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DOOB’S CONTRIBUTION TO FUNCTION THEORY

JANG-MEI WU

Abstract. We give a brief survey of Doob’s work on cluster sets and

fine limits.

Joseph Doob’s early work, including his thesis in 1932 and four published
papers [7], [8], [9], [11] between 1932 and 1935, focused on function theory, in
particular on cluster sets. At that time, this subject remained where Lindelöf,
Gross and Iversen had left it a decade earlier. Some of Gross and Iversen’s
work was considered difficult to follow, and was described many years later
by Doob as “obscure”.

In a space of two or three years, Doob grasped the nature of the subject and
reduced it to its essentials. He untangled the arguments of Gross and Iversen,
dispensed with extraneous matters and observed the connection among cluster
sets, omitted values and a theorem of Lindelöf on asymptotic values. He then
gave a clarified proof of the Gross-Iversen Theorem.

He went on to prove many nuts-and-bolts theorems on cluster sets. From
this there emerged an intriguing covering property of analytic functions. Sup-
pose that f is an analytic function on the unit disk with f(0) = 0, whose
cluster values on a boundary arc of length ρ > 0 have modulus at least 1,
and that the part of |w| < 1 covered by f at least q times has area less than
σ < π. Then the image of f must cover a disk |z| < d, with d depending only
on ρ, q and σ.

Because of the Great Depression few academic positions were open, so
Hotelling suggested that Doob study statistics, an area with more suitable
positions available. In short order Doob wrote Probability and Statistics [10]
in 1934, in which he sharpened then-current work of Kolmogorov and gave
rigorous proofs of theorems of Fisher and Hotelling in statistics. From there
he started a life-long journey in stochastic processes. Years later Doob would
discover profound connections between probability and classical potential the-
ory.
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1. Cluster sets

This section is partially based on two classical texts, Collingwood and Lo-
hwater [6] and Noshiro [36].

Early developments on the boundary behavior of analytic functions were
centered around three types of sets: cluster sets, range sets and asymptotic
sets. Let f be a nonconstant meromorphic function on a domain D in Ĉ.
Suppose D has an isolated boundary point x0. Then the cluster set of f at x0

is either a single point or Ĉ (Casorati 1868 [5], Weierstrass 1876 [42]); if the
cluster set at x0 is Ĉ, then the complement of the range set at x0 consists of
at most two points (Picard 1879 [38]), and points not in the range set at x0

are asymptotic values (Iversen 1914 [28]).
Let z0 be any boundary point of D. The cluster set C(z0) of f at z0 consists

of those values α such that there is a sequence zn in D converging to z0 with
limn→∞ f(zn) = α. C(z0) is connected if D is locally connected at z0. The
boundary cluster set B(z0) at z0 consists of those values α such that there is
a sequence zn in ∂D\z0 converging to z0, and a corresponding sequence wn,
in C(zn), converging to α. The range set R(z0) of f at z0 is the set of values
α such that there is a sequence zn in D converging to z0 with f(zn) = α for
all n, i.e., the set of values taken by f in every neighborhood of z0. R(z0) is
a Gδ set. A number α is an asymptotic value at z0 if it is the limit of f along
some continuous path in D ending at z0.

The notion of cluster set was introduced by Painlevé in 1895 [37]. In
the beginning, the focus was on the behavior of an analytic function in a
neighborhood of a part of the boundary that has linear measure zero, notably
in work due to Painlevé, Besicovitch and Cartwright.

Cluster sets at the boundary of a Jordan domain were systematically stud-
ied independently by Gross and Iversen between 1914 and 1922. They ob-
tained some of most powerful theorems in the theory [23],[24],[25],[26], [28],[29],
[30].

Gross-Iversen Theorem. Let f be a meromorphic function on the unit
disk ∆ and z0 be a point on the boundary ∂∆. Then

(i) ∂C(z0) ⊆ B(z0); and
(ii) every value of C(z0)\B(z0), if one exists, belongs to the range set R(z0)

with at most two possible exceptions; any exception, if one exists, is
an asymptotic value of f at z0; if there are two exceptions, then the
range set R(z0) is Ĉ less these two points.

To illustrate, note that the function e(z+1)/(z−1) is bounded analytic in ∆
and has radial limit of modulus 1 at every point of ∂∆ except at the point
1, where f has radial limit 0 and has cluster sets C(1) = {|w| ≤ 1} and
B(1) = {|w| = 1}. As for a Blaschke product, if the point 1 is a limit point of
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the zeros, then C(1) = {|w| ≤ 1}; if every point in ∂∆ is a limit point of the
zeros, then C(z0) = B(z0) = {|w| ≤ 1}. See [6].

The proofs of Gross and Iversen depend on uniformization of Riemann
surfaces and are difficult. Seidel (1932 [40]) gave a simpler proof of part (i)
based on the maximum modulus principle for analytic functions.

The identification of the range set is always more complicated than the
identification of cluster sets, as one sees by comparing the theorem of Picard
with that of Casorati-Weirstrass.

In Doob’s first published work On a Theorem of Gross and Iversen [7], he
gave a simple, transparent proof of part (ii) of the Gross-Iversen Theorem.

He showed that every value of C(z0) not belonging to B(z0) and omitted
by f in some neighborhood of z0 is an asymptotic value of f at z0. The
conclusion then follows from a theorem of Lindelöf [32], which states that if
f admits two distinct asymptotic values at some boundary point z0, then f
assumes infinitely often in any neighborhood of z0 all values of Ĉ with at most
two possible exceptions. Doob’s construction of asymptotic paths uses only
simple ideas—the maximum principle and the monodromy theorem.

In another paper [8] in 1932, Doob introduced metric cluster values, a
notion between the limit along an entire path and the limit along a subset of
a path of prescribed density. Let f be a bounded analytic function in ∆ and
F be its Fatou boundary function on ∂∆. Doob proved a connection between
cluster values of f along curves of various orders of tangency to the unit circle
at the point 1, and the metric cluster values of F at 1 for various degrees of
density. In modern language, there were many harmonic measure estimates.

Let f1, f2, . . . be a uniformly bounded sequence of functions analytic in ∆,
and C1, C2, . . . be the corresponding (cluster) set functions on ∂∆. In [9] Doob
defined strong cluster sets from the interior and from the boundary for such
sequences, and proved several Gross-Iversen type theorems for strong cluster
sets and omitted values, which are pivotal in his Bloch-type theorems.

Years later (1963), after he had made major contribution in probability
theory and fine-limit theorems, Doob returned to study cluster sets [20]. This
time he proved an elegant and technically demanding one-sided generalization
of the Gross-Iversen Theorem. The concept of boundary cluster set from one
side originates in his work on tangential limits [8]. In the proof, ideas from [9]
on strong cluster values for sequences of function-arc pairs and normal family
argument are used, and harmonic measure estimates are applied to obtain
one-sided limits.

To show the uncompromising style that is common in Doob’s papers, we
state this theorem in its original form [20], aside from changes of notation.
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Let f be a meromorphic function on the unit disk ∆ and let z0 = 1. The
boundary cluster set Bs (at z0 = 1) from the south, is the intersection⋂

n≥1

{
closure of the set of cluster values of f at points z

on the unit circle satisfying − 1
n
< arg z < 0

}
.

The boundary cluster set Bn from the north is defined similarly. The boundary
cluster set B(1) defined earlier is then Bn ∪ Bs. If 0 < ω ≤ π, the set {z :
|z| < 1, 3π/2 − arg(z − 1) ≤ ω} is called the ω-sector at 1. Let Cω be
the cluster set of f at 1 from the ω-sector, and let Cω =

⋃
ω′<ω Cω′ , and

Ts =
⋂
ω>0 Cω =

⋂
ω>0 Cω. Then Ts is the set of tangential-from-south cluster

values of f at 1; both Ts and Cω are closed.
If ω > 0, let Rω be the set of those values taken by f arbitrarily near 1

in some ω′-sector with ω′ < ω, and define Rs =
⋂
ω>0Rω. It is trivial that

Rω ⊆ Cω for ω ≥ 0.

Theorem (Doob). Let f be meromorphic function on ∆ and z0 = 1.

(i) Then Bs contains the boundary of Ts.
(ii) If ω > 0, then Cω ∩ (Ĉ\Bs) is open, and each component of this set

has a boundary point on Bs.
(iii) If α ∈ Ts ∩ (Ĉ\Bs), then Rs ⊇ D(α,Bs) aside from at most two ex-

ceptional points. (Here D(α,Bs) is the component of Ĉ\Bs containing
α.) If there are two exceptional points, Rs is Ĉ less these two points.

(iv) If ω > 0, α ∈ Cω ∩ (Ĉ\Bs) and Ts ∩ D(α,Bs) = ∅, then either
(Cω\Rω) ∩D(α,Bs) = ∅ or Rω is Ĉ less at most two points.

Whether it is the motivation for, or a consequence of, the one-sided the-
orem, a simpler proof is deduced replacing the original “obscure” proof, ac-
cording to Doob ([20], p. 462), of another deep theorem of Gross [26]; it states
that every angular cluster value of a meromorphic f at 1 that is also a limit
point of Ĉ\R(1) must be a principal value at 1, in other words, a cluster value
along every path in ∆ ending at 1.

Carethéodory’s theory of prime ends can also be considered a theory of
cluster sets. Doob’s one-sided cluster value theorem is important in study-
ing prime ends, and has been used to give an alternative proof of Lindelöf’s
theorem relating angular cluster sets of a univalent function f on ∆ to the
principal points of prime ends of f(∆). (See [6], pp. 113, 178).

2. Bloch-type theorems

A theorem of Bloch [1] in 1926 states that there is an absolute constant
b > 1/6 such that if f is analytic on the unit disk ∆ with f ′(0) = 1, then f(∆)
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contains an open disk of radius b, and that there exists b′, 1/72 < b′ < b, such
that f maps some domain in ∆ conformally onto a disk of radius b′.

A function f analytic in the unit disk ∆ with f(0) = 0, is said to have
property K(ρ), if there is an open arc A of length at least ρ > 0 on ∂∆
such that lim infn→∞ |f(zn)| ≥ 1 for every sequence zn in ∆ converging to a
point on A. In fact, the origin is the only point common to all images f(∆),
f ∈ K(ρ), for a fixed ρ < 2π ([11]).

In the spirit of Bloch’s theorem, Doob proved the following in 1935 [11].

Theorem (Doob). Let f be analytic on ∆ and f(0) = 0.

(i) Given an arbitrary closed set D1 in |w| < 1 not containing 0 and an
arbitrary integer q, there exists a neighborhood D0 of 0 depending only
on D1, ρ and q, such that if f has property K(ρ), then f(∆) covers
D1 at least q times if it does not cover D0.

(ii) There exists k(ρ) > 0, such that if f has property K(ρ), then f(∆)
contains a disk of radius k(ρ).

The disk in (ii) is generally not centered at the origin, because 0 is the only
point in all f(∆), f ∈ K(ρ).

The proof is based on a theorem on strong cluster sets of sequences of
function-arc pairs introduced in [9], whose proof in turn uses elliptic modular
functions, the monodromy theorem and a normal family argument.

Bloch’s theorem can be deduced from the above; Doob asked whether the
opposite deduction is possible, and whether the conformal part of Bloch’s
theorem can be extended to functions having property K(ρ).

There are many other interesting theorems of this nature in [11]; we state
one on covering properties of analytic functions. A function with the property
K(ρ) is said to have property Kq

σ(ρ), 0 < σ < π, q ≥ 0, if the set of points in
|w| < 1 assumed at least q times by f has measure at most σ.

Theorem (Doob). Let f be analytic on ∆ and f(0) = 0.

(i) If 0 < σ < π, there exists a neighborhood of the origin Eqσ(ρ), depend-
ing only on ρ, σ and q, such that if f has property Kq

σ(ρ), then f(∆)
⊇ Eqσ(ρ).

(ii) If 0 < σ < π, the family of functions with property K1
σ(ρ) forms a

normal family and is compact.
(iii) Let σ0 be the infimum of σ for which the family in (ii) is nonempty.

Then σ0 > 0 and there is a function which has property K1
σ0

(ρ).

Part (i) follows from the previous theorem; parts (ii) and (iii) are in the
spirit of Montel’s theorem and the proof uses Montel’s theorem and Hurwitz’
theorem.
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3. Relative Fatou theorems

Bounded harmonic functions defined on the unit ball B in Rn have nontan-
gential limit almost everywhere on ∂B (Fatou 1906 [22]). A Green potential
in B has radial limit zero at almost every point on ∂B (Littlewood 1928 for
n = 2 [33], and Privalov 1938 for n ≥ 3 [39]); the nontangential limits of a
Green potential need not exist at any point on the boundary (Zygmund 1950,
see [41]).

In 1954 Doob [12] envisioned that Brownian motion provides a suitable
path system in any domain, replacing the set of radii to the boundary of
a ball, for both harmonic and superharmonic functions. He also observed
that if u is superharmonic in Rn, and X(t), 0 ≤ t <∞, is a Brownian motion
process, then the stochastic process u(X(t)), 0 ≤ t <∞, is a supermartingale;
and that any superharmonic function is continuous on almost all Brownian
paths starting at any point in its domain of definition.

In 1945 Cartan [4] introduced the fine topology, the coarsest topology mak-
ing all subharmonic functions continuous. Brelot [2], [3] had earlier introduced
“thinness” of a set. In the language of fine topology, a set E is thin at a point
x if x is not a fine limit point of E. In 1941, Martin [34] constructed a
compactification DM for any domain D in Rn such that there is a one-to-
one correspondence between points on the boundary DM\D and normalized
minimal harmonic functions. He also showed that a strictly positive super-
harmonic function h in D has a canonical integral representation, involving
a uniquely determined measure µh on DM . In 1957, Näım [35] extended
Cartan’s fine topology from D to DM .

Doob showed that if E is thin at x, then almost no Brownian path from x
meets E for arbitrarily small strictly positive time, and regarded fine limits
as rivals of nontangential limits for boundary behavior of harmonic functions
[12].

Meanwhile, Kakutani [31] observed in 1944 the connection between har-
monic measure and exit distribution of Brownian motion from a domain.
Hunt [27] noticed in 1956 the relation between the occupation time and the
Green function.

The cumulative result in this theory is the following relative Fatou theorem.
Doob gave a probabilistic proof using conditional Brownian motion and the
h-processes introduced for this purpose [14], and a nonprobabilistic proof two
years later [16].

Brelot-Näım-Doob Theorem. Let D be a domain in Rn, n ≥ 2, whose
complement has positive capacity, and let u and h be strictly positive super-
harmonic functions on D. Then u/h has a fine limit at µh-almost every point
of DM .
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Although it is natural in the case of a general D to consider boundary
behavior via Brownian paths or fine topology, Doob thought it is also natural
to consider classical nontangential approach if D is a ball or the half space
[17].

Theorem (Doob). Let u and h be positive harmonic functions on the
unit ball B in Rn, n ≥ 2, corresponding to the Poisson-Stieltjes measures νu

and νh respectively on the ∂B. Then u/h has a finite nontangential limit at
νh-almost every point on the boundary. The limit is νh-almost everywhere the
Radon-Nikodym derivative of the absolutely continuous part of νh with respect
to νu.

Doob’s analytical proof of relative Fatou-type theorems [17] has inspired
at least one of the three original proofs of the Boundary Harnack Principle
for harmonic functions on Lipschitz domains—a subject still actively pursued
for some other operators on nonsmooth domains.

Doob’s vision in relating the Brownian trajectories to the heat equation [13]
in 1955 led eventually to the solution of the Dirichlet problem for the heat
equation on noncylindrical domains with mixed time and space variables by
means of the parabolic measure defined probabilistically. Doob later proved
these theorems by analytical methods. These led to a prolonged search by
many for the absolute continuity of parabolic measure and for smoothness of
solutions of the heat equation near the boundary of very general domains.

For all this and much more in 846 pages, see the encyclopedic Classical
Potential Theory and Its Probabilistic Counterpart [21].

4. Random notes

Doob’s early papers reveal an amazing acquaintance with the great works
of complex function theory and probability theory, reflected in a quick attack
on the central problems. He insisted that probability is rational, not mystical,
a new idea in 1934.

His favorite subjects in analysis were boundary value problems: along se-
quences, rays, curves and sectors, by fine topology and of course by Brownian
paths.

During analysis seminars, his favorite place in Altgeld Hall was near a
window, rocking his chair back and forth and watching the activities in the
Quad, but he was listening as well. Many speakers could not escape his
challenge “Can this be done by Brownian motion? by fine limit?” at the end.
He liked to debate on the best “approach” to the boundary.

Once or twice he doubted whether Brownian motion solves all problems.
After proving that u/h has finite limit along almost all h-paths from any point
x in the domain of definition for positive harmonic h and positive superhar-
monic u, he was not satisfied. He wrote in [14], “This theorem suffers from the
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unsatisfactory feature that it stresses the paths from x rather than the path
endpoints. It is not clear how the limits along paths to the same boundary
point are related. The corresponding advantage is that the theorem does not
even involve a boundary. All it really states is that u/h has a finite limit on
almost all h-paths, up to the first hitting time.” He was equal to the challenge
and went on to prove the fine limit version.

The style in his first papers on cluster sets is incisive, unpolished and
straightforward, not unlike Doob himself. Reading his early work is like
mining—requiring concentration and digging; hidden gems will be the reward.
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singulier, Öfvers. Finska Vetensk.-Soc. Förh. 58A (1915-16), no.25, 1–16.
[30] , Zum Verhalten analytischer Funktionen in Bereichen, deren Rand eine
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