B is a ball, $B=B\left(x_{o}, r\right)$, and $k>0$, then $k B$ will mean $B\left(x_{o}, k r\right)$. Given a locally integrable function g, we shall define $g_{B}=\frac{1}{|B|} \int_{B} g(z) d z$. Given a subset $A \subset \mathbb{R}^{d}, A^{c}$ will denote the complement $A^{c}=\mathbb{R}^{d} \backslash A$. By $\left\{W_{t}(x)\right\}_{t>0}$ and $\left\{P_{t}(x)\right\}_{t>0}, x \in \mathbb{R}^{d}$, we shall denote, respectively, the (Euclidean) Gauss-Weierstrass and Poisson kernels, defined by

$$
W_{t}(x)=(4 \pi t)^{-d / 2} \exp \left(-|x|^{2} / 4 t\right), \quad P_{t}(x)=c_{d} t\left(t^{2}+|x|^{2}\right)^{-(d+1) / 2}
$$

For any other unexplained symbol or notion we refer the reader to [7], [8], [9].

2. General results

Let $\left(E,\|\cdot\|_{E}\right)$ be a Banach space. We shall integrate E-valued functions defined on \mathbb{R}^{d} or on a subset of \mathbb{R}^{d} by using the notion of the Bochner integral. For a short discussion of Bochner's integral and its basic properties we kindly refer the reader to [11]. The symbol $\mathcal{M}_{E}=\mathcal{M}_{E}\left(\mathbb{R}^{d}\right)$ will mean the linear space of all (equivalence classes of) measurable in the strong sense E-valued functions on \mathbb{R}^{d}. Given $1 \leq p \leq \infty$, by $L_{E}^{p}=L_{E}^{p}\left(\mathbb{R}^{d}\right)$ we mean the Lebesgue space of all functions $f \in \mathcal{M}_{E}$ for which the quantity $\int_{\mathbb{R}^{d}}\|f(x)\|^{p} d x$ (with the usual interpretation when $p=\infty$) is finite. If Lebesgue measure $d x$ is replaced by $w(x) d x$, where $w(x)$ denotes a non-negative weight on \mathbb{R}^{d}, then we consider the weighted Lebesgue spaces $L_{E}^{p}(w)$. By $B M O_{E}=B M O_{E}\left(\mathbb{R}^{d}\right)$
we denote the linear space of all $f \in L_{\text {loc }, E}^{1}$ for which the seminorm

$$
\begin{equation*}
\|f\|_{B M O_{E}}=\sup _{B} \frac{1}{|B|} \int_{B}\left\|f(y)-f_{B}\right\|_{E} d y \tag{2.1}
\end{equation*}
$$

is finite. We will use the fact that the above seminorm is equivalent to the seminorm

$$
f \mapsto \sup _{B} \inf _{a \in E} \frac{1}{|B|} \int_{B}\|f(y)-a\|_{E} d y .
$$

See [2] for this and other properties of the space $B M O$ (the vector-valued case can be developed analogously). We will also use the fact that

$$
\begin{equation*}
B M O\left(\mathbb{R}^{d}\right) \subset L^{1}(w), \quad w(x)=(1+|x|)^{-d-1} . \tag{2.2}
\end{equation*}
$$

Identifying functions that differ by a constant, i.e., considering the quotient $B M O_{E} / E$, a Banach space is obtained with norm given by

$$
\|[f]\|_{\mathbf{B M O}_{E}}=\|f\|_{B M O_{E}}
$$

($[f]$ denotes the quotient class $f+E$). In what follows, to distinguish between $B M O_{E}$ and the quotient $B M O_{E} / E$ we write $\mathbf{B M O}_{E}$ for the latter Banach space. Also, when $E=\mathbb{C}$, we drop the symbol \mathbb{C} and simply write \mathcal{M}, $L^{p}, L^{p}(w), B M O, \mathbf{B M O},\|f\|_{B M O}$ and $\|[f]\|_{\text {BMO }}$. Since all functions from the considered function spaces live on \mathbb{R}^{d}, when denoting these spaces we consequently drop the symbol \mathbb{R}^{d}.

It is clear that, given a linear operator $T: B M O \rightarrow B M O_{E}$ such that $T 1=\mathbf{b} \in E$, we may define the operator $\mathbf{T}: \mathbf{B M O} \rightarrow \mathbf{B M O}_{E}$ by the rule $\mathbf{T}([f])=T f$. Moreover, if T satisfies $\|T f\|_{B M O_{E}} \leq C\|f\|_{B M O}$, then, necessarily, $T 1=\mathbf{b}$ and \mathbf{T} satisfies $\|\mathbf{T}([f])\|_{\text {Bмо }_{E}} \leq C\|[f]\|_{\text {вмо }}$ (with the same C). The condition $T 1=\mathbf{b} \in E$ is the conditio sine qua non for factoring T.

In the classic (Euclidean) setting maximal and square function operators map 1 onto 1, so there is no real reason to distinguish between $B M O$ and BMO; in fact, without any comment in relevant places $B M O$ is always tacitly treated as the quotient $B M O / \mathbb{C}$. In the setting we consider the property " 1 is mapped onto a constant function" is no longer valid; thus the distinction we suggest (between $B M O$ and $\mathbf{B M O}$) seems to be justified.

Given a Banach space E, we shall consider kernels $\mathcal{U}(x, y)$ defined in $\mathbb{R}^{d} \times$ $\mathbb{R}^{d} \backslash \Delta$ with values in E, where Δ denotes the diagonal

$$
\Delta=\left\{(x, x): x \in \mathbb{R}^{d}\right\} .
$$

We assume that for every $x \in \mathbb{R}^{d}$ the function $y \rightarrow\|\mathcal{U}(x, y)\|_{E}$ is locally bounded away from x, and therefore the quantity $\int_{\mathbb{R}^{d}} \mathcal{U}(x, y) f(y) d y$ is well defined for every compactly supported function $f \in L^{1}\left(\mathbb{R}^{d}\right)$ and $x \notin \operatorname{supp} f$ (we agree to multiply vectors by scalars from the right).

We say that a bounded operator $U: L^{2} \rightarrow L_{E}^{2}$ has $\mathcal{U}(x, y)$ as the associated kernel if

$$
\begin{equation*}
U f(x)=\int_{\mathbb{R}^{d}} \mathcal{U}(x, y) f(y) d y, \quad x \text { - a.e. on }(\operatorname{supp} f)^{c} \tag{2.3}
\end{equation*}
$$

for every $f \in L^{2}$ with compact support. If, in addition, the associated kernel \mathcal{U} satisfies

$$
\begin{equation*}
\|\mathcal{U}(x, y)\|_{E} \leq C \frac{1}{|x-y|^{d}} \tag{2.4}
\end{equation*}
$$

and

$$
\begin{array}{ll}
\|\mathcal{U}(x, y)-\mathcal{U}(z, y)\|_{E} \leq C \frac{|x-z|}{|x-y|^{d+1}}, & |x-y| \geq 2|x-z| \\
\|\mathcal{U}(x, y)-\mathcal{U}(x, z)\|_{E} \leq C \frac{|y-z|}{|x-y|^{d+1}}, & |x-y| \geq 2|y-z| \tag{2.6}
\end{array}
$$

then U is called a Calderón-Zygmund operator. It is well known that such an operator uniquely extends to a bounded operator from $L^{q}(w)$ into $L_{E}^{q}(w(x) d x)$ for every $1<q<\infty, w \in A_{q}$, and to a bounded operator from $L^{1}(w)$ into $L_{E}^{1, \infty}(w(x) d x)$ for every $w \in A_{1}$; cf. [2], for instance. To avoid cumbersome notation we use the same letter U to denote these extensions.

It is also well known (cf. [2, Theorem 6.6] with a proof that mimics that one of the scalar case version) that if E is a Banach space and $U: L^{2} \rightarrow L_{E}^{2}$ is a Calderón-Zygmund operator, then $U f \in B M O_{E}$ whenever f is a bounded function of compact support and

$$
\|U f\|_{B M O_{E}} \leq C\|f\|_{L^{\infty}}
$$

An interesting feature of the Calderón-Zygmund theory is that $p=2$ can be replaced in the definition of the Calderón-Zygmund operator by any p, $1 \leq p \leq \infty$. This is particularly helpful when considering maximal operators, cf. Section 4, since then we have a natural $L^{\infty}-L^{\infty}$ boundedness instead of the usual $L^{2}-L^{2}$ one. We should also add that in Propositions 2.1-2.3, $p=2$ can be replaced by any $p, 1 \leq p \leq \infty$, as well.

Observe that $U f$ may not be a priori defined for some bounded functions f, and even $U 1$ may not be defined. In the scalar case different extensions can be given in order to have a satisfactory action of the operator U on L^{∞}; see [6, IV.4.1] and [2, VI.2]. Some of these procedures (for example, the one developed in [2]) can be reproduced in the vector valued setting with a corresponding extension of U mapping L^{∞} into $B M O_{E}$ and, what is more important, they also give a way of defining the action of U on $B M O$ functions.

Here we take the opportunity to present a refined version of such a procedure in the case when the kernel of the involved Calderón-Zygmund operator has better than usual decay outside the diagonal Δ. This will be applied in the next sections since the operators we investigate possess such a feature.

Proposition 2.1. Let E be a Banach space and $U: L^{2} \rightarrow L_{E}^{2}$ be a Calderón-Zygmund operator associated with the kernel $\mathcal{U}(x, y)$ that, in addition to (2.4), (2.5) and (2.6), satisfies

$$
\begin{equation*}
\|\mathcal{U}(x, y)\|_{E} \leq C|x-y|^{-d-1}, \quad|x-y| \geq 1 \tag{2.7}
\end{equation*}
$$

Given a ball B, for $f \in B M O$ and $n=0,1, \ldots$, define $\left(\hat{U}_{B} f\right)_{n}(x)$ to be

$$
\begin{equation*}
\left(\hat{U}_{B} f\right)_{n}(x)=U\left(f \chi_{2^{n+1} B}\right)(x)+\int_{\left(2^{n+1} B\right)^{c}} \mathcal{U}(x, y) f(y) d y \tag{2.8}
\end{equation*}
$$

for $x \in 2^{n} B$, and 0 otherwise. Then the formula

$$
\begin{equation*}
\hat{U} f(x)=\lim _{n \rightarrow \infty}\left(\hat{U}_{B} f\right)_{n}(x) \tag{2.9}
\end{equation*}
$$

defines a linear operator $\hat{U}: B M O \rightarrow L_{\text {loc, } E}^{1}$, independent of the choice of B, that coincides with the (unique) extensions of U onto the spaces $L^{q}(w)$, $1 \leq q<\infty, w \in A_{q}$. In addition, \hat{U} restricted to L^{∞} maps L^{∞} into $B M O_{E}$ and satisfies

$$
\begin{equation*}
\|\hat{U} f\|_{B M O_{E}} \leq C\|f\|_{\infty} \tag{2.10}
\end{equation*}
$$

Proof. We start by noting that for $f \in B M O,\left(\hat{U}_{B} f\right)_{n}$ is well defined. Indeed, $f \chi_{2 B} \in L^{2}$, hence $U\left(f \chi_{2 B}\right)(x)$ is well defined a.e. on \mathbb{R}^{d}. On the other hand, the integral in (2.8) converges due to (2.2) and (2.7). The limit in (2.9) exists since, for every x, the sequence $\left(\hat{U}_{B} f\right)_{n}(x)$ stabilizes: $\left(\hat{U}_{B} f\right)_{n}$ and $\left(\hat{U}_{B} f\right)_{n+1}$ agree on $2^{n} B$. This is because for $x \in 2^{n} B$

$$
\begin{aligned}
U\left(f \chi_{2^{n+1} B}\right)(x)- & U\left(f \chi_{2^{n+2} B}\right)(x) \\
& +\int_{\left(2^{n+1} B\right)^{c}} \mathcal{U}(x, y) f(y) d y-\int_{\left(2^{n+2} B\right)^{c}} \mathcal{U}(x, y) f(y) d y \\
=- & U\left(f \chi_{2^{n+2} B \backslash 2^{n+1} B}\right)(x)+\int_{2^{n+2} B \backslash 2^{n+1} B} \mathcal{U}(x, y) f(y) d y=0
\end{aligned}
$$

The same argument shows that the limit in (2.9) is independent of the choice of B. Indeed, given balls B_{1} and B_{2}, find m such that $B_{1} \subset 2^{m} B_{2}$. Then $\left(\hat{U}_{B_{1}} f\right)_{n}$ and $\left(\hat{U}_{B_{2}} f\right)_{n+m+1}$ agree on $2^{n} B_{1}$.

To check that $\hat{U} f \in L_{\text {loc }, E}^{1}$ we show that

$$
\int_{2^{n+1} B}\|\hat{U} f\|_{E} d x<\infty, \quad n=0,1, \ldots
$$

Indeed, for the first term in (2.8) we have $U\left(f \chi_{2^{n+1} B}\right) \in L_{E}^{2} \subset L_{\mathrm{loc}, E}^{1}$ and for the second term we have

$$
\begin{aligned}
\int_{2^{n} B} \int_{\left(2^{n+1} B\right)^{c}}\|\mathcal{U}(x, y)\|_{E}|f(y)| d y d x & \leq \int_{\left(2^{n+1} B\right)^{c}}|f(y)| \int_{2^{n} B}\|\mathcal{U}(x, y)\|_{E} d x d y \\
& \leq C_{n} \int_{\left(2^{n+1} B\right)^{c}}|f(y)|(1+|y|)^{-d-1} d y \\
& <\infty
\end{aligned}
$$

To verify that \hat{U} is consistent with the action of U on $L^{q}(w)$ spaces assume $f \in B M O \cap L^{q}(w), 1 \leq q<\infty, w \in A_{q}$. It is then easily seen that the integral in (2.8) converges to 0 when $n \rightarrow \infty$. Indeed, for $x \in B$,

$$
\begin{aligned}
& \left\|\int_{\left(2^{n+1} B\right)^{c}} \mathcal{U}(x, y) f(y) d y\right\|_{E} \\
& \quad \leq C\left(\int_{\left(2^{n+1} B\right)^{c}}|x-y|^{-D q^{\prime}} w(y)^{-q^{\prime} / q} d y\right)^{1 / q^{\prime}}\|f\|_{L^{q}(w)}
\end{aligned}
$$

if $1<q<\infty$, or

$$
\left\|\int_{\left(2^{n+1} B\right)^{c}} \mathcal{U}(x, y) f(y) d y\right\|_{E} \leq C \sup _{y \in\left(2^{n+1} B\right)^{c}}\left\{|x-y|^{-D} w(y)^{-1}\right\}\|f\|_{L^{1}(w)}
$$

if $q=1$, and the quantities on the right of the above inequalities tend to 0 as $n \rightarrow \infty$ (we use the fact that $w(y)^{-q^{\prime} / q} \in A_{q^{\prime}}$ if $1<q<\infty$). The above shows that

$$
\hat{U} f(x)=\lim _{n \rightarrow \infty} U\left(f \chi_{2^{n+1} B}\right)(x)
$$

a.e. on B. But $f \chi_{2^{n+1} B} \in L^{q}(w) \cap L^{2}$ and $f \chi_{2^{n+1} B} \rightarrow f$ in $L^{q}(w)$ as $n \rightarrow \infty$. Therefore, $U\left(f \chi_{2^{n+1} B}\right) \rightarrow U f$ in $L^{q}(w)$ if $1<q<\infty$ or in $L^{1, \infty}(w)$ if $q=1$, where the last U denotes the extension of the operator U acting on $L^{q}(w) \cap L^{2}$ onto $L^{q}(w)$ (with appropriate modification when $q=1$).

To show (2.10) take a ball $B=B\left(x_{o}, r\right)$ and $f \in L^{\infty}$, set

$$
a=\int_{(2 B)^{c}} \mathcal{U}\left(x_{o}, y\right) f(y) d y
$$

and write

$$
\begin{aligned}
& \frac{1}{|B|} \int_{B}\|\hat{U} f(x)-a\|_{E} d x \\
& \quad \leq \frac{1}{|B|} \int_{B}\left\|\hat{U}\left(f \chi_{2 B}\right)(x)\right\|_{E} d x \\
& \quad+\frac{1}{|B|} \int_{B}\left\|\int_{(2 B)^{c}}\left(\mathcal{U}(x, y)-\mathcal{U}\left(x_{o}, y\right)\right) f(y) d y\right\| d x
\end{aligned}
$$

$$
\begin{aligned}
\leq & \left(\frac{1}{|B|} \int_{B}\left\|U\left(f \chi_{2 B}\right)(x)\right\|_{E}^{2} d x\right)^{1 / 2} \\
& +C \frac{1}{|B|} \int_{B} \int_{\{y:|x-y| \geq r\}^{c}} \frac{\left|x-x_{o}\right|}{|x-y|^{-d-1}} d y d x \cdot\|f\|_{\infty} \\
\leq & C\left(\frac{1}{|B|} \int_{2 B}|f(x)|^{2} d x\right)^{1 / 2}+C\|f\|_{\infty} \\
\leq & C\|f\|_{\infty}
\end{aligned}
$$

This proves that $\hat{U} f \in B M O_{E}$ and, at the same time, shows (2.10).
To make the picture complete, we also decided to present here a short proof of the fact that once a Calderón-Zygmund operator $U: L^{2} \rightarrow L_{E}^{2}$ is a priori defined on a wider domain that includes $B M O$, then the necessary condition $U 1=\mathbf{b} \in E$ is also sufficient for U to map $B M O$ into $B M O_{E}$ with a control of seminorms.

Proposition 2.2. Let E be a Banach space and $U: L^{2} \rightarrow L_{E}^{2}$ be a Calderón-Zygmund operator with a domain a priori wider than L^{2} and including $B M O$ (and thus the constant functions). Assume also that $U f \in L_{\mathrm{loc}, E}^{1}$ whenever $f \in B M O$. If $U 1=\mathbf{b} \in E$, then

$$
\begin{equation*}
\|U f\|_{B M O_{E}} \leq C\|f\|_{B M O}, \quad f \in B M O \tag{2.11}
\end{equation*}
$$

Consequently, U may be factorized to a bounded operator from BMO into $\mathbf{B M O}_{E}$.

Proof. Let \mathcal{U} be the associated kernel of U. Take $f \in B M O$ and a ball $B=B\left(x_{0}, r\right)$. By assumption $(U f)_{B}$ is well defined and, since $B M O \subset L_{\text {loc }}^{2}$, $\left(f-f_{B}\right) \chi_{5 B}$ (hence also $\left.\left(f-f_{B}\right) \chi_{(5 B)^{c}}\right)$ belongs to the domain of U. Therefore, for $x \in B$ we can write

$$
\begin{align*}
U f(x)- & (U f)_{B} \tag{2.12}\\
= & U\left(\left(f-f_{B}\right) \chi_{5 B}\right)(x)+U\left(\left(f-f_{B}\right) \chi_{(5 B)^{c}}\right)(x)+U\left(f_{B}\right)(x) \\
& -\frac{1}{|B|} \int_{B}\left(U\left(\left(f-f_{B}\right) \chi_{5 B}\right)(z)\right. \\
& \left.+U\left(\left(f-f_{B}\right) \chi_{\left.(5 B)^{c}\right)}\right)(z)+U\left(f_{B}\right)(z)\right) d z \\
= & \sigma_{1}(x)-\frac{1}{|B|} \int_{B} \sigma_{1}(z) d z+\frac{1}{|B|} \int_{B} \sigma_{2}(x, z) d z
\end{align*}
$$

(we used the fact that $f_{B}\left(U 1(x)-(U 1)_{B}\right)=0$ since $U 1$ is a constant function), where

$$
\sigma_{1}(x)=U\left(\left(f-f_{B}\right) \chi_{5 B}\right)(x)
$$

and

$$
\sigma_{2}(x, z)=U\left(\left(f-f_{B}\right) \chi_{(5 B)^{c}}\right)(x)-U\left(\left(f-f_{B}\right) \chi_{(5 B)^{c}}\right)(z) .
$$

Using the triangle inequality in (2.12) and then integrating over B produces

$$
\begin{aligned}
\frac{1}{|B|} \int_{B}\left\|U f(x)-(U f)_{B}\right\|_{E} d x \leq 2 & \frac{1}{|B|} \int_{B}\left\|\sigma_{1}(z)\right\|_{E} d z \\
& +\frac{1}{|B|} \int_{B} \frac{1}{|B|} \int_{B}\left\|\sigma_{2}(x, z)\right\|_{E} d z d x
\end{aligned}
$$

Next, since the operator U maps L^{2} into L_{E}^{2}, we obtain

$$
\begin{aligned}
\frac{1}{|B|} \int_{B}\left\|\sigma_{1}(z)\right\|_{E} d z & =\frac{1}{|B|} \int_{B}\left\|U\left(\left(f-f_{B}\right) \chi_{5 B}\right)(z)\right\|_{E} d z \\
& \leq\left(\frac{1}{|B|} \int_{B}\left\|U\left(\left(f-f_{B}\right) \chi_{5 B}\right)(z)\right\|_{E}^{2} d z\right)^{1 / 2} \\
& \leq C\left(\frac{1}{|B|} \int_{5 B}\left|f(z)-f_{B}\right|^{2} d z\right)^{1 / 2} \\
& \leq C\|f\|_{B M O}
\end{aligned}
$$

On the other hand, if $x, z \in B$, then $|x-z|<2 r$. Therefore,

$$
\begin{aligned}
\left\|\sigma_{2}(x, z)\right\|_{E} & \leq \int_{(5 B)^{c}}\|\mathcal{U}(x, y)-\mathcal{U}(z, y)\|_{E}\left|f(y)-f_{B}\right| d y \\
& \leq \int_{|x-y| \geq 4 r}\|\mathcal{U}(x, y)-\mathcal{U}(z, y)\|_{E}\left|f(y)-f_{B}\right| d y \\
& \leq C \sum_{j=2}^{\infty} \int_{2^{j} r \leq|x-y|<2^{j+1} r} \frac{|x-z|}{|x-y|^{d+1}}\left|f(y)-f_{B}\right| d y \\
& \leq C \sum_{j=2}^{\infty} \frac{1}{2^{j}\left(2^{j} r\right)^{d}} \int_{|x-y|<2^{j+1} r}\left|f(y)-f_{B}\right| d y \\
& \leq C \sum_{j=2}^{\infty} \frac{1}{2^{j}}\|f\|_{B M O} \\
& \leq C\|f\|_{B M O},
\end{aligned}
$$

where we used (2.5) in the third inequality. Combining the last three estimates gives (2.11).

Finally we state and prove a result that will be used in Section 4.
Proposition 2.3. Let E be a Banach space and $U: L^{2} \rightarrow L_{E}^{2}$ be a Calderón-Zygmund operator with a domain a priori wider than L^{2} and including BMO. Assume also that $U f \in L_{\mathrm{loc}, E}^{1}$ whenever $f \in B M O$. Let V be defined as $V f(x)=\|U f(x)\|_{E}, f \in \operatorname{Dom}(U)$. Then, if U maps BMO
into $B M O_{E}$ and satisfies $\|U f\|_{B M O_{E}} \leq C\|f\|_{B M O}, f \in B M O$, then V maps $B M O$ into $B M O$ and satisfies $\|V f\|_{B M O} \leq C\|f\|_{B M O}, f \in B M O$.

Proof. Due to the basic inequality $\left|\|a\|_{E}-\|b\|_{E}\right| \leq\|a-b\|_{E}$, we have

$$
\frac{1}{|B|} \int_{B}\left|\|U f(x)\|_{E}-\left\|(U f)_{B}\right\|_{E}\right| d x \leq \frac{1}{|B|} \int_{B}\left\|U f(x)-(U f)_{B}\right\|_{E} d x
$$

and using the seminorm property mentioned after (2.1) gives the claim.

3. The operators T_{t} and P_{t}

Since the weight function $(1+|x|)^{-d-1}$ does not belong to the Muckenhoupt class A_{1}, we cannot use (2.2) to apply the results of [7, Section 2] directly to $B M O$ functions. There are, however, some arguments that may be applied.

Lemma 3.1. Let $f \in B M O$ and $w(x)=(1+|x|)^{-d-1}$. Then the FourierHermite coefficients $a_{\alpha}=a_{\alpha}(f)$ exist and, moreover, there is an $\epsilon \geq 0$ and $C>0$, such that

$$
\left|a_{\alpha}\right|=\left|\left\langle f, h_{\alpha}\right\rangle\right| \leq C(|\alpha|+1)^{\epsilon}\|f\|_{L^{1}(w)} .
$$

Proof. From the pointwise estimates of the Hermite functions (a simplified version of estimates proved by Askey and Wainger with a modification furnished by Muckenhoupt), cf. [7, p. 448] for the proper citation, we infer that

$$
\sup _{x \in \mathbb{R}^{d}}\left[(1+|x|)^{d+1}\left|h_{\alpha}(x)\right|\right] \leq C(|\alpha|+1)^{\epsilon},
$$

where $\epsilon=\epsilon(d)$ do not depend on α. Thus, the required estimate easily follows.

Let $t>0$ be fixed. We extend the action of the operators T_{t} and P_{t} on $B M O$ by using the pointwise versions of (1.1) and (1.2) (note that the series are convergent for every $t>0$ and $x \in \mathbb{R}^{d}$). The justification of the fact that $T_{t} f(x)$ and $P_{t} f(x)$ are equal, for a given $f \in B M O$, to the heat-diffusion and Poisson integrals $g(t, x)$ and $f(t, x)$ given by (1.3) is completely analogous to the justification of $[7,(2.8)]$ and the identity preceding (2.12) in [7]. Note that the integrals in (1.3) are indeed convergent since outside the diagonal Δ the kernels $G_{t}(x, y)$ and $P_{t}(x, y)$ satisfy

$$
\begin{equation*}
G_{t}(x, y) \leq C|x-y|^{-d-1}, \quad P_{t}(x, y) \leq C|x-y|^{-d-1}, \quad|x-y| \geq 1 \tag{3.1}
\end{equation*}
$$

The first estimate above is a consequence of $G_{t}(x, y) \leq W_{t}(x-y)$, see [7, (2.9)] for an explanation, while the second one follows from the first by using the subordination identity (1.5).

Lemma 3.2. Let $f \in B M O$. Then the heat-diffusion and Poisson integrals of $f, g(t, x)$ and $f(t, x)$, are C^{∞} functions on $\mathbb{R}_{+} \times \mathbb{R}^{d}$ satisfying the differential equations

$$
\left(L_{x}+\frac{\partial}{\partial t}\right) g(t, x)=0, \quad\left(-L_{x}+\frac{\partial^{2}}{\partial t^{2}}\right) f(t, x)=0 .
$$

Proof. To prove that $g(t, x)$ is C^{∞}, we repeat the argument from the proof of [7, Proposition 2.5]. To show that $f(t, x)$ is C^{∞}, we slightly simplify the argument from the proof of [7, Proposition 2.7] by observing that $-L_{x}+\partial_{t}^{2}$ is hypoelliptic. This property together with the simply proved fact that $f(t, x)$ is a C^{2} function shows that this function is also C^{∞}.

Since T_{t} and P_{t} are contractions on L^{∞}, cf. [7, Remark 2.10], we also have $\left\|T_{t} f\right\|_{B M O} \leq\|f\|_{\infty}$ and $\left\|P_{t} f\right\|_{B M O} \leq\|f\|_{\infty}$. It is however hopeless to expect extending these inequalities onto $B M O$ as the following result shows.

Proposition 3.3. Given $t>0$ we have

$$
T_{t} 1(x)=(2 \pi \cosh (2 t))^{-d / 2} \exp \left(-\frac{1}{2} \tanh (2 t)|x|^{2}\right)
$$

and

$$
\begin{aligned}
P_{t} 1(x)=\frac{t}{\sqrt{4 \pi}} \int_{0}^{\infty}(2 \pi \cosh (2 u))^{-d / 2} \times & \\
& \times \exp \left(-\frac{1}{2} \tanh (2 u)|x|^{2}\right) u^{-3 / 2} e^{-t^{2} /(4 u)} d u
\end{aligned}
$$

Thus $T_{t} 1(x)$ and $P_{t} 1(x)$ are not constant functions of the x-variable. Consequently, the inequalities $\left\|T_{t} f\right\|_{B M O} \leq C\|f\|_{B M O}$ and $\left\|P_{t} f\right\|_{B M O} \leq C\|f\|_{B M O}$ do not hold.

Proof. Using (1.4) we obtain
$(2 \pi \sinh (2 t))^{d / 2} T_{t} 1(x)$

$$
\begin{aligned}
& =\int_{\mathbb{R}^{d}} \exp \left(-\frac{1}{4}\left(\tanh (t)|x+y|^{2}+\operatorname{coth}(t)|x-y|^{2}\right)\right) d y \\
& =\int_{\mathbb{R}^{d}} \exp \left(-\frac{1}{2}\left(\operatorname{coth}(2 t)\left(|x|^{2}+|y|^{2}\right)-\frac{2}{\sinh (2 t)}\langle x, y\rangle\right)\right) d y
\end{aligned}
$$

But

$$
\begin{aligned}
\operatorname{coth}(2 t)|y|^{2} & -\frac{2}{\sinh (2 t)}\langle x, y\rangle \\
& =\frac{1}{\operatorname{coth}(2 t)}\left|\operatorname{coth}(2 t) y-\frac{1}{\sinh (2 t)} x\right|^{2}-\frac{1}{\sinh (2 t) \cosh (2 t)}|x|^{2}
\end{aligned}
$$

Hence the last integral equals

$$
\begin{aligned}
& \exp \left(-\frac{1}{2}\left(\operatorname{coth}(2 t)-\frac{1}{\sinh (2 t) \cosh (2 t)}\right)|x|^{2}\right) \times \\
& \quad \times \int_{\mathbb{R}^{d}} \exp \left(-\frac{1}{2 \operatorname{coth}(2 t)}\left|\operatorname{coth}(2 t) y-\frac{1}{\sinh (2 t)} x\right|^{2}\right) d y \\
& =\exp \left(-\frac{|x|^{2}}{2 \operatorname{coth}(2 t)}\right) \int_{\mathbb{R}^{d}} \exp \left(-\frac{1}{2}\left|(\operatorname{coth}(2 t))^{1 / 2} y\right|^{2}\right) d y \\
& =\left(\frac{4 \pi}{2 \operatorname{coth}(2 t)}\right)^{d / 2} \exp \left(-\frac{|x|^{2}}{2 \operatorname{coth}(2 t)}\right)
\end{aligned}
$$

Taking into account the factor $(2 \pi \sinh (2 t))^{-d / 2}$ gives the first identity. The second follows from the first by using the subordination identity (1.5).

Note that the concluding sentence of Proposition 3.3 shows an essential difference between the $B M O$ behaviour of the heat-diffusion and Poisson semigroups in the Hermite function expansion setting and the classic (Euclidean) setting. This is because $W_{t} * 1=1$ and $\left\|W_{t} * f\right\|_{B M O} \leq C\|f\|_{B M O}$, and thus $\left\|W_{t} * f\right\|_{\text {BMO }} \leq C\|f\|_{\mathbf{B M O}}$, and the same remains valid for the convolution with the (Euclidean) Poisson kernel $P_{t}(x)$.

4. Maximal functions

The maximal operators T^{*} and P^{*} given by (1.6) are well defined for $B M O$ functions since the heat diffusion and Poisson integrals of any $f \in B M O$ are well defined by means of (1.3). However, in order to say something on the action of the non-linear operators T^{*} and P^{*} on the $B M O$ space, it is necessary to linearize the situation by considering instead of T^{*} and P^{*} the vector valued linear operators

$$
\begin{equation*}
\mathcal{T} f(x)=\left\{\int_{\mathbb{R}^{d}} G_{t}(x, y) f(y) d y\right\}_{t \in \mathbb{Q}^{+}} \tag{4.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathcal{P} f(x)=\left\{\int_{\mathbb{R}^{d}} P_{t}(x, y) f(y) d y\right\}_{t \in \mathbb{Q}^{+}} \tag{4.2}
\end{equation*}
$$

The expressions on the right of (4.1) and (4.2) are considered as functions of $t \in \mathbb{Q}^{+}$. (4.1) and (4.2) make sense for any $f \in B M O$ as well as for any $f \in L^{q}(w), 1 \leq q<\infty, w \in A_{q}$. Restricted to functions $f \in L^{\infty}$, the formulas (4.1) and (4.2) define operators acting boundedly from L^{∞} into $L_{\ell \infty}^{\infty}$ (coordinates in ℓ^{∞} are indexed by \mathbb{Q}^{+}).

We now prove that \mathcal{T} and \mathcal{P} are vector valued Calderón-Zygmund operators with the associated vector valued kernels

$$
\mathcal{T}(x, y)=\left\{G_{t}(x, y)\right\}_{t \in \mathbb{Q}^{+}}, \quad \mathcal{P}(x, y)=\left\{P_{t}(x, y)\right\}_{t \in \mathbb{Q}^{+}}
$$

THEOREM 4.1. The operator \mathcal{T}, initially considered as a bounded operator from L^{∞} into $L_{\ell \infty}^{\infty}$, is a Calderón-Zygmund operator with the associated kernel $\mathcal{T}(x, y)$ that satisfies

$$
\begin{equation*}
\|\mathcal{T}(x, y)\|_{\ell \infty} \leq \frac{C}{|x-y|^{d}}, \quad x \neq y \tag{4.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|\nabla_{x} \mathcal{T}(x, y)\right\|_{\ell \infty}+\left\|\nabla_{y} \mathcal{T}(x, y)\right\|_{\ell \infty} \leq \frac{C}{|x-y|^{d+1}}, \quad x \neq y \tag{4.4}
\end{equation*}
$$

The analogous conclusions and estimates hold for \mathcal{P} and $\mathcal{P}(x, y)$.
Proof. The size estimate (4.3) follows since

$$
\begin{aligned}
& \|\mathcal{T}(x, y)\|_{\ell \infty} \\
& =\sup _{t \in \mathbb{Q}^{+}}\left|G_{t}(x, y)\right| \\
& \leq C \sup _{t \in \mathbb{Q}^{+}}\left[(\sinh (t) \cosh (t))^{-d / 2} \times\right. \\
& \left.\times \exp \left(-\frac{1}{4} \operatorname{coth}(t)|x-y|^{2}\right)\right] \\
& \leq \frac{C}{|x-y|^{d}} \sup _{t>0}\left[(\cosh (t))^{-d}\left(\operatorname{coth}(t)|x-y|^{2}\right)^{d / 2} \times\right. \\
& \left.\times \exp \left(-\frac{1}{4} \operatorname{coth}(t)|x-y|^{2}\right)\right] \\
& \leq \frac{C}{|x-y|^{d}} \sup _{t>0}\left[(\cosh (t))^{-d}\right] \\
& \leq \frac{C}{|x-y|^{d}} .
\end{aligned}
$$

Note that for $t>0$ and $D>d$ we have $(\cosh (t))^{-d} \leq(\cosh (t))^{-D}$. Therefore we also have for every $D>d$,

$$
\|\mathcal{T}(x, y)\| \leq C_{D}|x-y|^{-D}, \quad|x-y| \geq 1
$$

For the smoothness estimate (4.4) (note that (4.4) implies (2.5) and (2.6)) it is sufficient to obtain the estimate

$$
\left|\partial_{x_{i}} G_{t}(x, y)\right| \leq C|x-y|^{-d-1}, \quad i=1, \ldots, d
$$

with C independent of $t>0$, since the corresponding bound with $\partial_{x_{i}}$ replaced by $\partial_{y_{i}}$ follows by the symmetry of $G_{t}(x, y)$ in x and y. The task is accomplished by writing down the explicit form of $\partial_{x_{i}} G_{t}(x, y)$ and applying
arguments similar to those from the proof of (4.4); see also the proof of [7, Proposition 3.1].

To verify that the kernel $\mathcal{T}(x, y)$ is associated to \mathcal{T} it is sufficient to check that for a given $f \in L^{\infty}$ with compact support and for a.e. $x \notin \operatorname{supp} f$,

$$
\begin{equation*}
\left\{\int_{\mathbb{R}^{d}} G_{t}(x, y) f(y) d y\right\}_{t \in \mathbb{Q}^{+}}=\int_{\mathbb{R}^{d}}\left\{G_{t}(x, y)\right\}_{t \in \mathbb{Q}^{+}} f(y) d y \tag{4.5}
\end{equation*}
$$

(Note that (4.3) together with the assumptions on f and x guarantee that the integral on the right does define an element of ℓ^{∞}.) (4.5) is understood as an equality of two elements from ℓ^{∞}. Hence it should hold for any $t \in \mathbb{Q}^{+}$. For a given $t_{o} \in \mathbb{Q}^{+}$the right side of (4.5) at $t=t_{o}$ equals the value of the functional $\delta_{t_{o}} \in\left(\ell^{\infty}\right)^{*}\left(\delta_{t_{o}}\right.$ is understood as an element of $\left.\ell^{1}\right)$ applied to the right side of (4.5). By the well know property of the Bochner integral we have

$$
\begin{aligned}
\left\langle\delta_{t_{o}}, \int_{\mathbb{R}^{d}}\left\{G_{t}(x, y)\right\}_{t \in \mathbb{Q}^{+}} f(y) d y\right\rangle & =\int_{\mathbb{R}^{d}}\left\langle\delta_{t_{o}},\left\{G_{t}(x, y) f(y)\right\}_{t \in \mathbb{Q}^{+}}\right\rangle d y \\
& =\int_{\mathbb{R}^{d}} G_{t_{o}}(x, y) f(y) d y
\end{aligned}
$$

which is the left side of (4.5) at $t=t_{o}$. Finally we conclude that the estimates for \mathcal{P} are rather straightforward consequences of those for \mathcal{T} and the subordination principle given by (1.5).

Since T_{t} and P_{t} are contractions on L^{∞}, we also have $\|\mathcal{T} f\|_{L_{\ell}^{\infty}} \leq\|f\|_{\infty}$ which implies $\|\mathcal{T} f\|_{B M O_{\ell}} \leq\|f\|_{\infty}$ and similarly for \mathcal{P}. On the other hand we have:

Proposition 4.2. $\mathcal{T} 1$ is not a constant function. Consequently, the inequality

$$
\|\mathcal{T} f\|_{B M O_{\ell \infty}} \leq C\|f\|_{B M O}
$$

does not hold. The analogous statements are true for \mathcal{P} replacing \mathcal{T}.
Proof. It follows from Proposition 3.3 that $\left\{T_{t} 1(x)\right\}_{t \in \mathbb{Q}^{+}}$and $\left\{P_{t} 1(x)\right\}_{t \in \mathbb{Q}^{+}}$ treated as elements of ℓ^{∞} depend on $x \in \mathbb{R}$.

Theorem 4.3. For every $f \in B M O, T^{*} f(x)$ is finite x-a.e. The analogous statement is true for P^{*} replacing T^{*}.

Proof. By (1.4),

$$
\begin{aligned}
G_{t}(x, y) & \leq(2 \pi \sinh (2 t))^{-d / 2} \exp \left(-\frac{1}{4} \operatorname{coth}(t)|x-y|^{2}\right) \\
& =(\cosh (t))^{-d / 2} W_{\tanh (t)}(x-y)
\end{aligned}
$$

It is therefore clear that

$$
\begin{equation*}
T^{*} f(x)=\sup _{t>0}\left|T_{t} f(x)\right| \leq \sup _{0<s<1} W_{s} *|f|(x) \tag{4.6}
\end{equation*}
$$

However, if $f \in B M O$, then, in particular, $f \in L_{\text {loc }}^{1}$; hence

$$
\lim _{s \rightarrow 0^{+}} W_{s} *|f|(x)=|f(x)|, \quad x-\text { a.e. }
$$

This and the fact that $s \mapsto W_{s} *|f|(x)$ is continuous on $(0,1]$ shows that $\sup _{0<s<1} W_{s} *|f|(x)<\infty, x$-a.e. The fact that $P^{*} f(x)$ is finite x-a.e. for any $f \in B M O$ is an immediate consequence of the same fact for T^{*} and the subordination principle represented by (1.5).

To indicate that the situation described above greatly differs from the classic (Euclidean) setting consider the maximal operator $\Phi^{*} f(x)=\sup _{t>0} \mid f *$ $\varphi_{t}(x) \mid$, where φ is a function on \mathbb{R}^{d} such that $\int_{\mathbb{R}^{d}} \varphi(y) d y \neq 0,|\varphi(x)| \leq$ $C(1+|x|)^{-d-1}$ (then $f * \varphi_{t}(x)$ is well defined for every $f \in B M O$ and every $x \in \mathbb{R}^{d}$) and $\varphi_{t}(x)=t^{-d} \varphi(x / t)$; for instance, one can take $\varphi(x)=W_{1}(x)$ or $\varphi(x)=P_{1}(x)$. Taking $f(x)=\log |x|$ produces $\Phi^{*} f(x)=\infty$ for every x. Indeed,

$$
\begin{aligned}
\int_{\mathbb{R}^{d}} \frac{1}{t^{d}} \varphi & \left(\frac{x-y}{t}\right) \log |y| d y=\int_{\mathbb{R}^{d}} \varphi\left(\frac{x}{t}-u\right) \log |t u| d u \\
& =\log t \int_{\mathbb{R}^{d}} \varphi\left(\frac{x}{t}-u\right) d u+\int_{\mathbb{R}^{d}} \varphi\left(\frac{x}{t}-u\right) \log |u| d u
\end{aligned}
$$

It is now clear that $\lim _{t \rightarrow \infty} \varphi_{t} * f(x)=\infty$.
Finally, it is perhaps interesting to note that $T^{*} 1$ is a constant function. This is because

$$
\sup _{t>0}\left|T_{t} 1(x)\right|=\sup _{t>0}\left[(2 \pi \cosh (2 t))^{-d / 2} \exp \left(-\frac{1}{2} \tanh (2 t)|x|^{2}\right)\right]=(2 \pi)^{-d / 2}
$$

since, as a calculation shows, the expression in brackets is, as a function of $t>0$, decreasing on $(0, \infty)$.

5. g-functions

The square function operators \tilde{g}, g and g_{∇} given by (1.7) and (1.8) are well defined for $B M O$ functions since the heat diffusion and Poisson integrals are well defined for any $f \in B M O$ by means of (1.3) and are smooth by Lemma 3.2. As we mentioned is not clear, however, whether, for instance, $\tilde{g}(f)(x)$ is finite x-a.e. for every $f \in B M O$ or even for every $f \in L^{\infty}$. In order to answer this question and to say something more on the action of these non-linear operators on the L^{∞} space we linearize the situation considering the vector valued linear operators $f \rightarrow \tilde{G}(f), f \rightarrow G(f)$ and $f \rightarrow G_{\nabla}(f)$, cf. [8, (2.1), (3.1), (4.1)].

To focus the attention we consider the case of \tilde{G} only but formulate the result for G and G_{∇} as well. Recall, [8], that

$$
\begin{equation*}
\tilde{G}(f)(x)=\left\{\frac{\partial}{\partial t} g(t, x)\right\}_{t>0}, \quad x \in \mathbb{R}^{d} \tag{5.1}
\end{equation*}
$$

where $g(t, x)$ is the heat diffusion integral of f given by (1.3). The expression on the right of (5.1) is considered as a function of $t>0$; thus \tilde{G} is a linear vector valued operator. (5.1) makes sense for any $f \in B M O$ as well as for any $f \in L^{q}(w), 1 \leq q<\infty, w \in A_{q}$.

Specialized to functions $f \in L^{2}$, the formula (5.1) defines an operator acting boundedly from L^{2} into $L_{L^{2}(t d t)}^{2}$. It was shown in [8, Proposition 3.1] that \tilde{G} is a vector valued Calderón-Zygmund operator with the associated kernel

$$
\left\{\frac{\partial}{\partial t} G_{t}(x, y)\right\}_{t>0}
$$

that, apart from satisfying the standard Calderón-Zygmund conditions (2.4), (2.5) and (2.6), also satisfies the additional condition (2.7) of better decay outside the diagonal; cf. [8, Proposition 2.1] and a remark at the end of Section 3 of [8] (see also [8, Propositions 3.1 and 4.1] concerning G and G_{∇}). By the general theory, for every given $1 \leq q<\infty$ and $w \in A_{q}, \tilde{G}$ then extends to a bounded operator acting on $L^{q}(w)$, and, as may be easily shown, this extension agrees with (5.1). On the other hand, the same operator \tilde{G}, still treated as a bounded operator from L^{2} into $L_{L^{2}(t d t)}^{2}$, gives rise to an operator $(\tilde{G})^{\wedge}$ acting on $B M O$ by means of Proposition 2.1. We now show that the action of $(\tilde{G})^{\wedge}$ on $B M O$ functions also agrees with (5.1).

Proposition 5.1. Let $(\tilde{G})^{\wedge}$ be the operator defined on $B M O$ from the operator $\tilde{G}: L^{2} \rightarrow L_{L^{2}(t d t)}^{2}$ by means of Proposition 2.1. Then, for every $f \in B M O,(\tilde{G})^{\wedge}(f)=\tilde{G}(f)$, where the latter $\tilde{G}(f)$ is given by (5.1). The analogous statements are true for G and G_{∇} (in the case of G_{∇} the space $L^{2}(t d t)$ has to be replaced by $\left.\prod_{j=1}^{2 d+1} L^{2}(t d t)\right)$.

Proof. Given $f \in B M O$ and the ball $B=2^{n} B(0,1)$ it is sufficient to check that

$$
\begin{equation*}
\tilde{G}\left(f \chi_{2 B}\right)(x)+\int_{(2 B)^{c}}\left\{\frac{\partial}{\partial t} G_{t}(x, y)\right\}_{t>0} f(y) d y \tag{5.2}
\end{equation*}
$$

agrees x-a.e. on B with

$$
\begin{equation*}
\left\{\frac{\partial}{\partial t} \int_{\mathbb{R}^{d}} G_{t}(x, y) f(y) d y\right\}_{t>0} \tag{5.3}
\end{equation*}
$$

Since $f \chi_{2 B} \in L^{2}$, the first term in (5.2) equals

$$
\left\{\frac{\partial}{\partial t} \int_{2 B} G_{t}(x, y) f(y) d y\right\}_{t>0}
$$

The integral in (5.3) may be split onto $2 B$ and $(2 B)^{c}$. Hence our task reduces to proving that

$$
\begin{equation*}
\int_{(2 B)^{c}}\left\{\frac{\partial}{\partial t} G_{t}(x, y)\right\}_{t>0} f(y) d y=\left\{\frac{\partial}{\partial t} \int_{(2 B)^{c}} G_{t}(x, y) f(y) d y\right\}_{t>0} \tag{5.4}
\end{equation*}
$$

x-a.e. on B. We first explain that the left side of (5.4) equals

$$
\left\{\int_{(2 B)^{c}} \frac{\partial}{\partial t} G_{t}(x, y) f(y) d y\right\}_{t>0}
$$

Indeed, given $x \in B$, to simplify the notation we let $F(t, y)=\frac{\partial}{\partial t} G_{t}(x, y) f(y)$ and $A=(2 B)^{c}$. We encounter the following situation: (a) $F(t, y)$ is measurable on the product $(0, \infty) \times A$; (b) for a.e. $t \in(0, \infty), \int_{A}|F(t, y)| d y<$ ∞; (c) $\int_{A}\|F(t, y)\|_{L^{2}(t d t)} d y<\infty$. We now claim that the Bochner integral $\int_{A} F(t, y) d y$, as an element of $L^{2}(t d t)$, agrees with the function $t \mapsto$ $\int_{A} F(t, y) d y$, where the last integral is the Lebesgue integral. To prove the claim take an arbitrary $g \in L^{2}(t d t)$ and by using properties of the Bochner integral write

$$
\left\langle\int_{A} F(\cdot, y) d y, g\right\rangle_{L^{2}(t d t)}=\int_{A} \int_{0}^{\infty} F(t, y) \overline{g(t)} t d t d y
$$

On the other hand,

$$
\left\langle t \mapsto \int_{A} F(t, y) d y, g(t)\right\rangle_{L^{2}(t d t)}=\int_{0}^{\infty} \int_{A} F(t, y) d y \overline{g(t)} t d t
$$

Since

$$
\int_{A} \int_{0}^{\infty}|F(t, y) g(t)| t d t d y \leq \int_{A}\|F(\cdot, y)\|_{L^{2}(t d t)}\|g\|_{L^{2}(t d t)} d y<\infty
$$

Fubini's theorem applies and our claim finally follows.
It now remains to verify that

$$
\begin{equation*}
\left\{\int_{(2 B)^{c}} \frac{\partial}{\partial t} G_{t}(x, y) f(y) d y\right\}_{t>0}=\left\{\frac{\partial}{\partial t} \int_{(2 B)^{c}} G_{t}(x, y) f(y) d y\right\}_{t>0} \tag{5.5}
\end{equation*}
$$

x-a.e. on B. In fact, we will prove that (5.5) holds for every fixed $x \in B$ and $t_{o}>0$. This will be achieved by showing that the function

$$
F(y)=F_{x, t_{o}, \varepsilon}(y)=\left(\sup _{\left|t-t_{o}\right|<\varepsilon}\left|\frac{\partial}{\partial t} G_{t}(x, y)\right|\right) f(y)
$$

is integrable on $(2 B)^{c}$ (we choose ε to be sufficiently small, say $\varepsilon \leq t_{o} / 2$). Then (5.5) easily follows by using the dominated convergence theorem.

A simple differentiation performed in (1.4) yields

$$
\begin{align*}
& \frac{\partial}{\partial t} G_{t}(x, y)=(\sinh (2 t))^{-d / 2} \times \tag{5.6}\\
& \quad \times \exp \left(-\frac{1}{4}\left(\tanh (t)|x+y|^{2}+\operatorname{coth}(t)|x-y|^{2}\right)\right) \times \\
& \quad \times\left(-d \operatorname{coth}(2 t)-\frac{1}{4 \cosh ^{2} t}|x+y|^{2}-\frac{1}{4 \sinh ^{2} t}|x-y|^{2}\right)
\end{align*}
$$

Using this we will show that for $x \in B$ and $t_{o}>0$ fixed and $\varepsilon=t_{o} / 2$,

$$
\begin{equation*}
\sup _{\left|t-t_{o}\right|<t_{o} / 2}\left|\frac{\partial}{\partial t} G_{t}(x, y)\right| \leq C_{B, t_{o}}(|y|+1)^{-d-1}, \quad y \in(2 B)^{c} \tag{5.7}
\end{equation*}
$$

which is sufficient for our purposes since $\int_{(2 B)^{c}}|f(y)|(|y|+1)^{-d-1} d y<\infty$.
Proving (5.7) we split the right side of (5.6) into three summands (according to the three terms in the last factor in (5.6)) and denote them by I_{1}, I_{2} and I_{3}. Then we estimate each of them separately. For $x \in B$ and $\left|t-t_{o}\right|<t_{o} / 2$ we have

$$
\left|I_{1}\right| \leq C\left(t_{o}\right) \exp \left(-D\left(t_{o}\right)|x-y|^{2}\right)
$$

with $C\left(t_{o}\right)>0$ and $D\left(t_{o}\right)>0$, which is sufficient to get (5.7). The same estimate follows for $\left|I_{2}\right|$ by taking into account the fact that

$$
\left(\tanh (t)|x+y|^{2}\right) \exp \left(-\frac{1}{4} \tanh (t)|x+y|^{2}\right) \leq C
$$

The analogous estimate of $\left|I_{3}\right|$ also easily follows, which finishes the proof of (5.7).

To prove the analogous result for G and G_{∇} a quite similar argument is used. The proof of Proposition 5.1 is completed.

Proposition 5.2. Let \tilde{G} be defined by (5.1). Then

$$
\|\tilde{G}(f)\|_{B M O_{L^{2}(t d t)}} \leq C\|f\|_{\infty}, \quad f \in L^{\infty}
$$

The analogous statements are true for G and G_{∇} (in the case of G_{∇} the space $L^{2}(t d t)$ has to be replaced by $\left.\prod_{j=1}^{2 d+1} L^{2}(t d t)\right)$.

Proof. This is a direct consequence of Proposition 5.1 and the conclusions of Proposition 2.1. A similar argument applies for G and G_{∇}.

Proposition 5.3. $\tilde{G}(1)$ given by (5.1) is not a constant function. In consequence, the inequality

$$
\|\tilde{G}(f)\|_{B M O_{L^{2}(t d t)}} \leq C\|f\|_{B M O}
$$

does not hold. The analogous statements are true for G and G_{∇} replacing \tilde{G}.
Proof. A simple differentiation based on the identities from Lemma 3.3 shows that $\frac{\partial}{\partial t} T_{t} 1(x)$ and $\frac{\partial}{\partial t} P_{t} 1(x)$ are, respectively, equal to

$$
-(2 \pi \cosh (2 t))^{-d / 2}\left(d \tanh (2 t)+\frac{|x|^{2}}{\cosh ^{2}(2 t)}\right) \exp \left(-\frac{1}{2} \tanh (2 t)|x|^{2}\right)
$$

and
$\frac{1}{t} P_{t} 1(x)-\frac{t^{2}}{4 \sqrt{\pi}} \int_{0}^{\infty}(2 \pi \cosh (2 u))^{-d / 2} \exp \left(-\frac{1}{2} \tanh (2 u)|x|^{2}\right) u^{-5 / 2} e^{-t^{2} / 4 u} d u$.

Consequently, neither

$$
\mathbb{R}^{d} \ni x \longmapsto\left\{\frac{\partial}{\partial t} T_{t} 1(x)\right\}_{t>0} \in B M O_{L^{2}(t d t)}
$$

nor

$$
\mathbb{R}^{d} \ni x \longmapsto\left\{\frac{\partial}{\partial t} P_{t} 1(x)\right\}_{t>0} \in B M O_{L^{2}(t d t)}
$$

is a constant function. Since the last mapping is one of the coordinates of G_{∇}, the same conclusion is valid for $G_{\nabla}(1)$.

Theorem 5.4. For every $f \in B M O, \tilde{g}(f)(x)$ is finite x-a.e. Moreover, the (nonlinear) square function operator \tilde{g} defined by (1.7) maps L^{∞} into BMO and satisfies

$$
\|\tilde{g}(f)\|_{B M O} \leq C\|f\|_{\infty}
$$

However, the inequality

$$
\begin{equation*}
\|\tilde{g}(f)\|_{B M O} \leq C\|f\|_{B M O} \tag{5.8}
\end{equation*}
$$

does not hold. The analogous statements are true for g and g_{∇} replacing \tilde{g}.
Proof. For the first statement note that $\tilde{g}(f)(x)=\|\tilde{G}(f)(x)\|_{L^{2}(t d t)}$ and, by Proposition 2.1, $(\tilde{G})^{\wedge}(f)(x)$ is an x-a.e. well defined element of $L^{2}(t d t)$. Using the just proved identity $(\tilde{G})^{\wedge}(f)(x)=\tilde{G}(f)(x)$, which holds x-a.e., shows that $\tilde{g}(f)(x)<\infty$ for almost every x. For the second statement note that the identity $\tilde{g}(f)(x)=\|\tilde{G}(f)(x)\|_{L^{2}(t d t)}$ and Proposition 5.2 prove the claim. (The argument from the proof of Proposition 2.3 is also helpful here.) On the other hand, a careful analysis based on the closed expression on $\partial_{t} T_{t} 1(x)$ (see the proof of Proposition 4.2) shows that

$$
\int_{0}^{\infty}\left|\partial_{t} T_{t} 1(x)\right|^{2} t d t
$$

is a decreasing function of $|x| \rightarrow \infty$. Thus $\tilde{g}(1)$ is not a constant function. Hence (5.8) does not hold.

Similar arguments prove the result for g and g_{∇}.
Finally, we take the opportunity to provide a simple proof of the fact that for $h(x)=\log |x| \in B M O$ we have $g(h) \equiv \infty$, where by g we mean the classic g-function based on the Gauss-Weierstrass (or the Poisson) kernel (Wang [10] proved that for the classic full gradient g-function g_{∇} there is a function $f \in$ L^{∞} such that $\left.g_{\nabla}(f) \equiv \infty\right)$. Actually, we prove something more. Take a C^{1} function φ on \mathbb{R}^{d} such that $|\varphi(x)| \leq C(1+|x|)^{-d-1},|\nabla \varphi(x)| \leq C(1+|x|)^{-d-1}$, $\int_{\mathbb{R}^{d}} \varphi(x) d x=1$; for instance one can take $\varphi(x)=W_{1}(x)$ or $\varphi(x)=P_{1}(x)$. A calculation performed at the end of the previous section then shows that we have

$$
\frac{\partial}{\partial t}\left(\varphi_{t} * h(x)\right)=\frac{1}{t}-\frac{1}{t^{2}} \sum_{i=1}^{d} x_{i} \int_{\mathbb{R}^{d}} \partial_{x_{i}} \varphi\left(\frac{x}{t}-u\right) \log |u| d u
$$

Hence, for fixed $x \in \mathbb{R}^{d}$,

$$
\left|\frac{\partial}{\partial t}\left(\varphi_{t} * h(x)\right)\right| \geq \frac{C}{t}, \quad t>1
$$

Thus, for the square function operator defined by

$$
g_{\varphi}(f)(x)=\left(\int_{0}^{\infty}\left|\frac{\partial}{\partial t}\left(\varphi_{t} * f(x)\right)\right|^{2} t d t\right)^{1 / 2}
$$

we obtain $g_{\varphi}(h)(x)=\infty$ for every x. Taking $\varphi=W_{1}$ or $\varphi=P_{1}$ the claim follows. Since we have $g(h)(x) \leq g_{\nabla}(h)(x)$, the same conclusion also follows for g_{∇}.

References

[1] C. Bennett, R. A. DeVore, and R. Sharpley, Weak- L^{∞} and BMO, Ann. of Math. (2) 113 (1981), 601-611. MR 621018 (82h:46047)
[2] J. Duoandikoetxea, Fourier analysis, Graduate Studies in Mathematics, vol. 29, American Mathematical Society, Providence, RI, 2001. MR 1800316 (2001k:42001)
[3] J. Dziubański, G. Garrigós, T. Martínez, J. L. Torrea, and J. Zienkiewicz, BMO spaces related to Schrödinger operators with potentials satisfying a reverse Hölder inequality, Math. Z. 249 (2005), 329-356. MR 2115447 (2005k:35064)
[4] J.-L. Journé, Calderón-Zygmund operators, pseudodifferential operators and the Cauchy integral of Calderón, Lecture Notes in Mathematics, vol. 994, Springer-Verlag, Berlin, 1983. MR 706075 (85i:42021)
[5] D. S. Kurtz, Littlewood-Paley operators on BMO, Proc. Amer. Math. Soc. 99 (1987), 657-666. MR 877035 (88f:42040)
[6] E. M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, vol. 43, Princeton University Press, Princeton, NJ, 1993. MR 1232192 ($95 \mathrm{c}: 42002$)
[7] K. Stempak and J. L. Torrea, Poisson integrals and Riesz transforms for Hermite function expansions with weights, J. Funct. Anal. 202 (2003), 443-472. MR 1990533 (2004d:42024)
[8] , On g-functions for Hermite function expansions, Acta Math. Hungar. 109 (2005), 99-125. MR 2174241
[9] , Higher Riesz transforms and imaginary powers associated to the harmonic oscillator, Acta Math. Hung. 111 (2006), to appear.
[10] S. L. Wang, Some properties of the Littlewood-Paley g-function, Classical real analysis (Madison, Wis., 1982), Contemp. Math., vol. 42, Amer. Math. Soc., Providence, RI, 1985, pp. 191-202. MR 807991 (86m:42030)
[11] K. Yosida, Functional analysis, Springer Verlag, Berlin, 1965. MR 0180824 (31 \#5054)
Krzysztof Stempak, Instytut Matematyki i Informatyki, Politechnika Wroclawska, Wyb. Wyspiańskiego 27, 50-370 Wroceaw, Poland

E-mail address: stempak@pwr.wroc.pl
José Luis Torrea, Departamento de Matemáticas, Universidad Autónoma de Madrid, Ciudad Universitaria de Canto Blanco, 28049 Madrid, Spain

E-mail address: torrea@uam.es

