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DUALS OF FORMAL GROUP HOPF ORDERS IN CYCLIC
GROUPS

LINDSAY N. CHILDS AND ROBERT G. UNDERWOOD

Abstract. Let p be a prime number, K be a finite extension of the
p-adic rational numbers containing a primitive pnth root of unity, R

be the valuation ring of K and G be the cyclic group of order pn. We
define triangular Hopf orders over R in KG, and show that there exist
triangular Hopf orders with n(n + 1)/2 parameters by showing that
the linear duals of “sufficiently p-adic” formal group Hopf orders are
triangular.

0. Introduction

This paper is part of a program to determine the structure of commutative,
cocommutative finite Hopf algebras over valuation rings of local fields (finite
extensions of the p-adic rationals). (The problem is the same as that of
describing finite abelian group schemes over valuation rings of local fields.)
If the rank of the Hopf algebra is prime to p, then the problem reduces to
descent theory, since any such Hopf algebra is a form of the group ring of a
finite group. But for Hopf algebras of rank n, where n is a power of p, even
the case n = p is nontrivial.

The first general description of Hopf algebras over valuation rings of local
fields was that of Tate and Oort [TO70] for Hopf algebras of rank p, in 1970.
The Hopf algebras involve a single parameter b of R. Their classification was
extended in 1974 by Raynaud [Ra74] to a construction of certain Hopf orders
in KG, G elementary abelian of order pn. In both cases the corresponding
finite group schemes admit an action by the multiplicative group of the fi-
nite field of order pn, which allows an eigenspace decomposition of the group
scheme, leading to the classification. Hopf orders whose finite group schemes
admit such an action are known as Raynaud orders.

Larson [La76] described a construction of Hopf orders in KG for any group
G, using the concept of group valuation. For G of order p this construction
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yields all Hopf orders in KG. These orders have subsequently become known
as Larson orders.

Greither [Gr92] and Byott [By93] classified Hopf orders in KG, G of order
p2. Their classification showed that Larson orders form a proper subset of
all Hopf orders in KG: for order p2, Larson orders involve two valuation
parameters, while Greither orders involve an additional unit parameter u.
Greither determined the allowable valuations of u−1 and determined for which
valuations the corresponding Hopf order is realizable, that is, is the associated
order of the valuation ring of some Galois extension L/K of local fields with
cyclic Galois group G of order p2. Greither’s classification assumed a p-adic
condition on the valuation parameters, following Larson; his classification
was extended by Underwood to arbitrary orders in KG [Un94], and by Childs
(partially) [Ch95] and Byott (fully) [By02] to Hopf orders in arbitrary abelian
K-Hopf algebras of rank p2.

For rank pn, n > 2, only partial results are known. Childs and Sauerberg
[CS98] gave a construction of Hopf orders in KG, G elementary abelian of
order pn, using polynomial formal groups. Greither and Childs [GC98] ex-
tended Greither’s construction of Hopf algebras of rank p2 to obtain Hopf
orders in KG, G elementary abelian of order pn. Both of these constructions
obtained for the first time Raynaud orders as iterated extensions of Hopf
orders of smaller rank. Greither and Childs’ construction was extended by
Smith [Sm97]. All three of these constructions obtained Hopf orders that
had n valuation parameters and n(n− 1)/2 unit parameters. When the unit
parameters are trivial, the resulting Hopf orders are Larson.

Underwood [Un96] extended Greither’s cohomological methods in the p2

case to construct Hopf orders of rank p3 as extensions of a Hopf algebra of
rank p by a Hopf algebra of rank p2 that is the dual of a Greither order. His
Hopf orders involve three valuation parameters and two unit parameters. In
[UC05] we called these cohomological Hopf orders.

In [CU03] the authors gave a new construction of Hopf orders in KG, G
cyclic of order pn, using polynomial formal groups. We called the Hopf orders
so constructed formal group Hopf orders. When G is cyclic of order p3, this
construction yields Hopf orders with six parameters that are not included
in the class of cohomological Hopf orders constructed in [Un96]. However,
these Hopf orders are not realizable if n > 1, hence the class of Hopf orders
constructed by the polynomial formal group method cannot include all Hopf
orders.

In [UC05] the authors specialized to G cyclic of order p3. We extended
the construction of [Un96] to obtain what we called triangular Hopf orders in
KG. Cohomological Hopf orders are triangular. One of the main results of
[UC05] was that the dual of any formal group Hopf order in KG, G cyclic of
order p3, is triangular.
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Suppose henceforth that G is cyclic of order pn. The purpose of this paper
is to introduce triangular Hopf orders in KG. Showing that a triangular Hopf
order is in fact a Hopf order (that is, is an R-algebra that as an R-module is
free of rank pn over R and is closed under the comultiplication in KG) is in
general difficult. Our main result generalizes the duality result for n = 3 in
[UC05], namely, that if we impose a suitable p-adic condition on the valuation
parameters of the formal group Hopf orders inKG constructed in [CU03], then
their duals are triangular. This result implies the existence for all n > 0 of
triangular Hopf orders in KG with n(n− 1)/2 unit parameters.

The first author would like to thank Auburn University, Auburn University
Montgomery and Union College for their hospitality during this research.

1. Triangular Hopf orders

Let p be a prime number and let the field K be a finite extension of Qp. Let
ord(a) be the valuation of a in K, normalized so that ord(π) = 1, where π is
a parameter for K, and let R be the valuation ring of K. Let Cpn denote the
cyclic group of order pn generated by g and suppose K contains a primitive
pnth root of unity ζn, with ζ1 = ζp

n−1

n a primitive pth root of unity. Let
e′ = e/(p− 1), where e = ord(p) is the absolute ramification index of K/Qp.
For an integer i, 0 ≤ i ≤ e′, set i′ = e′ − i.

In [UC05] the authors defined triangular Hopf orders in KCp3 by anal-
ogy with the Hopf orders defined in KCnp in [GC98]. We begin by defining
triangular Hopf orders in KCpn for all n > 0, as follows.

For 0 ≤ s ≤ pn− 1 let e(n)
s be the primitive idempotent of K〈g〉 defined by

e(n)
s =

1
pn

pn−1∑
k=0

ζ−skn gk.

Write s p-adically, s = r0+pr1+p2r2+· · ·+pn−1rn−1, and for 1 ≤ k ≤ n−1
let

a(k)
x =

p−1∑
r0,...,rn−1=0

xrk−1e(n)
s .

Then a Hopf order H in KG is triangular if H has the form

H = H(i′n, . . . , i
′
1, xn−1,1, xn−2,1, xn−2,2, . . . , x1,n−1) = R[bn, bn−1, . . . , b1],

where
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bn =
gp
n−1 − 1
πi
′
n

,

bn−1 =
a

(1)
xn−1,1g

pn−2 − 1

πi
′
n−1

,

· · ·

b1 =
a

(1)
x1,1a

(2)
x1,2 · · · · · a

(n−1)
x1,n−1g − 1

πi
′
1

,

where the x`,m are units of R (the unit parameters), and i1, . . . , in are non-
negative integers (the valuation parameters). (The terminology “triangular”
stems from the idea that the parameters may be laid out in a lower trian-
gular matrix. There is no known connection with the terminology “quasi-
triangular” in quantum group theory.)

If all the unit parameters are equal to 1 and the valuation parameters
satisfy the p-adic condition ik ≥ pik+1 for all k, then H = H(i1, . . . , in) is a
Larson order.

These algebras extend known constructions in KCp2 and KCp3 as follows.
For n = 2, let G = 〈g〉 be cyclic of order p2. For 0 ≤ s ≤ p − 1 let e(1)

s be
the primitive idempotents of K〈gp〉 = KCp defined by

e(1)
s =

1
p

p−1∑
k=0

ζ−sk1 gpk,

and for u in R let

au =
p−1∑
r=0

ure(1)
r .

Then every R-Hopf order in KGp2 has the form

H = R

[
gp − 1
πi1

,
aug − 1
πi2

]
by [Gr92] and [Un94]. The parameters i1, i2 are the valuation parameters,
and determine the discriminant of H; the parameter u is a unit parameter:
H is a Hopf order if u − 1 has valuation ≥ max{i′1 + i2/p, i

′
1/p + i2}, and H

is visibly Larson if u = 1 and is demonstrably Larson if ord(u− 1) ≥ i′1 + i2.
One sees easily that

e(1)
r0 =

p−1∑
r1=0

e
(2)
r0+pr1 ,

and so

au = a(1)
u =

p−1∑
r0,r1=0

ur0e
(2)
r0+pr1 .

Thus all Hopf orders in KGp2 are triangular.
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For n = 3, let e(2)
r0+pr1 , r0, r1 = 0, . . . , p − 1, be the primitive idempotents

of K〈gp〉 = KCp2 . For u, v, w units of R, define

bw =
p−1∑

r0,r1=0

wr1e
(2)
r0+pr1 ,

av =
p−1∑

r0,r1=0

vr0e
(2)
r0+pr1 ,

au =
p−1∑

r0,r1=0

ur0e
(2)
r0+pr1 .

In [UC05, §1] we defined Hopf orders in KCp3 of the form

H(i1, i2, i3, u, v, w) = R

[
gp

2 − 1
πi1

,
aug

p − 1
πi2

,
avbwg − 1

πi3

]
,

where

avbw =
p−1∑

r0,r1=0

vr0wr1e
(2)
r0+pr1 .

One sees easily that

e
(2)
r0+pr1 =

p−1∑
r2=0

e
(3)
r0+pr1+p2r2

;

thus au = a
(1)
u , av = a

(1)
v , and bw = a

(2)
w , and so these Hopf orders are

triangular. Here the ij are valuation parameters and u, v, w are unit param-
eters. If u = v = w = 1 and the valuation parameters i1, i2, i3 satisfy a
p-adic condition, then H(i1, i2, i3, u, v, w) is a Larson order. We have found
sets of sufficient conditions on the parameters for these triangular algebras
H(i1, i2, i3, u, v, w) to be Hopf orders; cf. [UC05, Theorem 1.7, Proposition
1.8, Theorem 3.7]. However those conditions are complicated, and in contrast
to the case for n = 2 there exist Hopf orders in KG with n = 3 that are not
triangular; cf. [UC05, Theorem 4.3] or [CU03, Theorem 4.2].

For n > 3 the only triangular Hopf orders previously known to exist were
Larson orders, though for large n one can construct non-Larson triangular
orders by starting with some Larson orders in KG and simply “pushing up”
some non-Larson orders one already knows from the case n = 2. These
triangular orders in KG, n > 3, however, will have only 1 nontrivial unit
parameter. Theorem 2.2, below, shows the existence of triangular Hopf orders
with n(n− 1)/2 nontrivial unit parameters.
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2. Formal group Hopf orders

In [CU03], the authors constructed Hopf orders over R in KG using n-
dimensional degree 2 polynomial formal groups. The construction uses formal
groups FΘ obtained by conjugating the n-dimensional multiplicative formal
group Gnm by suitable n × n lower triangular matrices Θ with entries in R.
The Hopf orders HΘ in KG represent the kernels of certain isogenies on FΘ.
We call these formal group Hopf orders.

The algebra structure ofHΘ is determined from Θ as follows. Let U = (ui,j)
denote the lower triangular matrix which is the inverse of Θ. Then (cf. [CS98,
p. 71])

HΘ = R[z1, z2, . . . , zn],

where

z1 = u1,1(gp
n−1
− 1),

z2 = u2,1(gp
n−1
− 1) + u2,2(gp

n−2
− 1),

...

zn = un,1(gp
n−1
− 1) + · · ·+ un,n(g − 1).

In [CU03] we obtained the following theorem:

Theorem 2.1 ([CU03, Theorem 2.1]). Suppose Θ = (θi,j) is an n × n
lower triangular matrix with entries in R with the following properties:

• The diagonal entries θ`,` are non-zero.
• There exists q with 0 < q < (p− 1)/(2p− 1)(< 1/2), so that the non-

zero entries θ`,j in the `th row have valuations ord(θ`,j) satisfying

ord(θ`,`) > ord(θ`,i) ≥ (1− q) ord(θ`,`)(>
1
2

ord(θ`,`)).

• The diagonal entries θ`,` satisfy a kind of “p-adic” condition,

ord(θ`,`) ≥ d ord(θ`+1,`+1)

for ` ≥ 1, where

d ≥ p

1− q
+

q

1− 1−q
p

.

• The entry θ1,1 has valuation not too close to e′; in particular,

ord(θ1,1) <
(
p− 1
p

)(
d− 1

d− 1 + q

)
e′.

Then Θ gives rise to an R-Hopf order HΘ in KCpn .
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We can assume that the diagonal entries θ`,` are pure powers of π:

θ`,` = πi` .

Then the i` are the “valuation parameters” of HΘ, in the sense that the
rank p subquotients of HΘ, namely, the orders in K〈σ`〉 where σ` = gp

n−`
+

〈gpn−`+1〉, are the rank p Larson orders H(i`) = R[(σ` − 1)/πi` ] and hence the
discriminant of HΘ is completely determined by the i` (cf. [Ch00, (22.17)]).

Our main result, stated in the following theorem, is that by assuming a
stronger p-adic condition on the diagonal entries of Θ we can identify the dual
of HΘ as a triangular Hopf order J . One consequence of this identification
is that we don’t need to know in advance that J is anything more than an
R-algebra, for once we show that J is the dual of HΘ, J must be a Hopf order
since the dual of HΘ is. In this way we obtain triangular Hopf orders in KCpn
for all n.

Theorem 2.2. Let H = HΘ be as in Theorem 2.1, and suppose is−1 ≥
2npis for all s > 1. Then the dual of HΘ is triangular.

It is easy to see that the p-adic condition in Theorem 2.2 implies that in
Theorem 2.1.

Proof. Throughout this proof H∗ will denote the linear dual of the Hopf
order H. Let Ĝ = 〈γ〉 be the character group of G, where 〈γ, g〉 = ζn.

When n = 1, H is the Larson order H(i1) = R[(g − 1)/πi1 ] and H(i1)∗ is
H(i′1) = R[(γ − 1)/πi

′
1 ] (see [Ch00, (21.2)]), so the result is true when n = 1.

To prove the result for n ≥ 2, the triangular dual of H will be constructed
inductively, adding one generator at each inductive step. For the induction
hypothesis we assume that the rank pn−1 sub-Hopf order H∗ ∩K〈γp〉 of H∗

is triangular. Using this, we then find a new generator, which when adjoined
to the sub-Hopf order results in an R-algebra of triangular form which is
contained in the dual of H. A discriminant argument then shows that this
triangular R-algebra is the dual of H.

Let 〈−,−〉 be the duality pairing: KĜ×KG→ K, such that 〈γ, g〉 = ζn.
Let Θ2 be the n− 1×n− 1 matrix obtained from Θ by omitting the first row
and column. Then the image of HΘ under the quotient map on KG defined
by sending gp

n−1
to 1 is HΘ2 . Let J2 be the linear dual of HΘ2 . Note that

J2 is a rank pn−1 Hopf order with J2 = H∗ ∩K〈γp〉. We assume that J2 is
triangular of the form

J2 = R[bn, bn−1, . . . , b2],



930 LINDSAY N. CHILDS AND ROBERT G. UNDERWOOD

where

bn =
γp

n−1 − 1
πi
′
n

,

bn−1 =
a

(1)
xn−1,1γ

pn−2 − 1

πi
′
n−1

,

· · ·

b2 =
a

(1)
x2,1a

(2)
x2,2 · · · · · a

(n−2)
x2,n−2γ

p − 1
πi
′
2

,

where the x`,m are units of R (the unit parameters), and i′n, . . . , i
′
2 are non-

negative integers (the valuation parameters). Recall that i′ = e′ − i for any
integer i, 0 ≤ i ≤ e′.
J2 is a sub-Hopf order of H∗ with

〈J2,H〉 = 〈J2,HΘ2〉2 ⊂ R,

where 〈−,−〉2 denotes the duality pairing: KĈpn−1 ×KCpn−1 → K.
Now put

b1 =
a

(1)
x1,1a

(2)
x1,2 · · · · · a

(n−1)
x1,n−1γ − 1

πi
′
1

,

and
J = J2[b1],

for some unit parameters x1,1, x1,2, . . . , x1,n−1.
Our goal is to choose the unit parameters of b1 so that

〈J,H〉 ⊂ R.

This duality relation is equivalent to

〈wbq1, z
µ1
1 zµ2

2 · · · · · zµnn 〉 ∈ R

for all µ1, . . . , µ2 ≤ p− 1 and for all q with 0 ≤ q ≤ p− 1 and all w ∈ J2. But
because H is a Hopf order, for h ∈ H,

〈wbq1, h〉 =
∑
(h)

〈b1, h(1)〉〈b1, h(2)〉 · . . . · · · · 〈b1, h(q)〉〈w, h(q+1)〉,

where ∆q(h) =
∑

(h) h(1) ⊗ · · · ⊗ h(q+1) (iterated Sweedler notation.) Since
〈w, h(q+1)〉 is in R because J2 ⊆ H∗, and h(j) is an R-linear combination of
monomials in z1, . . . , zn, it suffices to show that

〈b1, zµ1
1 zµ2

2 · · · · · zµnn 〉 ∈ R.

Thus, simplifying notation, we write

b1 = b =
a

(1)
x1 a

(2)
x2 . . . a

(n−1)
xn−1 γ − 1

πi
′
1

,
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where xk = x1,k, 1 ≤ k ≤ n− 1. We want to show that

〈b, zµ1
1 zµ2

2 · · · · · zµnn 〉 ∈ R

for all µr, 0 ≤ µr ≤ p− 1.
Since 〈1, zµ1

1 zµ2
2 · · · · · zµnn 〉 = 0 unless all µr = 0, and since 〈b, 1〉 = 0, it

suffices to show that

〈a(1)
x1
a(2)
x2
. . . a(n−1)

xn−1
γ, zµ1

1 zµ2
2 · · · · · zµnn 〉 ∈ πi

′
1R(1)

for all µr, 0 ≤ µr ≤ p− 1, with µ1 + · · ·+ µn > 0.
To satisfy condition (1), we define x1, . . . , xn−1 so that for all r > 1,

〈a(1)
x1
a(2)
x2
. . . a(n−1)

xn−1
γ, zr〉 = 0.(2)

Expanding the left side, we obtain

a(1)
x1
a(2)
x2
. . . a(n−1)

xn−1
γ

=
p−1∑

r0,...,rn−1=0

xr01 · · · · · x
rn−2
n−1 γer0+pr1+···+pn−1rn−1

=
p−1∑

r0,...,rn−1=0

(x1ζn)r0 · · · · · (xn−1ζ2)rn−2ζ
rn−1
1 er0+pr1+···+pn−1rn−1 ,

and so, setting xn = 1 and ξn−s = xs+1ζn−s for s = 0, . . . , n− 1, we have

〈a(1)
x1
a(2)
x2
. . . a(n−1)

xn−1
γ, gp

s

〉 = xs+1ζn−s = ξn−s

for s = 0, . . . , n− 1. Then

〈a(1)
x1
a(2)
x2
. . . a(n−1)

xn−1
γ, gp

n−1c1gp
n−2c2 . . . gpcn−1gcn〉 = ξc11 ξ

c2
2 . . . ξcnn

for 0 ≤ c2, . . . , cn ≤ p − 1 and any c1 ≥ 0, since for c1 = pq1 + h1, with
0 ≤ h1 < p, gp

n−1c1 = gp
n−1h1 and ξc11 = ζc11 = ζh1

1 = ξh1
1 . Thus any

polynomial f(X1, . . . , Xn) in n variables of degree ≤ p − 1 in each variable
Xk with k > 1 has the property that

〈a(1)
x1
a(2)
x2
. . . a(n−1)

xn−1
γ, f(gp

n−1
, . . . , gp, g)〉 = f(ξ1, ξ2, . . . , ξn).

In particular, we have

〈a(1)
x1
a(2)
x2
. . . a(n−1)

xn−1
γ, zr〉 = ur,1(ξ1 − 1) + ur,2(ξ2 − 1) + · · ·+ ur,r(ξr − 1),

and so (2) is equivalent to

ur,1(ξ1 − 1) + ur,2(ξ2 − 1) + · · ·+ ur,r(ξr − 1) = 0.
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Writing this last equation in matrix form allows us to determine x1, . . . , xn−1

precisely, as follows:

U


ξ1 − 1
ξ2 − 1

...
ξn − 1

 =


u1,1(ζ1 − 1)

0
...
0

 ,

which is equivalent to 
ξ1 − 1
ξ2 − 1

...
ξn − 1

 = Θ


u1,1(ζ1 − 1)

0
...
0


since ΘU = I. Thus we define the xk, 1 ≤ k ≤ n− 1, so that

ζrxn+1−r − 1 = ξr − 1 = u1,1(ζ1 − 1)θr,1,

for r = 1, . . . , n. Note that ξr is in R for all r since e′ > i1 and Θ has entries
in R.

Now with x1, . . . , xn defined as above, we proceed to show that the duality
relation (1) is satisfied. For r ≥ 2,

ur,1(ξ1 − 1) + ur,2(ξ2 − 1) + · · ·+ ur,r(ξr − 1) = 0,

and we may subtract the left side of this last equation from zr to obtain for
r ≥ 2,

zr = ur,1(gp
n−1
− ξ1) + ur,2(gp

n−2
− ξ2) + · · ·+ ur,r(gp

n−r
− ξr).

We set ys = gp
n−s − ξs for s = 1, . . . , n. Then for r > 1,

zr =
r∑
j=1

ur,jyj ,

and

z1 = u1,1(gp
n−1
− 1)

= u1,1(gp
n−1
− ζ1 + ζ1 − 1)

= u1,1(y1 + λ),

where λ = ζ1 − 1 has valuation e′.
The duality map

Φ = 〈a(1)
x1
a(2)
x2
. . . a(n−1)

xn−1
γ,−〉 : KG→ K

then is a K-module homomorphism that maps gp
n−j

to ξj for all j, hence
maps yqr to 0 for 1 ≤ q ≤ p− 1, and so maps any polynomial f(y1, . . . , yn) of
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degree ≤ p− 1 in y2, . . . , yn to f(0, . . . , 0). We need to show that

Φ(zµ1
1 . . . zµnn ) ∈ πi

′
1R

for all µ1, . . . , µn not all 0.
Now

zµ1
1 . . . zµnn

= (u1,1y1 + c)µ1(u2,1y1 + u2,2y2)µ2 · · · · · (un,1y1 + · · ·+ un,nyn)µn ,

where c = u1,1λ is in R and µk ≤ p − 1 for 1 ≤ k ≤ n. This product is an
R-linear combination of terms of the form

(u1,1y1)ν1,1((u2,1y1)ν2,1(u2,2y2)ν2,2) . . . ((un,1y1)νn,1 . . . (un,nyn)νn,n).

If we set
νs = (νs,s, νs+1,s, . . . , νn,s)

and
|νs| = νs,s + νs+1,s + · · ·+ νn,s

and write
Uνs−,s = uνs,ss,s u

νs+1,s
s+1,s · · · · · uνn,sn,s

for s = 1, . . . , n, then zµ1
1 . . . zµnn is an R-linear combination of terms of the

form
B = Uν1

−,1U
ν2
−,2 · · · · · U

νn
−,ny

|ν1|
1 y

|ν2|
2 · · · · · y|νn|n ,

with |νn| ≤ p− 1. Write

Us = Uνs−,sU
νs+1
−,s+1 · · · · · U

νn
−,n.

Note that for each r, the exponents νr,1, νr,2, . . . , νr,r arise from expanding
zµrr , and hence

νr,1 + νr,2 + · · ·+ νr,r = µr ≤ p− 1.

We wish to find conditions so that Φ maps each term B to πi
′
1R.

First observe that if the exponent |ν1| of y1 is positive, then Φ(B) = 0,
since Φ(yq1f(y2, . . . , yn)) = 0 for any positive exponent q and any polynomial
f . Thus we may assume ν1 = 0.

Assume that ν1 = · · · = νs−1 = 0, and νs 6= 0. Then

B = Usy
|νs|
s . . . y|νn|n .

As given, B is not necessarily a polynomial of degree ≤ p− 1 in y2, . . . , yn,
but we will presently break B down into such polynomials. We need two
lemmas.

Lemma 2.3. For s ≤ t ≤ n, ypt ≡ yt−1 + βt−1 mod pRG, with βt−1 ∈ R.
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Proof. We have yt = gp
n−t − ξt, so

ypt ≡ gp
n−t+1

− ξpt
= gp

n−t+1
− ξt−1 + ξt−1 − ξpt

= yt−1 + βt−1

modulo pRG, where, since all ξr are in R,

βt−1 = ξt−1 − ξpt ∈ R. �

Lemma 2.4. For t = 2, . . . , n, ord(βt−1) = i′1+ord(θt−1,1). Hence ord(p) ≥
ord(βt−1) > ord(βt) for t = 2, . . . , n− 1.

Proof. We have

βt−1 = ξt−1 − ξpt
= 1 + u1,1(ζ1 − 1)θt−1,1 − (1 + u1,1(ζ1 − 1)θt,1)p

= u1,1(ζ1 − 1)θt−1,1 − up1,1(ζ1 − 1)pθpt,1 + pu1,1(ζ1 − 1)x

with x ∈ R. Since ord(u1,1(ζ1−1)) = i′1, the second term above has valuation
≥ pi′1 + pi′t/2. But i1 ≤ (p−1

p )e′ by Theorem 2.1, hence i′1 ≥ e′/p, so pi′1 +
pit/2 > e′ = i′1 + i1 ≥ i′1 + ord(θt−1,1). Moreover, the third term above has
valuation ≥ e+ i′1, and e+ i′1 > i′1 + ord(θt−1,1). Thus the valuation of βt−1

is i′1 + ord(θt−1,1).
Now

ord(p) = e ≥ e′ = i1 + i′1 = i′1 + ord(θ1,1) = ord(β1),

and for all t we have

ord(θt−1,1) ≥ 1
2

ord(θt−1,t−1) >
p

2
ord(θt,t) ≥

p

2
ord(θt,1),

hence ord(p) ≥ ord(βt−1) > ord(βt) for t = 2, . . . , n− 1. �

Now assuming that B is not a polynomial of degree ≤ p− 1 in y2, . . . , yn,
let t be the largest integer for which |νt| ≥ p (necessarily, t < n). Then B is
of the form

Usy
|νs|
s . . . y

|νt|
t y

rt+1
t+1 . . . yrnn

with 0 ≤ rt+1, . . . , rn < p. Write

|νt| = atp+ rt

with 0 ≤ rt < p, and so

y
|νt|
t = (ypt )atyrtt
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with

(ypt )at ≡ (yt−1 + βt−1)at mod pRG

≡
at∑
kt=0

(
at
kt

)
yktt−1β

at−kt
t−1 ,

by Lemma 2.3. Substituting in B we find that modulo UspRG, B is an
R-linear combination of terms

Bt−1 = Usy
|νs|
s . . . y

|νt−1|+kt
t−1 yrtt . . . yrnn ,

with 0 ≤ rt, rt+1, . . . , rn ≤ p− 1 and |νs| > 0.
Next write

|νt−1|+ kt = at−1p+ rt−1

with 0 ≤ rt−1 < p. Then

y
|νt−1|+kt
t−1 = (ypt−1)at−1y

rt−1
t−1

with

(ypt−1)at−1 ≡ (yt−2 + βt−2)at−1 mod pRG

≡
at−1∑
kt−1=0

(
at−1

kt−1

)
y
kt−1
t−2 β

at−1−kt−1
t−2 ,

by Lemma 2.3. Substituting in the terms Bt−1 we find that modulo UspRG,
B is an R-linear combination of terms

Bt−2 = Usy
|νs|
s . . . y

|νt−2|+kt−1
t−2 y

rt−1
t−1 y

rt
t . . . yrnn ,

with 0 ≤ rt−1, rt, rt+1, . . . , rn ≤ p− 1 and |νs| > 0.
Repeating, we conclude that modulo UspRG, B is an R-linear combination

of terms of the form

Bs = Usy
|νs|+ks+1
s y

rs+1
s+1 . . . yrnn ,

with 0 ≤ rs+1, rs+2, . . . , rn < p, and |νs|+ ks+1 > 0.
Write

|νs|+ ks+1 = d1p
s−1 + r2p

s−2 + · · ·+ rs−1p+ rs

with 0 ≤ ri < p for i = 2, . . . , s, and d1 ≥ 0. Then

y|νs|+ks+1
s = yrss y

prs−1
s . . . yp

s−2r2
s yp

s−1d1
s .

Now by Lemma 2.3,

yp
r

s ≡ (ys−1 − βs−1)p
r−1

mod pRG,

and
(ys−1 − βs−1)p

r−1
≡ yp

r−1

s−1 mod βs−1R.
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Since by Lemma 2.4, ord(p) ≥ ord(β1) > · · · > ord(βs−1), we have

yp
r

s ≡ y
pr−1

s−1 mod βs−1RG.

Repeating, we obtain

yp
r

s ≡ ys−r mod βs−1RG

for all r, and so

y|νs|+ks+1
s ≡ yrss y

rs−1
s−1 . . . yr22 y

d1
1 mod βs−1RG.

Hence, modulo Usβs−1RG, B is an R-linear combination of terms of the
form

B0 = Usy
d1
1 yr22 . . . yrss . . . yrnn

with d1 + r2 + · · ·+ rs > 0 and r2, . . . , rn < p. Hence Φ(B0) = 0.
Note that Φ(Usβs−1RG) ⊂ Usβs−1R. Thus for the duality map Φ to send

zµ1
1 . . . zµnn to πi

′
1R for µ1 + · · · + µn > 0, it suffices that for each s ≥ 2 we

have
βs−1Us ∈ πi

′
1R,

assuming that |ν1| = · · · = |νs−1| = 0.
Note

Uνs−,s =
n∏
r=s

uνr,sr,s ,

so we need that

βs−1Us = βs−1

n∏
t=s

n∏
r=t

u
νr,t
r,t = βs−1

n∏
r=s

r∏
t=s

u
νr,t
r,t ∈ πi

′
1R,(3)

where for r = s, . . . , n,
n∑
t=s

νr,t ≤ p− 1.

In Lemma 2.4 we determined the valuation of βs−1 to be i′1 + ord(θs−1,1).
We next determine the valuation of

Us =
n∏
r=s

r∏
t=s

u
νr,t
r,t .

Lemma 2.5. For t ≥ s,

ord(ut,s) ≥ −
(
is +

is+1

2
+
is+2

2
+ · · ·+ it

2

)
Proof. We have θt,s ≥ it/2 for t > s. We show

ord(us+k,s) ≥ −
(
is +

is+1

2
+ · · ·+ is+k

2

)



DUALS OF FORMAL GROUP HOPF ORDERS IN CYCLIC GROUPS 937

by induction. The inequality is true for the trivial case k = 0 : ord(us,s) = is.
Assume the inequality holds for all s, t with t− s < k and k ≥ 1.

Since

us+k,sθs,s + us+k,s+1θs+1,s + · · ·+ us+k,s+kθs+k,s = 0

for k ≥ 1,

ord(us+k,s) + is ≥ min{ord(us+k,s+r) + ord(θs+r,s)},

where the minimum is taken over all r = 1, . . . , k. Now

ord(us+k,s+r) + ord(θs+r,s) ≥ is+r/2− (is+r + is+r+1/2 + · · ·+ is+k/2)

= −(is+r/2 + is+r+1/2 + · · ·+ is+k/2)

by induction, for all r = 1, . . . , k. So the minimum of

ord(us+k,s+r) + ord(θs+r,s)

for r = 1, . . . , k occurs when r = 1, since is+1 > is+2 > · · · > is+k. Thus

ord(us+k,s) + is ≥ −(is+1/2 + is+2/2 + · · ·+ is+k/2),

completing the proof. �

For s < t ≤ r the lower bound on ord(ur,t) given by Lemma 2.5 is greater
than or equal to the lower bound on ord(ur,t−1). Thus, since

∑n
t=s νr,t ≤ p−1

for each r ≥ s, we have

ord(uνr,sr,s u
νr,s+1
r,s+1 · · · · · uνr,rr,r ) ≥ −(p− 1)

(
is +

is+1

2
+
is+2

2
+ · · ·+ ir

2

)
,

and so

ord(Us) ≥
n∑
r=s

−(p− 1)
(
is +

is+1

2
+
is+2

2
+ · · ·+ ir

2

)
= −(p− 1)

(
(n+ 1− s)is + (n− s) is+1

2
+ · · ·+ in

2

)
.

Thus for (3) to hold, it suffices that

ord(βs−1) ≥ i′1 + (p− 1)
(

(n+ 1− s)is + (n− s) is+1

2
+ · · ·+ in

2

)
for all s ≥ 2. Since ord(βs−1) = i′1 + ord(θs−1,1) and ord(θs−1,1) ≥ is−1/2,
this follows from

is−1

2
≥ (p− 1)

(
(n+ 1− s)is + (n− s) is+1

2
+ · · ·+ in

2

)
.
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Now Theorem 2.1 requires the p-adic condition ir−1 ≥ dir with d ≥ p. Given
the p-adic hypothesis is−1 ≥ 2npis for all s > 1, this last inequality follows
from

npis ≥ (p− 1)
(
nis +

1
2

(
n− s
2np

+
n− s− 1

(2np)2
+ · · ·+ 1

(2np)n−s

)
is

)
,

which holds.
This completes the argument that 〈J,H〉 ⊂ R, and so J ⊂ H∗Θ.
Now we need to show that J = H∗Θ. By induction, we know that H∗Θ ∩

KĈpn−1 = J2 = H∗Θ2
. We have J = J2[α] with α = (uγ − 1)/πi

′
1 , where

u = a(1)
x1
a(2)
x2
. . . a(n−1)

xn−1
.

Then

αp +
1
πpi
′
1

p−1∑
r=1

(
p

r

)
(πi
′
1α)r =

upγp − 1
πpi
′
1
∈ H∗ ∩KĈpn−1 = J2.

So J is free over J2 with basis 1, α, . . . , αp−1.
To show that disc(J) = disc(H∗Θ), it suffices to show that

disc(J) = disc(J2)p disc(H(i′1))p
n−1

.

Now

disc(J) = disc({βναj}),

where {βν} is an R-basis of J2. Consider the basis

{βν · (πi
′
1α)j}

of J2[πi
′
1α] = J2[uγ]. Then

disc({βν · (πi
′
1α)j}) = (πi

′
1+2i′1+···+(p−1)i′1)2pn−1

disc({βναj}).

Since u = a
(1)
x1 · · · a

(n−1)
xn−1 is in J2 and uγ = 1 + πi

′
1α is a unit of J , hence of

HΘ, u is a unit of J2, and so

J2[uγ] = J2[γ].

But this is clearly a Hopf order, and so

disc(J2[γ]) = disc(J2)p disc(RCp)p
n−1

= disc({βν(πi
′
1α)j})

= π2pn−1i′1p(p−1)/2 disc(J).
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But then

disc(J) = disc(J2)p
(

disc(RCp)
πi
′
1p(p−1)

)pn−1

= disc(J2)p
(

pp

πi
′
1p(p−1)

)pn−1

and since disc(H(i′1)) = (p/πi
′
1(p−1))p by [Ch00, (22.16)], we conclude that

disc(J) = disc(J2)p disc(H(i′1))p
n−1

= disc(H∗Θ).

Since J ⊂ H∗Θ, it follows that J = H∗Θ. This completes the proof. �
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