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DIFFERENTIAL GEOMETRY OF PARTIAL ISOMETRIES
AND PARTIAL UNITARIES

ESTEBAN ANDRUCHOW AND GUSTAVO CORACH

Abstract. Let A be a C∗-algebra. In this paper the sets I of partial

isometries and I∆ ⊂ I of partial unitaries (i.e., partial isometries which
commute with their adjoints) are studied from a differential geometric

point of view. These sets are complemented submanifolds of A. Special
attention is paid to geodesic curves. The space I is a homogeneous
reductive space of the group UA × UA, where UA denotes the unitary

group of A, and geodesics are computed in a standard fashion. Here we
study the problem of the existence and uniqueness of geodesics joining
two given endpoints. The space I∆ is not homogeneous, and therefore
a completely different treatment is given. A principal bundle with base
space I∆ is introduced, and a natural connection in it defined. Addi-
tional data, namely certain translating maps, enable one to produce a
linear connection in I∆, whose geodesics are characterized.

1. Introduction

In their study of the problem of unitary equivalence of operators on a
Hilbert space H, Halmos and McLaughlin [22] proved that the problem can
be reduced to that of the unitary equivalence of partial isometries. In doing
so, they characterized the connected components of the set I of all partial
isometries on H: the partial isometries x and y belong to the same component
if and only if they have the same nullity (i.e., dimension of the null-space), the
same rank (dimension of the image) and the same corank (dimension of the
orthogonal complement of the image). They also proved that if ‖x − y‖ < 1
then there exist unitary operators u and v on H such that y = uxv∗. This
paper is devoted to the study of the differential geometry of the set I. In order
to describe the results, we fix a unital C∗-algebra A, and denote by GA the
group of invertible elements of A, by UA the subgroup of unitary elements ofA
and by P the set of all hermitian projections of A: P = {p ∈ A : p2 = p = p∗}.
The set I of partial isometries of A is defined by I = {x ∈ A : x∗x, xx∗ ∈ P}.
The differential geometry of P is well known by now, and we often use this
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knowledge in order to obtain results on I. The main link between I and P is
provided by the mapping

I → P × P, x 7→ (xx∗, x∗x).

Recall that xx∗ (resp. x∗x) is called the final (resp. initial) projection of x.
We shall now reformulate the result of Halmos and McLaughlin in geomet-

rical terms. Observe that the map

UA × UA × I → I, (u, v, x) 7→ uxv∗,

defines a left action of UA×UA on I. Their result says that the action is locally
transitive, i.e., two partial isometries which are close enough are conjugate by
a pair of unitaries. As a corollary, the connected component of x in I is the
orbit of x by the action of UA × UA. Moreover, it is a homogeneous space of
UA × UA and a C∞ submanifold of A = B(H). For a general C∗-algebra A,
for which UA is not necessarily connected, the same argument can be carried
out with UA replaced by U0, the connected component of 1 in UA. The fact
that the connected components of I are homogeneous spaces of UA×UA but
not of UA depends on the map I → P ×P mentioned above. In fact, UA has
a left action on P by (u, p) 7→ upu∗, and the action is locally transitive (see
B. Sz.-Nagy [38]): If p, q ∈ P and ‖p − q‖ < 1 there exists u ∈ UA such that
q = upu∗. (Originally proved for A = B(H), this holds for any C∗-algebra,
where u can be chosen in U0.) Hence the orbit of p by the action on U0 is the
connected component of p in P. Now, the motion of x ∈ I is determined by
the motions of its initial and final projections (spaces) x∗x and xx∗ in P, and
these projections are moved independently. Therefore it must be the group
UA × UA which provides the motions of x ∈ I (if one wants the action to be
locally transitive and to fill connected components).

For a fixed p ∈ P, an important role is played by the space Ip of all
partial isometries with initial projection p: Ip = {v ∈ A : v∗v = p}. Ip is a
submanifold of I and naturally carries a left action of UA which makes it a
homogeneous space of UA.

The present paper is an addition to the existing literature on the differential
geometry of different sets and maps of operators (and their corresponding
abstract analogues). The reader is referred to [37], [13], [3], [28], [39], [11],
[23], [24] for projections; [12], [28], [29] for n-tuples of projections; [7] for
spectral measures; [8], [9] for nilpotent operators; [15] for selfadjoint invertible
operators; [16], [17], [19], [20] for positive (hermitian) operators; [2], [18] for
representations of groups and algebras, [10] for states; [34], [35] for partial
isometries; and [21], [14], [12] for elements which admit generalized inverses.

Let us describe now the contents of this paper. In Section 2 we introduce
a linear connection in I, of which we compute the geodesic curves, and inves-
tigate how the geometry of P and Ip plays a role in the geometric properties
of I. The general theory of reductive spaces guarantees the existence of a
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(uniform) radius R, with the property that if two elements lie at distance
(measured with the norm of A) less than R, then they can be joined by a
unique geodesic of this connection. For instance, for the space P of projec-
tions of A this radius RP is 1 [37]. In Section 3 we estimate (very roughly) the
geodesic radius for the spaces Ip and for I. This estimate relates the three
numbers RP = 1, RIp and RI .

The second half of this paper (sections 4 and 5) is devoted to the study
of what we call partial unitaries (there might be another name for them in
the literature that we are unaware of): Partial unitaries are partial isometries
such that the initial and final spaces coincide, or, equivalently, elements v ∈ I
such that v commutes with v∗. We denote the set of all such elements by I∆.
We show that I∆ is a complemented submanifold of I (and of A). However,
I∆ does not admit a (locally transitive) action of a group of unitaries, as I
does, and it is not a homogeneous space. Therefore, the differential geometric
study of I∆ is more complicated. First, note that if w1, w2 ∈ I∆ lie at a
distance less than 1, their initial (equivalently, final) projections are unitarily
equivalent. This motivates the study of the following map. For each fixed
p ∈ P,

π∆
p : ∆p = ∆ := {(α, β) ∈ UA × UA : αpα∗ = βpβ∗} → I∆,

π∆
p (α, β) = αpβ∗.

If w1 is in the range of this map and w2 ∈ I∆ satisfies ‖w2 − w1‖ < 1, then
w2 also lies in the range of π∆

p . In other words, the range of this map fills
connected components.

We show that this map is a smooth principal bundle, with structure group

Gp = {(g1, g2) ∈ UA × UA : gip = pgi, i = 1, 2 and g1p = g2p}.

We introduce a connection on this principal bundle, and compute the hori-
zontal lifting differential equations. These enable one to perform the parallel
transport of elements in the fibres. However, our interest is in a connection
in the tangent bundle. Unfortunately, this cannot be established in the usual
manner in differential geometry because the structure group Gp does not act
on the tangent spaces of I∆. We therefore introduce a linear connection
by means of a distribution of isomorphisms between the horizontal spaces.
Namely, if (α, β), (δ, ε) ∈ ∆, and K(α,β), K(δ,ε) denote the corresponding hori-
zontal subspaces, we define a smooth distribution of (real) linear isomorphisms

T δ,εα,β : K(α,β) → K(δ,ε)

with the following properties:

(1) Tα,βα,β = id.
(2) (T δ,εα,β)−1 = Tα,βδ,ε .
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(3) The distribution is equivariant with respect to the action of Gp: If
(g1, g2) ∈ Gp and (x1, x2) ∈ K(α,β), then(

T δ,εα,β(x1, x2)
)
· (g1, g2) = T δg1,εg2

αg1,βg2
(x1g1, x2g2).

These maps, combined with the horizontal liftings, provide a parallel transport
of tangent vectors in TI∆, and therefore a linear connection. The geodesics of
this connection are not explicitly computed, but we show that their (horizon-
tal) liftings satisfy a linear differential equation. This implies, in particular,
that geodesics of this connection in I∆ exist for all t ∈ R.

Throughout this paper, if p is a projection, we write p̄ = 1− p. If g ∈ GA
and x ∈ A, we set xg = gxg−1.

2. The reductive structure of I

The group UA × UA acts on I by means of

(u,w) · v = uvw∗, u, w ∈ UA, v ∈ I.

The action is locally transitive, two partial isometries at distance less than
1/2 are conjugate by this action, with a pair of unitaries which can be chosen
by an explicit (and smooth) formula that gives local cross sections for the
action. Indeed, note that if v0, v ∈ I are such that ‖v0 − v‖ < 1/2, then
‖v0v

∗
0 − vv∗‖ < 1 and ‖v∗0v0 − v∗v‖ < 1. Then [37],[36] there exist unitaries

ν, σ ∈ UA, which are smooth functions of v0, v, such that νv∗0v0ν
∗ = v∗v and

σv0v
∗
0σ
∗ = vv∗. Put γ = vν∗v∗0 +σ(1− v0v

∗
0); then the pair of unitaries (γ, ν)

satisfies

γv0ν
∗ = v.

In other words, the map

µv0 : {v ∈ I : ‖v − v0‖ < 1/2} → UA × UA, µv0(v) = (γ, ν),

is a C∞ cross section for the action.
Let us fix a partial isometry v0. We will describe the isotropy subgroup

and the tangent spaces based on v0. The isotropy subgroup Vv0 ⊂ UA × UA
is

Vv0 = {(f, g) ∈ UA × UA : fv0 = v0g}.

Note that if (f, g) ∈ Vv0 then f commutes with the final projection p0 = v0v
∗
0 ,

and g commutes with the initial projection q0 = v∗0v0.
Let πv0 be the map (in fact, the C∞ fibre bundle [1])

πv0 : UA × UA → I, πv0(u,w) = uv0w
∗.

The tangent space of UA × UA at (1, 1) can be identified with Aah × Aah,
where Aah is the real Banach space of antihermitian elements of A. Let
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δv0 = d(πv0)(1,1), i.e.,

δv0 : Aah ×Aah → TIv0 , δv0(x, y) = xv0 − v0y.

In particular, this implies that

TIv0 = {xv0 − v0y : x, y ∈ Aah}.

The tangent space (and Lie algebra) (TVv0)(1,1) = Vv0 is equal to the kernel
of δv0 .

We shall introduce a reductive structure on I, that is, a (real) closed linear
subspace Hv0 of Aah ×Aah with the following properties:

(1) Hv0 ⊕ Vv0 = Aah ×Aah.
(2) ad(f, g)(Hv0) = Hv0 .

Here ad(f, g)(x, y) = (xf , yg).
Consider the linear map

Σv0 : A → A×A,
Σv0(a) = (av∗0 − v0a

∗ + v0a
∗v0v

∗
0 , a
∗v0 − v∗0a+ 2v∗0av

∗
0v0).

The following result is a straightforward computation.

Lemma 2.1. δv0 ◦ Σv0 ◦ δv0 = δv0 .

Note that, in particular, the range of Σv0 ◦ δv0 lies in Aah×Aah. The map
Σv0 ◦ δv0 is therefore an idempotent in the Banach algebra BR(Aah ×Aah) of
real linear bounded operators on the space Aah ×Aah, whose kernel is equal
to the kernel of δv0 = Vv0 . Therefore, its range is a complement of Vv0 in
Aah ×Aah. Let us define

Hv0 : = R(Σv0 ◦ δv0) = R(Σv0 |(TI)v0
).

Explicitly, Hv0 ⊂ Aah ×Aah is given by

Hv0 = {(xp0 + p0x− p0xp0 − v0yv
∗
0 , yq0 + q0y − 2q0yq0) : x, y ∈ Aah}.

We claim that this space is an invariant complement of Vv0 .

Lemma 2.2. If (f, g) ∈ Vv0 , and (x, y) ∈ Hv0 , then

ad(f, g)(x, y) = (xf , yg) ∈ Hv0 .

Proof. The element (x, y) is of the form Σv0(av0 − v0b) for a, b ∈ Aah, i.e.,

x = ap0 + p0a− p0bp0 − v0av
∗
0 , and y = q0b+ bq0 − 2q0bq0.

Then

xf = fap0f
∗ + fp0af

∗ − fp0ap0f
∗ − fv0bv

∗
0f
∗

= afp0 + p0a
f − p0a

fp0 − v0b
gv∗0 ,
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where in the last term we use the relation fv0 = v0g. Analogously,

yg = q0b
g + bgq0 − 2q0b

gq0.

Then (xf , yg) = Σv0 ◦ δv0(af , bg), which lies in Hv0 because af , bg ∈ Aah. �

This reductive structure induces a linear connection in I. We are interested
in the exponential map and the geodesic curves of this connection. These can
be computed in a standard fashion [26] (see [33] for a C∗-algebraic framework).
For instance, if x ∈ TIv0 , then the unique geodesic γ(t) ∈ I with γ(0) = v0

and γ̇(0) = x is

γ(t) = etξ1v0e
−tξ2 ,

where ξ = (ξ1, ξ2) = Σv0(x). Geodesics starting at an arbitrary point v =
uv0w

∗ ∈ I are transports of geodesics starting at v0: ν(t) = uγ(t)w∗ with
γ as above. Note that the action defines linear isomorphisms between the
corresponding tangent spaces. As usual in the case of homogeneous spaces, it
follows that the local structure of I can be studied on the neighbourhoods of
v0.

The projections p0 and q0 enable one to regard the elements of A as 2× 2
matrices. Let us describe the matrices of horizontal elements ξ ∈ Hv0 . If ξ =
(ξ1, ξ2) = (xp0 +p0x−p0xp0−v0yv

∗
0 , q0y+yq0−2q0yq0), y∗ = −y, x∗ = −x,

then it is straightforward that ξ is of the form

ξ1 =
(
x11 x12

−x∗12 0

)
p0

, ξ2 =
(

0 y12

−y∗12 0

)
q0

with x∗11 = −x11. The subscripts p0 and q0 here indicate that the matrices
are regarded with respect to these projections.

We conclude this section by recalling the connections of the homogeneous
spaces P [13] and Iq0 (denoted by Sq0(A) in [6]). This will make apparent
the close relationship between these geometries.

Theorem 2.3. The geodesics of P, starting at q0, are of the form ρ(t) =
etξ2q0e

−tξ2 , where ξ2 is the second coordinate of ξ above.
The geodesics of Iq0 , starting at v0, are of the form σ(t) = etξ1v0. where

ξ1 is the first coordinate of ξ above.

3. Existence of geodesics joining two given endpoints

In [13] (see also [36]) it is shown that two projections p, q0 ∈ P such that
‖p− q0‖ < 1 can be joined by a unique geodesic. In [4] there is no estimation
of the geodesic radius of Iq0 . The general theory shows the existence of a
number 1 ≥ R > 0 with the property that two elements v′, v′′ ∈ Iq0 such that
‖v′ − v′′‖ < R can be joined by a unique geodesic. In this section we relate
this constant R with the geodesic radius of I, and also give a rough estimate
for R.
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Let v, v0 ∈ I be two partial isometries. We want to establish the existence
of a geodesic curve joining v and v0.

Let us denote by H′v0
,H′′v0

the subspaces of the first and second coordinates
of elements of Hv0 , i.e.,

Hv0 = H′v0
×H′′v0

.

Proposition 3.1. Suppose that ‖v − v0‖ < min{1/2, R/4}. Then there
exists a unique ξ = (ξ1, ξ2) ∈ Hv0 such that v = eξ1v0e

−ξ2 , with ‖ξ1‖ < R and
‖ξ2‖ < π.

Proof. First, note that ‖v∗v−q0‖ ≤ ‖v∗v−v∗q0‖+‖v∗q0−v∗0v0‖ ≤ ‖v∗‖‖v−
v0‖ + ‖v∗ − v∗0‖ ≤ 2‖v − v0‖ < 1. It is known [13] that two projections at
(norm) distance strictly less that 1 are joined by a unique geodesic of the space
of projections. Therefore there exists a unique ξ2 ∈ Aah, with ‖ξ2‖ < π,
ξ2 ∈ H′′v0

, such that v∗v = eξ2q0e
−ξ2 . Let v̂ = veξ2 . Then it is clear that

v̂∗v̂ = q0, i.e., v̂ ∈ Iq0 . We compute

‖v̂ − v0‖ = ‖veξ2 − v0‖ ≤ ‖veξ2 − v‖+ ‖v − v0‖ < ‖eξ2 − 1‖+ ‖v − v0‖.

Let us estimate ‖eξ2 − 1‖. This norm is equal to r(eξ2 − 1) (where r is the
spectral radius), which is bounded by

√
2(1− cos(‖ξ2‖)). In [36] (see also [5])

the norm ‖ξ2‖ is computed in terms of the projections q0 and v∗v, namely,

‖ξ2‖ = arcsin(‖q0 − v∗v‖) ≤ arcsin(2‖v − v0‖).

Therefore,

‖eξ2 − 1‖ < 2 sin
(

1
2

arcsin(2‖v − v0‖)
)
.

Note that if 0 ≤ t < 1/2, then arcsin(t) ≤ 3
2 t. It follows that ‖eξ2 − 1‖ <

3‖v − v0‖, and therefore

‖v̂ − v0‖ < 4‖v − v0‖ ≤ R.

Hence there exists a unique ξ1 ∈ H′v0
with ‖ξ1‖ < R such that e−ξ1v0 = v̂. In

other words, we have found ξ = (ξ1, ξ2) ∈ Hv0 such that

eξ1v0e
−ξ2 = v̂e−ξ2 = v. �

Let us now give a rough estimate for R.
Let V = {x ∈ Aah : xp0 = 0}. Note that V is a complement for H′v0

in
Aah. (In fact, it is the Lie algebra of vertical elements of the homogeneous
space Iq0 [4].)

Our estimate will be based on the map

ν : Aah → Aah, ν(x) = log(exHexV ),
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where

x = xH + xV

is the decomposition of x with xH ∈ H′v0
and xV ∈ V, and log is the analytic

inverse of the usual exponential of antihermitian elements, on a neighbourhood
of 1 ∈ UA, i.e., log is defined on {u ∈ UA : ‖u− 1‖ < 1} as the series

log(u) =
∑
n≥1

(−1)n+1

n
(u− 1)n.

Note that since xV = q̄0xahq̄0, (where xah is the antihermitian part of x), we
have ‖xV‖ ≤ ‖xah‖ ≤ ‖x‖. On the other hand, we have the obvious estimate
‖xH‖ ≤ 2‖x‖. Clearly dν0 = I. Therefore ν is a local diffeomorphism around
the origin. Let Br(0) denote the ball with centre 0 and radius r in Aah.

Lemma 3.2. ν : Br(0)→ Br/2(0) is a diffeomorphism for r = 0.036.

Proof. Recall the usual proof of the Inverse Function Theorem in the con-
text of Banach spaces (see, e.g., [30]). Let γ = id−ν. We need to estimate
the norm of the differential of γ at a ∈ Aah,

dγa(x) = x− dνa(x).

Let b, y ∈ Aah and let E be the usual exponential, E(y) = ey. Then dEb(y) =
d
dte

b+ty
∣∣
t=0

. This derivative is equal to the series

y +
1
2

(yb+ by) +
1
6

(yb2 + byb+ b2y) + · · ·

Analogously, if u ∈ UA with ‖u− 1‖ < 1, d logu(x) is given by

x−1
2

((u−1)x+x(u−1))+
1
3

((u−1)2x+(u−1)x(u−1)+x(u−1)2)−· · ·

A straightforward estimate yields

‖d logu ‖ ≤
1

1− ‖u− 1‖
.

Let us set exp(a) = eaHeaV . Then dγa(x) = x− d logexp(a)(d expa(x)), and

‖dγa(x)‖ ≤ ‖x− d logexp(a)(x)‖+ ‖d logexp(a)[x− d expa(x)]‖

≤ ‖x‖ ‖ exp(a)− 1‖
1− ‖ exp(a)− 1‖

+
1

1− ‖ exp(a)− 1‖
‖x− d expa(x)‖.

Let us estimate ‖x− d expa(x)‖. As above,

d expa(x) =
d

dt
eaH+txH

∣∣
t=0

eaV + eaH
d

dt
eaV+txV

∣∣
t=0

.
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Note that d
dte

aH+txH
∣∣
t=0

eaV is equal to(
xH +

1
2

(aHxH + xHaH) + +
1
6

(a2
HxH + aHxHaH + xHa

2
H) + . . .

)
eaV

= (xH +R2,aH(xH))(1 + (eaV − 1))

= xH + xH(eaV − 1) +R2,aH(xH)eaV .

Analogously,

eaH
d

dt
eaV+txV |t=0 = xV + (eaH − 1)xV + eaHR2,aV (xV).

Therefore ‖x− d expa(x)‖ is bounded by

‖xH‖‖eaV − 1‖+ ‖R2,aH(xH)‖+ ‖xV‖‖eah − 1‖+ ‖R2,aV (xV)‖.

Note that ‖R2,b(y)‖ ≤ ‖y‖(e‖b‖ − 1). Recall the estimates ‖ez − 1‖ ≤
2 sin(‖z‖/2), ‖zV‖ ≤ ‖z‖ and ‖zH‖ ≤ 2‖z‖ for z ∈ Aah. Therefore

‖x− d expa(x)‖ ≤ 2‖xH‖ sin(‖aV‖/2) + 2‖xV‖ sin(‖aH‖/2)

+ ‖xH‖(e‖aH‖ − 1) + ‖xV‖(e‖aV‖ − 1)

≤ ‖x‖{4 sin(‖a‖/2) + 2 sin(‖a‖) + 2e2‖a‖ + e‖a‖ − 3}.

We also need to estimate ‖ exp(a)− 1‖ in terms of ‖a‖:

‖ exp(a)− 1‖ = ‖eaHeaV − 1‖ ≤ ‖eaHeaV − eaV‖+ ‖eaV − 1‖
≤ 2 sin(‖a‖) + 2 sin(‖a‖/2).

It follows that ‖dγa‖ is bounded by
1

1− 2 sin(‖a‖)− 2 sin(‖a‖/2)

{
6 sin(‖a‖/2) + 4 sin(‖a‖) + 2e2‖a‖ + e‖a‖ − 3

}
.

Therefore, if ‖a‖ < 0.036, then ‖dγ(a)‖ < 1/2. As in the proof of the Inverse
Function Theorem [30], this implies that ν : Br(0)→ Br/2(0) is a diffeomor-
phism. �

For z ∈ Aah with small norm, as in our case, we have in fact the equality

‖ez − 1‖ = 2 sin(‖z‖/2).

Therefore z ∈ Br/2(0) if and only if ‖ez−1‖ < 2 sin(r/4). In other words, the
above lemma states that the map

exp : Br(0)→ {u ∈ UA : ‖u− 1‖ < 2 sin(r/4)}

is an analytic diffeomorphism for r = 0.036.
For the uniqueness part we shall need the following result:

Lemma 3.3. Let ξ, ξ′ ∈ H′v0
be such that eξv0 = eξ

′
v0 with ‖ξ‖, ‖ξ′‖ <

d = ln(5/4). Then ξ = ξ′.
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Proof. Let µ : A → A be the (real) linear map

µ(x) = xv∗0 − v0x
∗p̄0.

Clearly ‖µ(x)‖ ≤ 2‖x‖. If x ∈ A, let x = xh + xah be the decomposition of x
into its hermitian and antihermitian parts. Let

θ : A → A,
θ(x) = µ

(
E (xah − p̄0xahp̄0) v0

)
+ p̄0xahp̄0 + xh − v0,

where E is the usual exponential. Clearly this map is C∞. The differential
of θ at the origin is the identity. Indeed,

dθ0(x) = µ
(
dE0(xah − p̄0xahp̄0)v0

)
+ p̄0xahp̄0 + xh

= µ(xahv0) + p̄0xahp̄0 + xh

= xahp0 − p0x
∗
ahp̄0 + p̄0xahp̄0 + xh

= xahp0 + xahp̄0 + xh = x.

It follows that θ is a local diffeomorphism with θ(0) = 0. We proceed as
in the previous lemma, considering the auxiliary map γ(x) = x − θ(x) and
estimating ‖dγa‖. Now

dγa(x) = x− dθa(x) = xah − p̄0xahp̄0 − µ(dEaah(xah)v0)

= µ
(
xahv0 − dEaah(xah)v0

)
.

Therefore

‖dγa(x)‖ ≤ 2‖xah − dEaah(xah)‖ ≤ 2‖x‖(e‖a‖ − 1).

Thus ‖dγa‖ < 1/2 if ‖a‖ < ln(5/4). As above, this implies that θ : Bd(0) →
Bd/2(0) is a diffeomorphism for d = ln(5/4). Note that the map θ + v0

restricted to H′v0
∩Bd(0),

θ + v0 : H′v0
∩Bd(0)→ µ(E(H′v0

v0)), ξ 7→ eξv0,

is bijective. Therefore, if ξ, ξ′ ∈ H′v0
with ‖ξ‖, ‖ξ′‖ < d = ln(5/4) satisfy

eξv0 = eξ
′
v0, then µ(eξv0) = µ(eξ

′
v0), that is, θ(ξ) = θ(ξ′), and therefore

ξ = ξ′. �

Note that ln(5/4) ' 0.223, which is larger than the value of r that we
estimated. We can summarize both lemmas as follows:

Corollary 3.4. Let r > 0 be such that exp is a diffeomorphism on Br(0)
(with r ≤ d). If a partial isometry v ∈ Iq0 satisfies that ‖v − v0‖ < ε =
2√
3

sin(r/4), then there exists a unique ξ ∈ H′v0
such that v = eξv0 with

‖ξ‖ < 2r.
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Proof. Suppose that ‖v − v0‖ < ε. This implies that ‖vv∗ − v0v
∗
0‖ < 2ε ≤

1. It follows [6] [36] that there exists a unitary element w ∈ UA such that
wv0v

∗
0w
∗ = vv∗ and ‖w − 1‖ ≤ ‖vv∗ − v0v

∗
0‖ < 2ε. Let s = vv∗0 + (1− vv∗)w.

It is clear that this element is also a unitary of A and verifies

sv0 = v.

Note that 1− s = v(v∗ − v∗0) + (1− vv∗)(1−w). Suppose that A is faithfully
represented in H. Since v and 1− vv∗ have orthogonal ranges, if η ∈ H,

‖(s− 1)η‖2 = ‖v(v∗ − v∗0)η‖2 + ‖(1− vv∗)(1− w)η‖2.
It follows that

‖s− 1‖ <
√

3ε = 2 sin(r/4).

Hence there exists a unique a ∈ Br(0), with a = aH + aV as above, such that
s = exp(a) = eaHeaV . Note that aVv0 = 0. Therefore

v = sv0 = eaHeaVv0 = eaHv0,

with ‖aH‖ ≤ 2‖a‖ < 2r. Take ξ = aH; then ξ is clearly unique. �

The above result shows that the value R in Proposition 3.1 satisfies R ≥
0.0034.

We combine these facts in our main result, which is as follows:

Theorem 3.5. Let r > 0 be such that exp is a diffeomorphism on Br(0)
(r ≤ d). If v, v0 ∈ I satisfy ‖v−v0‖ < r′ = min{1/2, 2

4
√

3
sin(r/4)}, then there

exists a unique geodesic with velocity vector ξ = (ξ1, ξ2) such that ‖ξ1‖ < r′,
‖ξ2‖ < π, which joins v and v0.

4. Partial unitaries

Let us call partial unitary a partial isometry w such that the initial and
final spaces coincide. Equivalently, w∗w = ww∗ = q, or w is a unitary element
of the reduced algebra qAq. Let

I∆ = {w ∈ I : ww∗ = w∗w} =
⋃
q∈P

UqAq.

In [1] it is shown that this set I∆, or rather its connected components, are
C∞ submanifolds of I (and of A). In this section we study the properties of
this set.

First let us describe the tangent space of I∆ at w. Differentiating ww∗ =
w∗w, we get

(TI∆)w = {z ∈ TIw : z∗w + w∗z = zw∗ + wz∗}.
An alternative description is

(TI∆)w = {z ∈ TIw : w∗zq̄ = wz∗q̄},
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where q = w∗w = ww∗. Indeed, suppose first that z ∈ TIw satisfies w∗zq̄ =
wz∗q̄. We have z = xw − wy for some x, y ∈ Aah. Then wz∗ + zw∗ =
xq − qx and w∗z + z∗w = yq − qy, and so wz∗q̄ = −qxq̄ and w∗zq̄ = −qyq̄.
Our assumption w∗zq̄ = wz∗q̄ then implies qxq̄ = qyq̄. Since x and y are
antihermitian, this implies that xq−qx = yq−qy, i.e., wz∗+zw∗ = w∗z+z∗w.
On the other hand, multiplying this relation on the right by q̄ yields wz∗q̄ =
w∗zq̄.

We now construct a natural principal bundle over I∆ (which is not a ho-
mogeneous space). Fix a projection p in A. Let

∆ = ∆p = {(α, β) ∈ UA × UA : pα = pβ}.

First note that ∆ is not a subgroup of UA × UA. It inherits a right action
from the group UA ∩ {p}′ × UA ∩ {p}′. In fact, we shall be interested in a
subgroup of this group and its right action on ∆. Consider the map

π∆
p : ∆→ I∆, π∆

p (α, β) = αpβ∗,

given by the restriction to ∆ of the map πp defined in Section 2. Note that
this map is indeed well defined, i.e., takes values in I∆: If w = αpβ∗ with
(α, β) ∈ ∆, then ww∗ = pα = pβ = w∗w. Clearly this map is C∞. Let us
examine the fibre of π∆

p over p. If αpβ∗ = p, then elementary computations
show that α and β commute with p and αp = βp. Let us set

Gp = {(g1, g2) ∈ ∆ : g1p = pg2}.

It is clear that Gp is a (Banach-Lie) subgroup of UA ∩ {p}′ × UA ∩ {p}′, and
therefore acts on ∆ by right multiplication. Also, it is clear that this action
is free.

The range of π∆
p consists of all partial unitaries w such that their unit

ww∗ = w∗w is unitarily equivalent to p. This set fills connected components
(see [1]).

Theorem 4.1. The set ∆ is a C∞ submanifold of A×A, and the map

π∆
p : ∆→ I∆, π∆

p (α, β) = αpβ∗

is a C∞ principal bundle with structure group Gp.

Proof. The map π : UA → P, π(u) = pu is a C∗ submersion [13]. Therefore
the map π × π : UA × UA → P × P, (u, v) 7→ (pu, pv) is also a submersion.
The subset D = {(q, q) : q ∈ P} ⊂ P × P is clearly a submanifold of P × P.
It follows that ∆ = (π × π)−1(D) is a submanifold of UA × UA.

To prove that the map π∆
p is a principal bundle, it will suffice to construct

smooth local cross sections. Fix w0 = α0pβ
∗
0 . Let w ∈ I∆ be such that

‖w − w0‖ < 1/2. Then there exists a unitary u = u(w0, w) ∈ UA, which
is a C∞ function on the parameter w such that uα0w

∗
0w0α

∗
0u
∗ = p [1]. Let



PARTIAL ISOMETRIES AND PARTIAL UNITARIES 109

w′ = uα0wα
∗
0u
∗. Clearly w′ is a unitary of pAp. Put

α′ = w′2 + 1− p, β′ = w′ + 1− p.

Then α′, β′ are unitaries in A which verify α′pβ′∗ = w′. Finally, put

α = α∗0u
∗α′, β = α∗0u

∗β′.

A straightforward computation shows that αpβ∗ = w. Also note that

pα = α∗0u
∗α′pα′∗uα0 = α0u

∗puα0 = w∗0w0,

and analogously pβ = w∗0w0. It follows that (α, β) ∈ ∆. In other words, we
have found a C∞ cross section σw0(w) = (α, β) = (αw, βw) for π∆

p , defined on
the neighbourhood Uw0 = {w ∈ I∆ : ‖w − w0‖ < 1/2} of w0 in I∆. These
cross sections provide equivariant trivializations for π∆

p in a standard fashion
[25]. �

Next, we shall introduce a connection in this principal bundle. To do so,
we must first compute the tangent spaces of ∆ and the fibres (π∆

p )−1({w}).
Let (α(t), β(t)) be a smooth curve in ∆ with α(0) = α, β(0) = β, α̇(0) = a,
β̇(0) = b. First note that since α(t), β(t) are unitaries, α∗a, aα∗, β∗b, bβ∗

belong to Aah. Next, differentiating α(t)pα∗(t) = β(t)pβ∗(t) at t = 0 shows
that apα∗ + αpa∗ = bpβ∗ + βpb∗. Note that

apα∗ + αpa∗ = (aα∗)pα + pα(αa∗) = (aα∗)pα + pα(−aα∗) = [aα∗, pα],

and analogously bpβ∗ + βpb∗ = [bβ∗, βpβ∗]. Since αpα∗ = βpβ∗, we have

(T∆)(α,β) = {(a, b) ∈ A×A : aα∗, bβ∗ ∈ Aah, [aα∗ − bβ∗, αpα∗] = 0}.

The tangent space of the fibre of π∆
p over αpβ∗ can be computed in a similar

way. Let (ω1(t), ω2(t)) be a curve in ∆ such that ω1(t)pω∗2(t) = αpβ∗, with
ω̇1(0) = x, ω̇2(0) = y. This implies that (α∗ω1(t), β∗ω2(t)) ∈ Gp. Therefore,
denoting by Ω(α,β) the “vertical” space over αpβ∗, that is, the tangent space
at (α, β) of the fibre of π∆

p , we get

Ω(α,β) = {(x, y) ∈ A×A : α∗x, β∗y ∈ Aah ∩ {p}′, and α∗xp = β∗yp} .

Equivalently, Ω(α,β) = {(x, y) : (α∗x, β∗y) ∈ Gp}, where Gp denotes the Lie
algebra of Gp.

A connection in the principal bundle consists of a distribution

(α, β) 7→ K(α,β)

of subspaces of (T∆)(α,β) with the following properties:
(1) K(α,β) ⊕ Ω(α,β) = (T∆)(α,β).
(2) The distribution is smooth, i.e., if (A,B) is a smooth tangent vector

field on a neighbourhood of (α, β) in ∆, then the vector (AK, BK),
which is the (pointwise) projection of (A,B) onto K, is also smooth.
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(3) The distribution is equivariant under the action of Gp. Note that
because the right action of Gp on ∆ is in fact the restriction of a linear
action, this property is equivalent to K(αg1,βg2) = K(α,β) · (g1, g2) for
any (g1, g2) ∈ Gp.

An element α∗x commutes with p if and only if xα∗ commutes with pα, and
analogously for β∗y. Therefore it is clear that Ω(α,β) ⊂ (T∆)(α,β). Moreover,

Ω(α,β) ⊂ Z ⊂ (T∆)(α,β),

where

Z : = {(z1, z2) : z1α
∗, z2β

∗ ∈ Aah and commute with pα} .

In order to find a complement for Ω(α,β) in (T∆)(α,β) we shall construct a
complement for Ω in Z and add it to a complement of Z in (T∆)(α,β).

Observe that (z1, z2) ∈ Z if and only if α∗z1 and β∗z2 are antihermitian
elements of A which commute with p. Therefore a natural complement for
Ω(α,β) in Z consists of all pairs of matrices (in terms of p) of the form

α

(
c11 0
0 0

)
, β

(
−c11 0

0 0

)
.

Next, we find a complement for Z inside (T∆)(α,β), or, equivalently, a comple-
ment for Z · (α∗, β∗) inside (T∆)(α,β) · (α∗, β∗). These subspaces of Aah×Aah
are, respectively,

{(v1, v2) : [vi, pα] = 0, i = 1, 2} and {(x1, x2) : [x1 − x2, p
α] = 0} .

The condition [x1 − x2, p
α] = 0 means that in the decomposition (in terms of

pα) into diagonal and codiagonal matrices, the elements x1 and x2 have the
same codiagonal part. A natural complement for Z in (T∆)(α,β) is the set

{(a, a) : a ∈ Aah is codiagonal with respect to pα} · (α, β).

Instead of describing explicitly the complement K(α,β), let us write down
the projection P(α,β) = PK(α,β) that corresponds to this decomposition of
(T∆)(α,β). After routine calculations we get

P(α,β)(x, y) = (x̃, ỹ),

where

x̃ =
1
2

(pαx− αpβ∗y)p+ pαx(1− p) + (1− pα)xp,(4.1)

ỹ =
1
2

(pβy − βpα∗x)p+ pβy(1− p) + (1− pβ)yp.(4.2)

It is clear that the map (α, β) 7→ P(α,β), as a map from ∆ to BR(A), is
C∞. Thus the smoothness requirement is fulfilled. Moreover, if (g1, g2) ∈ Gp,
then (αg1)p(βg2)∗ = αpβ∗, βg2p(αg1)∗ = ((αg1p(βg2)∗)∗ = (αpβ∗)∗ = βpα∗
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and αg1p(αg1)∗ = βg2p(βg2)∗ = αpα∗. Therefore, if x, y ∈ (T∆)(α,β) and
Pα,β(x, y) = (x̃, ỹ) are as above, then

(x̃, ỹ) · (g1, g2) = Pαg1,βg2(xg1, yg2)

(where (xg1, yg2) ∈ (T∆)(αg1,βg2)), i.e., the distribution (α, β) 7→ K(α,β) is
Gp-invariant. Therefore we have the following result:

Proposition 4.2. Let K(α,β) = R(P(α,β)). Then the distribution

(α, β) 7→ K(α,β)

defines a connection in the principal bundle π∆
p .

The differential of π∆
p at (α, β) is the map

δα,β : (T∆)(α,β) → (TI∆)w, δα,β(a, b) = apβ∗ + αpb∗,

where w = αpβ∗. Note that Ω(α,β) is the kernel of δα,β . It follows that

δα,β
∣∣
Kα,β

: Kα,β → (TI∆)w

is a (real) linear isomorphism. A useful description for the connection is the
distribution of the inverses κα,β :=

(
δα,β

∣∣
Kα,β

)−1, given by

κα,β : (TI∆)w → Kα,β , κα,β(z) = (x̂, ŷ),

where

x̂ =
1
2
pαzβp+ (1− pα)zβp− βpα∗zα(1− p),

ŷ = −1
2
βpα∗zβp− βpα∗zβ(1− p) + (1− pα)zαp.

Let us conclude this section by computing the horizontal lifting differen-
tial equation of this connection. Fix w = αpβ∗ and a piecewise C1 curve
γ(t) ∈ I∆, t ∈ [0, 1], with γ(0) = w. We seek a piecewise C1 curve Γ(t) =
(Γ1(t),Γ2(t)) ∈ ∆ such that Γ lifts γ and Γ̇ is horizontal, i.e.,

π∆
p (Γ(t)) = Γ1(t)pΓ∗2(t) = γ(t)

and

Γ̇(t) ∈ KΓ(t), t ∈ [0, 1].

Differentiating the first condition, we get δΓ(t)(Γ̇(t)) = γ̇(t), and since Γ̇(t) ∈
KΓ(t), applying κΓ(t) we obtain the differential equation

Γ̇(t) = κΓ(t)(γ̇(t)),(4.3)
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or explicitly (omitting the parameter t)

Γ̇1 =
1
2

Γ1pΓ∗1γ̇Γ2p+ (1− Γ1pΓ∗1)γ̇Γ2p− Γ2pΓ∗1γ̇Γ1(1− p),

Γ̇2 = −1
2

Γ2pΓ∗1γ̇Γ2p+ (1− Γ1pΓ∗1)γ̇Γ1p− Γ2pΓ∗1γ̇Γ2(1− p).

If we make the (a posteriori) assumption that Γ lifts γ, these equations may
be rewritten, using the relations Γ1pΓ∗2 = γ and Γ1pΓ∗1 = γ∗γ = γγ∗ = Γ2pΓ∗2,
in the form

Γ̇1 =
{

1
2
γ∗γγ̇γ∗ + (1− γ∗γ)γ̇γ∗ − γ∗γ̇(1− γ∗γ)

}
Γ1,(4.4)

Γ̇2 =
{
−1

2
γ∗γ̇γ∗γ + (1− γ∗γ)γ̇γ − γ∗γ̇(1− γ∗γ)

}
Γ2.(4.5)

We shall use the latter equations, and prove that their solutions lift γ hor-
izontally. Note that these equations are linear, and therefore existence and
uniqueness under initial conditions are guaranteed.

We need the following result (see [32]): If Ω̇ = ΣΩ is a linear differential
equation in A such that Ω(t0) ∈ UA and Σ ∈ Aah, then Ω(t) ∈ UA for all t.

To apply this result, we require the following lemma.

Lemma 4.3. Let γ be a piecewise C1 curve in I∆. Then both
1
2
γ∗γγ̇γ∗ + (1− γ∗γ)γ̇γ∗ − γ∗γ̇(1− γ∗γ)

and

− 1
2
γ∗γ̇γ∗γ + (1− γ∗γ)γ̇γ∗ − γ∗γ̇(1− γ∗γ)

lie in Aah.

Proof. Note that both terms share the last two summands. To prove the
lemma, it suffices to show that

1
2
γ∗γγ̇γ∗, −1

2
γ∗γ̇γ∗γ and (1− γ∗γ)γ̇γ∗ − γ∗γ̇(1− γ∗γ)

lie in Aah. We first deal with the last term. Differentiating (1 − γ∗γ)γ = 0,
we get

(1− γ∗γ)·γ + (1− γ∗γ)γ̇ = 0.

Multiplying by γ∗ on the right (note that γ and γ∗ commute), we obtain

(γ∗γ)·γ∗γ = −(1− γ∗γ)·γγ∗ = (1− γ∗γ)γ̇γ∗.

Analogously, we have

− γ∗γ(γ∗γ)· = −γ∗γ̇(1− γ∗γ).
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Therefore,

(1− γ∗γ)γ̇γ∗ − γ∗γ̇(1− γ∗γ) = (γ∗γ)·γ∗γ − γ∗γ(γ∗γ)·,

which is antihermitian because (γ∗γ)· is selfadjoint, since it is the derivative
of a curve of selfadjoints. Next, note that γ = γγ∗γ implies

γ̇ = γ̇γ∗γ + γγ̇∗γ + γγ∗γ̇.(4.6)

Multiplying this relation by γ∗ on the right yields

γ̇γ∗ = γ̇γ∗ + γγ̇∗γγ∗ + γγ∗γ̇γ∗,

i.e.,

γγ∗γ̇γ∗ = −γγ̇∗γγ∗ = −(γγ∗γ̇γ∗)∗.

Analogously, we obtain γ∗γ̇γ∗γ ∈ Aah. �

Theorem 4.4. Let γ be a piecewise C1 curve in I∆ with γ(t0) = w = αpβ.
Let Γ1,Γ2 be the unique solutions of, respectively,

Γ̇1 =
{

1
2
γ∗γγ̇γ∗ + (1− γ∗γ)γ̇γ∗ − γ∗γ̇(1− γ∗γ)

}
Γ1

and

Γ̇2 =
{
−1

2
γ∗γ̇γ∗γ + (1− γ∗γ)γ̇γ − γ∗γ̇(1− γ∗γ)

}
Γ2,

with initial conditions Γ1(t0) = α and Γ2(t0) = β. Then Γ = (Γ1,Γ2) is the
horizontal lifting of γ with Γ(t0) = (α, β).

Proof. Set

Σ1 =
1
2
γ∗γγ̇γ∗ + (1− γ∗γ)γ̇γ∗ − γ∗γ̇(1− γ∗γ)

and

Σ2 = −1
2
γ∗γ̇γ∗γ + (1− γ∗γ)γ̇γ − γ∗γ̇(1− γ∗γ).

The above lemmas show that Γ1,Γ2 lie in UA. Let us prove that Γ lifts γ, i.e.,
that Γ1pΓ∗2 = γ, or, equivalently, Γ∗1γΓ2 = p. Differentiating the right hand
side of this relation, we obtain

˙(Γ∗1γΓ2) = Γ̇∗1γΓ2 + Γ∗1γ̇Γ1 + Γ∗1γΓ̇2 = Γ∗1(−Σ1γ + γ̇ + γΣ2)Γ2.

If we set q = γ∗γ = γγ∗, then

− Σ1γ + γ̇ + γΣ2 = −1
2
qγ̇q − q̄γ̇q + γ̇ − 1

2
qγ̇q − qγ̇q̄ = q̄γ̇q̄.

Note that γq̄ = γ(1− γ∗γ) = 0, and similarly q̄γ = 0. Therefore

0 =
d

dt
{q̄γq̄} = −q̇γq̄ + q̄γ̇q̄ − q̄γq̇ = q̄γ̇q̄.
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Hence ˙(Γ∗1γΓ2) = 0 and Γ∗1(t0)γ(t0)Γ2(t0) = p, and thus Γ1pΓ∗2 = γ. Note
that this implies, in particular, that Γ ∈ ∆: Indeed, we have

Γ1pΓ∗1 = Γ1pΓ∗2(Γ2pΓ∗1) = γγ∗ = γ∗γ = Γ2pΓ∗2.

Finally, we check that Γ is horizontal. Since we know that Γ lifts γ, we
can reverse the argument leading to the equations (4.4) and (4.5), and obtain
that these equations are equivalent to the condition

Γ̇ = κΓ(γ̇) ∈ KΓ,

i.e., that Γ is horizontal. �

5. A linear connection in I∆

In this section we introduce a linear connection in I∆. We shall use the
horizontal lifting equation in order to define a parallel transport in the tangent
bundle of I∆. To do this, one piece of data is still missing: We need a way
to move elements from one horizontal space to another, i.e., we need a map
K(α,β) → K(δ,ε), defined for any (α, β), (δ, ε) ∈ ∆, which is equivariant under
the action of Gp. We construct this map through an intermediate coordinate
space. Consider the set

C = {(a, b) ∈ Aah ×Aah : p̄ap̄ = p̄bp̄ = 0, pap+ pbp = 0 and [a− b, p] = 0} .

Lemma 5.1. Let (α, β) ∈ ∆. Then the map

cα,β : C → (α∗, β∗) · K(α,β),

cα,β(a, b) = (a, pbp+ (pbp̄+ p̄bp)β
∗α)

is an isomorphism with inverse

c−1
α,β(x, y) = (x, pyp+ (pyp̄+ p̄yp)α

∗β).

Proof. That the maps above are inverses of each other is clear, in light of the
fact that α∗β commutes with p. The fact that cα,β maps C onto (α∗, β∗)·K(α,β)

requires a proof. Note that, by (4.1) and (4.2), (α∗, β∗) · K(α,β) consists of
pairs (α∗x̃, β∗ỹ) with

x̃ =
1
2

(pαx− αpβ∗y)p+ pαx(1− p) + (1− pα)xp

and

ỹ =
1
2

(pβy − βpα∗x)p+ pβy(1− p) + (1− pβ)yp.

Then we have

α∗x̃ =
1
2
p(α∗x)p− 1

2
p(β∗y)p+ p(α∗x)(1− p) + (1− p)(α∗x)p,
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where α∗x, β∗y ∈ Aah, and an analogous relation holds for β∗ỹ. Given this de-
scription, observe that (α∗, β∗) ·K(α,β) consists of pairs (r, s) of antihermitian
matrices (in terms of p) satisfying the following relations:

(1) r11 + s11 = 0.
(2) r22 = s22 = 0.
(3) r − α∗βsβ∗α commutes with p.

Consider c−1
α,β(r, s) = (a, b). Clearly the first two relations are preserved.

There is an alternate description for cα,β (and for c−1
α,β), namely

c−1
α,β(r, s) = (r, sα

∗β + psp− psα
∗βp).

Hence a − b = r − sα
∗β + psp − psα

∗βp, where r − sα
∗β commutes with p

by the above description, and the other summands lie in pAp. This proves
that c−1

α,β((α∗, β∗) ·K(α,β)) ⊂ C. An analogous argument shows that cα,β(C) ⊂
(α∗, β∗) · K(α,β). �

We can now introduce the transport map

T δ,εα,β : Kα,β → Kδ,ε

K(α,β)

l(α∗,β∗)→ (α∗, β∗) · K(α,β)
cα,β→ C

c−1
δ,ε→ (δ∗, ε∗) · K(δ,ε)

l(δ,ε)→ K(δ,ε).
(5.1)

Explicitly, we have

T δ,εα,β(x, y) = (δα∗x, δα∗yβ∗αδ∗ε− δpα∗yβ∗αδ∗εp+ εpβ∗yp).

Note that this map has the following properties:

Tα,βα,β = id and
(
T δ,εα,β

)−1 = Tα,βδ,ε .

We now show that it is equivariant:

Proposition 5.2. Let (α, β), (δ, ε) ∈ ∆ and (g1, g2) ∈ Gp. Then, if v ∈
(TI∆)w, where w = αpβ∗, we have(

T δ,εα,β(κα,β(v))
)
· (g1, g2) = T δg1,εg2

αg1,βg2
(καg1,βg2(v)).

Proof. Let (x, y) = κα,β(v). Then καg1,βg2(v) = (xg1, yg2) by Proposition
4.2. The proof consists of checking what happens if, in the above explicit
version of T , (α, β), (δ, ε) and (x, y) are replaced by (αg1, βg2), (δg1, εg2) and
(xg1, yg2), respectively. It is clear that

T δg1,εg2
αg1,βg2

(xg1, yg2) =
(
T δ,εα,β(x, y)

)
· (g1, g2). �

This property enables one to define the parallel transport of tangent vectors
along piecewise smooth curves of I∆. Let γ(t) be a piecewise C1 curve of I∆,
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t ∈ [0, 1], with γ(0) = w = αpβ∗. Let Γ(t) be the horizontal lifting of γ(t),
with Γ(0) = (α, β). Then we define

τγ(t) : (TI∆)w → (TI∆)γ(t), τγ(t)(v) = δΓ(t)(T
Γ(t)
α,β (κα,β(v))).(5.2)

Theorem 5.3. The map τ above is well defined (i.e., does not depend on
the choice of (α, β) in the fibre of w), and is a linear isomorphism.

Proof. It is clear that τ is an isomorphism. Let us prove that it is well
defined. Let (αg1, βg2) be another element in the fibre of w (where (g1, g2) ∈
Gp). Then it is clear that Γ(t) · (g1, g2) is the solution of the horizontal lifting
equations (4.4) and (4.5) with initial conditions Γ(0) · (g1, g2) = (αg1, βg2). If
we compute τγ(t) using these data, we get

δΓ(t)·(g1,g2)(T
Γ(t)·(g1,g2)
αg1,βg2

(καg1,βg2(v))),

which, by Proposition 5.2, is equal to

δΓ(t)·(g1,g2)(T
Γ(t)
α,β (κα,β(v)) · (g1, g2)).

Recall that δ(u1,u2)(x1, x2) = x1pu
∗
2 + u1px

∗
2, and therefore

δ(u1g1,u2g2)(x1g1, x2g2) = x1g1pg
∗
2u
∗
2 + u1g1pg

∗
2x
∗
2 = δ(u1,u2)(x1, x2).

Then the above expression is equal to

δΓ(t)(T
Γ(t)
α,β (κα,β(v))). �

The covariant derivative of a vector field X = Xγ(t) that is tangent along
a curve γ(t) ∈ I∆, t ∈ [0, 1], with γ(0) = w = αpβ∗, is given by

DX

dt

∣∣
t=t0

=
d

dt
τ−1
γ(t)(Xγ(t))

∣∣
t=t0

.

If Γ is the horizontal lifting of γ with Γ(0) = (α, β), then

τ−1
γ (Xγ) = δ(α,β)(T

α,β
Γ (κΓ(Xγ))).

In particular, we have the following result.

Proposition 5.4. Let v ∈ (TI)w, with w = αpβ∗. Then the unique
geodesic ω(t), t ∈ R, of this connection, with ω(0) = w and ω̇(0) = v, is given
by

ω(t) = Ω1(t)pΩ∗2(t), t ∈ R,

where Ω = (Ω1,Ω2) is characterized by

Ω̇(t) = T
Ω(t)
α,β (κα,β(v)), Ω(0) = (α, β),

where αpβ∗ = w.
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Proof. The geodesic ω satisfies Dω̇/dt = 0, i.e.,

d

dt

(
δ(α,β)(T

α,β
Ω (κΩ(ω̇)))

)
= 0,

where Ω is the horizontal lifting of ω with initial condition Ω(0) = (α, β).
Recall (see (4.3)) that κΩ(ω̇) = Ω̇, so

0 =
d

dt

(
δ(α,β) ◦ Tα,βΩ (Ω̇)

)
= δ(α,β)

(
d

dt
(Tα,βΩ (Ω̇))

)
.

This derivative is taken in the Banach space K(α,β), on which δ(α,β) is an
isomorphism. It follows that

d

dt
Tα,βΩ (Ω̇) = 0,

i.e., Tα,βΩ (Ω̇) is constant and equals

Tα,βΩ(0)(Ω̇(0)) = Tα,βα,β (κ(α,β)(ω̇(0))) = κ(α,β)(v).

Hence, using the fact that
(
Tα,βΩ

)−1 = TΩ
α,β , it follows that

Ω̇ = TΩ
α,β(κ(α,β)(v)). �

Remark 5.5. The above proposition asserts that geodesics exist for all
times t ∈ R. This is clear if one makes the above equations explicit. Set
(x1, x2) = κα,β(v). Then Ω̇ = TΩ

α,β(x1, x2) gives

Ω̇1 = Ω1α
∗x1 with Ω(0) = α,

and

Ω̇2 = Ω1α
∗x2β

∗αΩ∗1Ω2 − Ω1pα
∗x2β

∗αΩ∗1Ω2p+ Ω2pβ
∗x2p with Ω2(0) = β.

Note that Ω∗1Ω2 commutes with p, because Ω = (Ω1,Ω2) ∈ ∆. Therefore the
second summand on the right hand side can be written as

− Ω1pα
∗x2β

∗αpΩ∗1Ω2.

The first equation has solution

Ω1(t) = αetα
∗x1 .

Substituting this into the second equation gives (with the modification pointed
out above)

Ω̇2 = αetα
∗x1α∗x2β

∗αe−tα
∗x1α∗Ω2

− αetα
∗x1pα∗x2β

∗αpe−tα
∗x1α∗Ω2 + Ω2pβ

∗x2p.
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Using the fact that αetα
∗x1α∗ = etx1α

∗
, the first two terms on the right hand

side are equal to

etα
∗x1x2β

∗e−tx1α
∗
Ω2 − etα

∗x1pαx2β
∗pαe−tx1α

∗
Ω2

= etα
∗x1{x2β

∗ − pαx2β
∗pα}e−tx1α

∗
Ω2.

Since (x1, x2) = κα,β(v) ∈ K(α,β), it follows (see Lemma 4.3) that x1α
∗ and

x2β
∗ have the same codiagonal entries in their matrices in terms of pα. There-

fore

x2β
∗ − pαx2β

∗pα = x1α
∗ − pαx1α

∗pα.

Hence the second equation is

Ω̇2 = x1α
∗Ω2 − etx1α

∗
pαx1pα

∗e−tx1α
∗
Ω2 + Ω2pβ

∗x2p.

This is a linear differential equation, with solutions defined for all t ∈ R.
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[35] M. Mbekhta and Ş. Strǎtilǎ, Homotopy classes of partial isometries in von Neumann

algebras, Acta Sci. Math. (Szeged) 68 (2002), 271–277. MR 2003f:46097
[36] N. C. Phillips, The rectifiable metric on the space of Projections in a C∗-algebra,

Internat. J. Math. 3 (1992), 679–698. MR 93k:46047

[37] H. Porta and L. Recht, Minimality of geodesics in Grassmann manifolds, Proc. Amer.

Math. Soc. 100 (1987), 464–466. MR 88f:46113
[38] B. Sz.-Nagy, Spektraldarstellung linearen Transformationen des Hilbertschen Raumes,

Ergebn. Math. Grenzgebiete, vol. 39, Springer, Berlin, 1946.
[39] D. R. Wilkins, The Grassmann manifold of a C∗-algebra, Proc. Roy. Irish Acad. Sect.

A 90 (1990), 99–116. MR 92b:46116



120 ESTEBAN ANDRUCHOW AND GUSTAVO CORACH

Esteban Andruchow, Instituto de Ciencias, Universidad Nacional de Gral.

Sarmiento, J. M. Gutierrez entre J.L. Suarez y Verdi, (1613) Los Polvorines,

Argentina, and IAM-CONICET, Saavedra 15, 1083 Buenos Aires, Argentina

E-mail address: eandruch@ungs.edu.ar

Gustavo Corach, Departamento de Matemática, Facultad de Ingenieŕıa, Uni-
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