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SYNCHRONOUS COUPLINGS OF REFLECTED BROWNIAN
MOTIONS IN SMOOTH DOMAINS

KRZYSZTOF BURDZY, ZHEN-QING CHEN, AND PETER JONES

Dedicated to the memory of J.L. Doob

Abstract. For every bounded planar domain D with a smooth bound-
ary, we define a “Lyapunov exponent” Λ(D) using a fairly explicit for-
mula. We consider two reflected Brownian motions in D, driven by the

same Brownian motion (i.e., a “synchronous coupling”). If Λ(D) > 0
then the distance between the two Brownian particles goes to 0 exponen-
tially fast with rate Λ(D)/(2|D|) as time goes to infinity. The exponent
Λ(D) is strictly positive if the domain has at most one hole. It is an
open problem whether there exists a domain with Λ(D) < 0.

1. Introduction and main results

Suppose D ⊂ R2 is an open connected bounded set with C4-smooth bound-
ary, not necessarily simply connected. Let n(x) denote the unit inward normal
vector at x ∈ ∂D. Let B be standard planar Brownian motion and consider
the following Skorokhod equations,

Xt = x0 +Bt +
∫ t

0

n(Xs)dLXs for t ≥ 0,(1.1)

Yt = y0 +Bt +
∫ t

0

n(Ys)dLYs for t ≥ 0.(1.2)

Here LX is the local time of X on ∂D. In other words, LX is a non-
decreasing continuous process which does not increase when X is in D, i.e.,∫∞

0
1D(Xt)dLXt = 0, a.s. Equation (1.1) has a unique pathwise solution

(X,LX) such that Xt ∈ D for all t ≥ 0 (see [LS]). The reflected Brownian
motion X is a strong Markov process. The same remarks apply to (1.2), so
(X,Y ) is also strong Markov. We will call (X,Y ) a “synchronous coupling.”
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Note that on any interval (s, t) such that Xu ∈ D and Yu ∈ D for all u ∈ (s, t),
we have Xu − Yu = Xs − Ys for all u ∈ (s, t).

Before we state our main results, we will introduce some notation and
make some technical assumptions on ∂D. We will assume that for every point
x ∈ ∂D, there exists a neighborhood U of x and an orthonormal system CSx
such that n(x) = (0, 1) and x = (0, 0) in CSx, and ∂D ∩ U is a part of the
graph of a function y2 = ψx(y1) satisfying ψx(y1) = (1/2)ν(x)y2

1 +O(y3
1). This

defines the curvature ν(x) for ∂D at x. We will assume that there is N1 <∞
such that for every unit vector m, there are at most N1 points x ∈ ∂D with
n(x) = m. Recall that ∂D is assumed to be C4-smooth. We will assume that
there is only a finite number of x ∈ ∂D with ν(x) = 0 and that for every such
x, we have ψx(y1) = cxy

3
1 + O(y4

1) with cx 6= 0. The distance between x and
y will be denoted d(x, y).

Theorem 1.1. If D satisfies the above assumptions and it has at most
one hole then d(Xt, Yt)→ 0 as t→∞, a.s., for every pair of starting points
(x0, y0) ∈ D ×D.

The above theorem complements the results in [BC] where it has been
proved that the distance between Xt and Yt converges to 0 as t → ∞ for
two classes of domains: (i) polygonal domains, i.e., domains whose bound-
ary consists of a finite number of closed polygons, and (ii) “lip domains”,
i.e., bounded Lipschitz domains which lie between graphs of two Lipschitz
functions that have Lipschitz constants strictly less than 1. The number of
holes plays no role in the case of polygonal domains but it is an open problem
whether it does in the case of smooth domains (see Section 2).

Earlier research of Cranston and Le Jan ([CLJ1], [CLJ2]) on synchronous
couplings of reflected Brownian motions was focused on convex domains. In
that case, it is clear that t → d(Xt, Yt) is non-increasing. Cranston and Le
Jan proved that for a large class of convex domains, d(Xt, Yt) > 0 for all
t ≥ 0, a.s., if d(X0, Y0) > 0. The present paper, especially Theorem 1.2
below, answers a problem posed at the end of [CLJ1] and improves on the
estimate given in the Appendix of [CLJ2].

Next we will present our main technical result on the “Lyapunov exponent,”
which is a crucial step in the proof of Theorem 1.1. We need some more
notation. Let σXt = inf{s ≥ 0 : LXs ≥ t}. For every bounded planar domain
D we have limt→∞ LXt = ∞ so σXt < ∞ for all t ≥ 0, a.s. The arc length
measure on ∂D will be denoted “dx”, e.g., we will write

∫
∂D

f(x)dx to denote
the integral of f with respect to the arc length. For any x, y ∈ ∂D, we let
α(x, y) be the angle formed by the tangent lines to ∂D at x and y, with the
convention that α(x, y) ∈ [0, π/2]. For every point x ∈ ∂D, let ωx(dy) be
the “harmonic measure” on ∂D with the base point x, defined as follows.
Let K(x, y), y ∈ D, be the Martin kernel in D with the pole at x, i.e.,
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the only (up to a multiplicative constant) positive harmonic function in D
which vanishes everywhere on the boundary of D except for a pole at x.
Then we let ωx(dy) = ax

∂K(x,y)
∂n(y) dy where the constant ax is chosen so that

limy→x πd(x, y)2ωx(dy)/dy = 1. Let |D| denote the area of D.

Theorem 1.2. Let

(1.3) Λ(D) =
∫
∂D

ν(x)dx+
∫
∂D

∫
∂D

| log cosα(x, y)|ωx(dy)dx.

If Λ(D) > 0, then for any x0, y0 ∈ D, a.s.,

(1.4) lim
t→∞

log d(Xt, Yt)
t

= −Λ(D)
2|D|

.

By the Gauss-Bonnet Theorem, the first integral in (1.3), that is,∫
∂D

ν(x)dx, is equal to 2πχ(D), where χ(D) is the Euler characteristic of
D. In our case, χ(D) is equal to 1 minus the number of holes in D. We
are not aware of a simple representation of the second (double) integral in
(1.3). The integral

∫
∂D

ν(x)dx, which appeared in [CLJ2], emerges in our
arguments as the limit of (1/t)

∫ t
0
ν(Xs)dLXs when t → ∞. See [H] for some

results involving
∫ t

0
ν(Xs)dLXs .

It is elementary to check using the definition (1.3) that Λ(D) is invariant
under scaling, i.e., for any a > 0, Λ(D) = Λ(aD), where aD = {x ∈ R2 : x =
ay for some y ∈ D}.

We will now explain the intuitive content of Theorem 1.2. The disc with
center x and radius r will be denoted B(x, r). Suppose that at some time t,
d(Xt, Yt) is very small so that when one of the processes is on the bound-
ary of the domain then ∂D looks like a very flat parabola inside the disc
B(Xt, 2d(Xt, Yt)). Suppose further that the line segment Xt, Yt is “almost”
parallel to ∂D. Then the local time components in (1.1) and (1.2) will be al-
most identical over a short time period [t, t+∆t], except for a small difference
between the reflection vectors due to the curvature of ∂D. This small differ-
ence translates into the first integral in (1.3). From time to time, X makes
large excursions from ∂D, whose endpoints are at a distance comparable to
the diameter of D. At the end of any such excursion, one and only one of
the processes X or Y gets a substantial local time push, until again Xt, Yt is
almost parallel to ∂D. This results in the reduction of d(Xt, Yt) by a factor
very close to cosα(x, y), where x and y are the endpoints of the excursion.
The double integral on the right hand side of (1.3) represents the change in
d(Xt, Yt) due to large excursions. We find it surprising and intriguing that the
magnitudes of the two phenomena affecting the distance d(Xt, Yt), described
above, are comparable and give rise to two “independent” terms on the right
hand side of (1.3).
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We will briefly sketch the idea behind the proof of Theorem 1.2. First, we
prove that the distance between the particles will be small at least from time
to time, so that we can apply methods appropriate for processes reflecting on
very flat parabolas. The main part of the proof deals with the two phenom-
ena described in the previous paragraph. When the line segment Xt, Yt is
“almost parallel” to ∂D and one or both processes reflect on ∂D, the change
of d(Xt, Yt) is “almost” deterministic in nature and so are our methods. The
change in d(Xt, Yt) due to “large” excursions of Xt in D is much harder to
analyze and that part of the proof is very complicated. We list here several
of the challenges. First, it is conceivable that even a single excursion may
result in a reduction of d(Xt, Yt) to 0, if the endpoints of the excursion are
at x, y ∈ ∂D with cosα(x, y) = 0. Proving that this is not the case takes
considerable effort. Second, we use excursion theory and ergodicity of Xt to
prove that log d(Xt, Yt) obeys a strong law of large numbers, in the sense of
(1.4). The problem here is that although Xt is recurrent and ergodic, the
vector process (Xt, Yt) is neither, and so we have to analyze the behavior of
Yt by proving that it is “close” to that of Xt. Finally, one has to find up-
per bounds for probabilities of various “unusual” events which clearly cannot
happen, from the intuitive point of view, but which have to be accounted for
in a rigorous argument.

The rest of the paper is organized as follows. Section 2 is devoted to the
discussion of some open problems and examples, mostly related to Theorem
1.1. It also contains a (very short) proof of Theorem 1.1. The proof of
Theorem 1.2, consisting of many lemmas, is given in Sections 3 and 4. Most
arguments in Section 3 are deterministic or analytic in nature. Section 4
contains arguments based on the excursion theory.

We are grateful to Greg Lawler, Nick Makarov, Don Marshall and Bálint
Virág for very useful discussions and advice.

2. Examples and open problems

The paper was inspired by the following problem which still remains open.

Problem 2.1.

(i) Does there exist a bounded planar domain such that with positive prob-
ability,

lim sup
t→∞

d(Xt, Yt) > 0?

(ii) Does there exist a bounded domain D with Λ(D) < 0?

The two problems are related to each other via the following conjecture.

Conjecture 2.2. If Λ(D) < 0 then with probability one,

lim sup
t→∞

d(Xt, Yt) > 0.
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We believe that the above conjecture can be proved using the same methods
as in the proof of Theorem 1.2. Since we do not know whether any domains
with Λ(D) < 0 exist, we have little incentive to work out the details of the
proof for Conjecture 2.2.

A technical problem arises in relation to Problem 2.1 (i)—it is not obvious
how to define a “synchronous coupling” of reflected Brownian motions in an
arbitrary domain. It is desirable from both the technical and the intuitive
point of view to have the strong Markov property for the process (Xt, Yt).
See [BC] for a discussion of these points. So far, the existence of synchronous
couplings of reflected Brownian motions with the strong Markov property can
be proved only in those domains where the stochastic Skorokhod equations
(1.1)–(1.2) have a unique strong solution. A recent paper ([BBC]) shows
that this is the case when D is a planar Lipschitz domain with the Lipschitz
constant less than 1.

We will next present some speculative directions of research related to Prob-
lem 2.1 (ii). We start by explaining how Theorem 1.1 follows from Theorem
1.2.

Proof of Theorem 1.1. If D has at most one hole then the first integral on
the right hand side of (1.3) is equal to 2π or 0, by the Gauss-Bonnet Theorem.
The integrand in the double integral in (1.3) is non-negative and it is easy
to see that it is strictly positive on a non-negligible set. Hence, Λ(D) > 0
and, consequently, (1.4) holds, according to Theorem 1.2. Thus, Theorem 1.1
follows from Theorem 1.2. �

The above proof suggests the following strategy for finding a domain with
Λ(D) < 0. One should find a domain where the first integral on the right hand
side of (1.3) is significantly less than zero. This is because the contribution
from the second term is always non-negative. In other words, one has to
consider domains with many holes because, as we have already mentioned in
Section 1, the first term is equal to 1 minus the number of holes, multiplied
by 2π. The obvious problem with this strategy is that punching holes in a
domain may increase the double integral on the right hand side of (1.3), and
this may offset the effect of holes on the first integral.

Here is a possible avenue of research based on the above idea. Suppose
that D has a large number of small holes. Here “small” means that the holes
have diameters very small in comparison with the diameter of the domain.
Let us assume that distances between different holes, and distances between
holes and the outside boundary of D are large in comparison with diameters of
holes. Then it is not hard to see that the right hand side of (1.3) is very close
to the sum of analogous formulas for each connected component of ∂D. In
other words, there is little interaction between different connected components
of ∂D, if the holes are small and far apart. If we can find a hole with the
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shape which yields Λ(D) < 0 for a single hole, then Λ(D) < 0 for a domain
D with a large number of small holes of this shape.

Simple heuristic estimates show that if ∂D has “approximate” corners,
like a polygonal domain (the corners have to be “approximate” because the
domain has to be smooth), then the double integral on the right hand side
of (1.3) is very large. Domains, or rather holes, with this property will not
help us in our search for a domain D with Λ(D) < 0. The ultimate domain
without corners is a disc. At the moment we are concerned with “holes” so
we will find Λ(D) for D which is the exterior of a disc.

Recall that a disc with center x and radius r is denoted B(x, r).

Proposition 2.3. If D = B((0, 0), 1)c then Λ(D) = 0.

Proof. Recall that the first integral in (1.3) is equal to −2π. We will pa-
rametrize ∂D using θ ∈ [0, 2π) and writing x = eiθ for x ∈ ∂D. The formula
for the harmonic measure in D is well known and easy to derive using stan-
dard complex analytic methods (conformal mappings). This easily leads to
the following formula for the “harmonic measure” ωx,

ωx(dy)
dy

=
1

4π sin2( θ−θ′2 )
,

where x = eiθ and y = eiθ
′
. Thus the double integral in (1.3) is equal to∫ 2π

0

∫ 2π

0

| log | cos(θ − θ′)||
4π sin2( θ−θ′2 )

dθdθ′ = 2π
∫ 2π

0

| log | cos(θ)||
4π sin2(θ/2)

dθ

=
∫ π

0

| log | cos(θ)||
sin2(θ/2)

dθ.

We have∫ π/2

0

| log | cos(θ)||
sin2(θ/2)

dθ = −
∫ π/2

0

log cos(θ)
sin2(θ/2)

dθ

= [2(θ + cot(θ/2) log cos θ − log(cos(θ/2)− sin(θ/2))

+ log(cos(θ/2) + sin(θ/2))]
∣∣∣θ=π/2
θ=0

= π + 2 log 2,

and
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π/2

| log | cos(θ)||
sin2(θ/2)

dθ = −
∫ π

π/2

log(− cos(θ))
sin2(θ/2)

dθ

=
[
2(θ + cot(θ/2) log(− cos θ)− log(sin(θ/2)− cos(θ/2))

+ log(cos(θ/2) + sin(θ/2))
]∣∣∣∣∣
θ=π

θ=π/2

= π − 2 log 2,

so ∫ 2π

0

∫ 2π

0

| log | cos(θ − θ′)||
4π sin2( θ−θ′2 )

dθdθ′ =
∫ π

0

| log | cos(θ)||
sin2(θ/2)

dθ = 2π,

and Λ(D) = 0. �

We have proved that Λ(D) = 0 for the exterior of a disc by a brute force
calculation. It is a natural question whether the same result follows from some
elegant symmetry argument—we have not found one so far.

Since Λ(D) = 0 for the exterior of the disc, discs are not helpful as holes
in the (hypothetical) construction of a domain D with Λ(D) < 0. Our next
observation is that the exterior of a line segment would be a great candidate
for a useful hole. This is because for any points x and y on a line segment,
we have α(x, y) = 0 and, therefore, the double integral on the right hand
side of (1.3) vanishes for the exterior of a line segment. Hence, Λ(D) < 0 for
the exterior of a line segment. Unfortunately, we cannot use line segments as
holes because their boundaries are not smooth. Instead, we can try a domain
“close” to a line segment but with a smooth boundary. A natural candidate is
a very elongated ellipse. Our preliminary numerical calculations showed that
Λ(D) = 0 for the exterior of any ellipse. We are grateful to Bálint Virág for
the following rigorous proof of this result.

Proposition 2.4. If D is the exterior of an ellipse then Λ(D) = 0.

Proof. We will use complex analysis and complex notation in this proof.
Recall that Λ(D) is invariant under scaling. Hence, we can consider any
ellipse with the given eccentricity. In other words, it is enough to prove that
the proposition holds for any ellipse D that can be represented as D = g(U),
where U = B(0, 1), g(z) = z + a/z, and a is any real number in (0, 1).

We start by proving the following claim. Suppose that f is an analytic
function in U , f(1) is purely imaginary, and f ′(1) is real. Then

(2.1)
1
π

∫
∂U

<f(x)
|1− x|2

|dx| = −f ′(1).
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Since <f(y) is harmonic in U and continuous on U ,

<f(y) =
1

2π

∫
∂U

<f(x)
1− |y|2

|y − x|2
|dx|,

for y ∈ U . We have assumed that f(1) is imaginary and f ′(1) is real, so, by
dominated convergence,

−f ′(1) = lim
r→0,r>0

<f(1− r)−<f(1)
r

= lim
r→0,r>0

1
2π

∫
∂U

<f(x)
1− |1− r|2

r|1− r − x|2
|dx|

=
1
π

∫
∂U

<f(x)
|1− x|2

|dx|.

We have shown that (2.1) holds.
The first integral in (1.3) is equal to −2π. It will suffice to show that the

second (double) integral is equal to 2π. The second integral in (1.3) is equal
to

1
π

∫
∂U

∫
∂U

log<
(
xg′(x)
|g′(x)| ·

|g′(y)|
yg′(y)

)
|x− y|2

|dx||dy|.

Note that g′(z) = 1− a/z2 and for z ∈ ∂U , z = 1/z. Let β = 1/(2g′(y)y) for
some y ∈ ∂U . If we write h(x) = <

(
xg′(x)
yg′(y)

)
then for x ∈ ∂U , we have

h(x) = <(2βg′(x)x) = βg′(x)x+ βg′(x)x

= β(1− a/x2)x+ β(1− ax2)(1/x).

We have

log<
(
xg′(x)
|g′(x)|

· |g
′(y)|

yg′(y)

)
= log

(
|g′(y)|
|g′(x)|

· <
(
xg′(x)
yg′(y)

))
= log

(
|g′(y)|
|g′(x)|

)
+ log h(x)

= < log
(
g′(y)
g′(x)

)
+ < log h(x)

= < log
(
h(x) · g

′(y)
g′(x)

)
.

Hence,

1
π

∫
∂U

log<
(
xg′(x)
|g′(x)| ·

|g′(y)|
yg′(y)

)
|x− y|2

|dx| = 1
π

∫
∂U

< log
(
h(x) · g

′(y)
g′(x)

)
|x− y|2

|dx|.
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Recall that |y| = 1. Substituting x = y/v, we see that the last integral is
equal to

1
π

∫
∂U

< log
(
h(y/v) · g′(y)

g′(y/v)

)
|x− y|2

|x|2

|y|
|dv| = 1

π

∫
∂U

< log
(
h(y/v) · g′(y)

g′(y/v)

)
|1− v|2

|dv|.

We have

h(y/v) · g′(y)
g′(y/v)

=
(β(1− a/(y/v)2)(y/v) + β(1− a(y/v)2)(1/(y/v)))g′(y)

1− a/(y/v)2

= g′(y)
y

v

v2(β − aβ) + y2(β − aβ)
y2 − av2

.

Let

k(v) = v

(
h(y/v) · g′(y)

g′(y/v)

)
= g′(y)y

v2(β − aβ) + y2(β − aβ)
y2 − av2

,

and note that, since |v| = 1,

1
π

∫
∂U

< log
(
h(y/v) · g′(y)

g′(y/v)

)
|1− v|2

|dv| = 1
π

∫
∂U

< log k(v)
|1− v|2

|dv|.

Next we will verify that (2.1) can be applied to f(x) = log k(x). We have
for y ∈ ∂U ,

β =
1

2g′(y)y
=

1
2(1− a/y2)y

=
y

2(y2 − a)
,

β =
y

2(y2 − a)
=

1/y
2((1/y)2 − a)

=
y

2(1− ay2)
,

β

β
=

y2 − a
1− ay2

,

β − aβ
β − aβ

=
y

2(y2−a) − a
y

2(1−ay2)
y

2(1−ay2) − a
y

2(y2−a)

=
1 + a2 − 2ay2

y2 − 2a+ a2y2
,

k(v) = g′(y)y
v2(β − aβ) + y2(β − aβ)

y2 − av2
=

1
2β

v2(β − aβ) + y2(β − aβ)
y2 − av2

,

k(1) =
1

2β
(β − aβ) + y2(β − aβ)

y2 − a
=

(β/β − a) + y2(1− aβ/β)
2(y2 − a)

=
( y

2−a
1−ay2 − a) + y2(1− a y2−a

1−ay2 )

2(y2 − a)
= 1,

log k(1) = 0,

k′(v) = g′(y)y
2v(β − aβ)(y2 − av2) + 2av[v2(β − aβ) + y2(β − aβ)]

(y2 − av2)2
,



198 KRZYSZTOF BURDZY, ZHEN-QING CHEN, AND PETER JONES

k′(v)/k(v) =
2v(β − aβ)(y2 − av2) + 2av[v2(β − aβ) + y2(β − aβ)]

(y2 − av2)[v2(β − aβ) + y2(β − aβ)]
,

(log k)′(1) = k′(1)/k(1) =
2(β − aβ)(y2 − a) + 2a[(β − aβ) + y2(β − aβ)]

(y2 − a)[(β − aβ) + y2(β − aβ)]

=
2(β − aβ)

(β − aβ) + y2(β − aβ)
+

2a
(y2 − a)

=
2

1 + y2
(
β−aβ
β−aβ

) +
2a

(y2 − a)

=
2

1 + y2
(

1+a2−2ay2

y2−2a+a2y2

) +
2a

(y2 − a)

=
2(y2 − 2a+ a2y2)

2y2 − 2a+ 2a2y2 − 2ay4
+

2a
(y2 − a)

=
(1− a2)y2

(y2 − a)(1− ay2)

= (1− a2)
1

(1− a/y2)(1− ay2)

= (1− a2)
1

|1− ay2|2
∈ R.

Since < log k(1) = 0 and (log k)′(1) is real, we can apply (2.1) to obtain

1
π

∫
∂U

< log k(v)
|1− v|2

|dv| = −(log k)′(1),

and

1
π

∫
∂U

∫
∂U

log<
(
xg′(x)
|g′(x)| ·

|g′(y)|
yg′(y)

)
|x− y|2

|dx||dy|(2.2)

=
∫
∂U

1
π

∫
∂U

< log k(v)
|1− v|2

|dv||dy|

= −
∫
∂U

(log k)′(1)|dy| = −
∫
∂U

(1− a2)y2

(y2 − a)(1− ay2)
|dy|

= i

∫
∂U

(1− a2)y2

(y2 − a)(1− ay2)
1
y
dy.

The function (1−a2)y
(y2−a)(1−ay2) has two poles inside U , at y = ±

√
a, and the

residue is equal to 1/2 at each of these points. Hence, by the residue theorem,
the right hand side of (2.2) is equal to 2π. This completes the proof of the
proposition. �
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The last result raises some questions, but before we state them as a for-
mal conjecture, we rush to add that it is very easy to see that Λ(D) > 0
for exteriors of some convex smooth domains, for example, those that have
“approximate” corners.

Conjecture 2.5.

(i) If D is the exterior of a simply connected domain then Λ(D) ≥ 0.
(ii) If D is the exterior of a simply connected domain and Λ(D) = 0 then

Dc is a disc or an ellipse.

Another problem, hard to state as a formal conjecture, is to find an (easy)
way to derive Λ(D) for the exterior of an ellipse from the value of this constant
for the exterior of a disc. We point out an obvious fact that Λ(D) is not
invariant under conformal mappings. It is not hard to see that Λ(D) is not
invariant under the transformation (x1, x2) 7→ (cx1, x2).

Problem 2.6. Let D be the exterior of a disc. Is it true that d(Xt, Yt)→
0 as t→∞, a.s.?

The last problem might be hard because it deals with the “critical” case,
i.e., the case when Λ(D) = 0. On the other hand, the symmetries of the disc
might be the basis of a reasonably easy proof, specific to this domain.

3. Analysis of Skorokhod transforms

Notation. The following notation will be used throughout the paper.
All constants c1, c2, . . . will take values in (0,∞) unless stated otherwise.

We will write a∨ b = max(a, b) and a∧ b = min(a, b). Recall that the distance
between x, y ∈ R2 is denoted as d(x, y); the same symbol will be used to
denote the distance between a point and a set, etc. Our arguments will
involve elements of R or R2, and one- or two-dimensional vectors. We will
use | · | to denote the usual Euclidean norm in all such cases. For x, y ∈ R2,
the meaning of |x− y| is the same as that of d(x, y) but we will nevertheless
find it convenient to use both pieces of notation. The disc with center x and
radius r will be denoted B(x, r). Recall the definition of curvature ν(x) at a
point x ∈ ∂D, from the Introduction and let ν∗ = supx∈∂D |ν(x)|. The unit
inward normal vector at x ∈ ∂D will be denoted as n(x). We will indicate
coordinates of points and components of vectors by writing Xt = (X1

t , X
2
t ),

Yt = (Y 1
t , Y

2
t ), Bt = (B1

t , B
2
t ), and n(x) = (n1(x),n2(x)), but this notation

may refer to a coordinate system specific to a proof and different from the
usual one. The angle between vectors p and r will be denoted ∠(p, r), with the
convention that it takes values in [0, π]. Recall that α(x, y) = ∠(n(x),n(y))∧
(π − ∠(n(x),n(y))), for x, y ∈ ∂D.

The area of D and the length of its boundary will be denoted |D| and |∂D|,
resp.
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The distribution of the solution {(Xt, Yt), t ≥ 0} to (1.1)–(1.2) will be
denoted Px,y and the distribution of {Xt, t ≥ 0} will be denoted Px. We will
suppress the superscripts when no confusion may arise. We will denote the
usual Markov shift operator by θt.

In the first of our lemmas, we will prove that for an arbitrarily small ε0 > 0,
for any two points x0, y0 ∈ D, two synchronously coupled reflecting Brownian
motions X and Y starting from x0 and y0 respectively will come within ε-
distance from each other in finite time a.s. This claim is very similar to Lemma
3.3 of [BC] but sufficiently different to make it impossible for us to use that
lemma in the present paper. Regrettably, we could not find a shorter proof of
this seemingly quite intuitive result.

We will write τ+
ε = τ+(ε) = inf{t > 0 : d(Xt, Yt) ≥ ε} and τ−ε = τ−(ε) =

inf{t > 0 : d(Xt, Yt) ≤ ε}.
We remark that the following lemma holds for smooth domains in any

dimension.

Lemma 3.1. Consider any ε0 > 0, any x0, y0 ∈ D, and assume that
(X0, Y0) = (x0, y0). Then τ−(ε0) <∞ a.s.

Proof. The proof will consist of several steps. In the first two steps, we will
prove some properties of the deterministic Skorokhod mapping.

Step 1. Let γ = (γ1, γ2) : [0,∞) → R2 be a continuous function with
γ(0) ∈ D and finite variation on each bounded interval of [0,∞). Let bγcs,t
denote the total variation of γ on [s, t]. We will use analogous notation for
other functions. By the results of [LS], there exists a unique pair of continuous
functions β : [0,∞)→ D and η : [0,∞)→ R2 with the following properties:

(i) bηcs,t ≤ bγcs,t for every 0 ≤ s ≤ t,
(ii)

∫∞
0

1{βs∈D}d`s = 0, where `t
df= bηc0,t,

(iii) ηt =
∫ t

0
n(βs)d`s for every t ≥ 0, and

(iv) βt = γt + ηt, for all t ≥ 0.
We will call (β, η) the Skorokhod transform of γ; sometimes we will call β

the Skorokhod transform and denote β by S(γ).
We will show that
(1.a) bβcs,t ≤ bγcs,t for all t > s ≥ 0, and
(1.b) for c1 ∈ (0, 1), c2, c3 ∈ (0,∞), there exists c4 > 0 such that if β1

t1 −
β1

0 ≤ (1− c1)(γ1
t1 − γ

1
0), γ1

t1 − γ
1
0 > c2, and bγc0,t1 ≤ c3 then bγc0,t1 −

bβc0,t1 ≥ c4.
According to (8’) of [LS],

(3.1) dlt = −1∂D(βt)〈n(βt), dγt〉
and so

(3.2) dβt = dγt + n(βt)dlt = dγt − 1∂D(βt)n(βt)〈n(βt), dγt〉.
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This proves that bβcs,t ≤ bγcs,t for any 0 ≤ s < t, i.e., this proves (1.a).
Let θt denote the angle between n(βt) and dγt whenever βt ∈ ∂D and dγt

is defined. Otherwise, define θt = π/2. Note that `t is non-decreasing, by
its definition in (ii), so (3.1) implies that θt ∈ [π2 , π]. Recall that n(x) =
(n1(x),n2(x)). By (3.2),∫ t1

0

| cos θs||dγs| ≥
∫ t1

0

n1(βs) cos θsdγs

= (γ1
t1 − γ

1
0)− (β1

t1 − β
1
0)

≥ c1(γ1
t1 − γ

1
0) ≥ c1c2.

Since
∫ t1

0
|dγs| = [γ]0,t1 ≤ c3, for δ := min{1, c1c2/(2c3)} we have from the

above

(3.3)
∫ t1

0

| cos θs|1{θs∈[π2 +δ, π]}|dγs| ≥ c1c2 − c3 sin δ ≥ c1c2/2.

On the other hand, |dβt| = |dγt| sin θt and so

bγc0,t1 − bβc0,t1 =
∫ t1

0

(1− sin θs)|dγs|

≥ 1
2

∫ t1

0

cos2 θs|dγs|

≥ 1
2

∫ t1

0

1{θs∈[π2 +δ, π]} cos2 θs|dγs|

≥ sin δ
2

∫ t1

0

1{θs∈[π2 +δ, π]}| cos θs| |dγs|

≥ c1c2 sin δ
4

:= c4.

This proves (1.b).

Step 2. Since D is bounded and has a smooth boundary, there is a constant
c1 < ∞ such that any two points x, y ∈ D can be connected by a C∞ curve
inside D of length t1 = t1(x, y) < c1. Consider any x, y ∈ D, and fix some
C∞ curve γ : [0, t1]→ D with the natural (length) parametrization, and such
that t1 < c1, γ0 = x and γt1 = y.

In this step, we will extend the definition of γ from [0, t1] to [0,∞). We
will show that for any D and ε > 0, there exists a constant c2 ∈ [c1,∞) such
that any curve γ defined initially on [0, t1] may be extended to [0,∞) in such
a way that for some t ≤ c2,

(3.4) |γt − S(γ + y − x)t| ≤ ε.

Recall that S(γ) is the Skorokhod transform of γ (see Step 1).
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Let {βt, 0 ≤ t ≤ t1} be the Skorokhod transform of {γt + γt1 − γ0, 0 ≤
t ≤ t1}, defined as in Step 1. We will inductively define γt for all t ≥ 0.
Let γt = βt−t1 for t ∈ [t1, 2t1], and let {βt, t ∈ [t1, 2t1]} be the Skorokhod
transform of {γt + γ2t1 − γt1 , t ∈ [t1, 2t1]}. We continue by induction, i.e., we
let γt = βt−kt1 for t ∈ [kt1, (k+1)t1], , k ≥ 2, and we let {βt, t ∈ [kt1, (k+1)t1]}
be the Skorokhod transform of {γt +γ(k+1)t1 − γkt1 , t ∈ [kt1, (k+ 1)t1]}. Note
that both γt and βt stay in D for all t ≥ 0. Clearly

(3.5) β = S(γ + y − x) and γt = βt−t1 for every t ≥ t1.

By (1.a) in Step 1 and (3.5), we have bγcs,t ≤ t− s for all 0 ≤ s ≤ t <∞.
If |γ0 − β0| ≤ ε then we are done. Otherwise, at least one of the following

inequalities holds, |γ1
0 −β1

0 | ≥ ε/2 or |γ2
0 −β2

0 | ≥ ε/2. We will assume without
loss of generality that it is the first of the two inequalities that holds and
we will make another harmless assumption that in fact γ1

0 − β1
0 ≤ −ε/2, or,

equivalently, γ1
t1−γ

1
0 ≥ ε/2. Let c3 be the diameter of D. Fix some c4 ∈ (0, 1)

and integer j > 1 such that
∑j
k=1 c

k−1
4 ε/2 > 2c3. If we had

(3.6) γ1
kt1 − γ

1
(k−1)t1

≥ c4(γ1
(k−1)t1

− γ1
(k−2)t1

) for every 2 ≤ k ≤ j,

then we would obtain

γ1
jt1 − γ

1
0 =

j∑
k=1

γ1
kt1 − γ

1
(k−1)t1

≥
j∑

k=1

ck−1
4 ε/2 > 2c3,

and that would contradict the definition of c3 as the diameter of D. So there
must be some k0 ≤ j such that

(3.7) γ1
k0t1 − γ

1
(k0−1)t1

≤ c4(γ1
(k0−1)t1

− γ1
(k0−2)t1

).

Let k0 be the smallest integer with this property. Then

γ1
kt1 − γ

1
(k−1)t1

≥ c4(γ1
(k−1)t1

− γ1
(k−2)t1

)

for all k < k0 and so γ1
(k0−1)t1

−γ1
(k0−2)t1

≥ cj4ε/2. The following is equivalent
to (3.7),

β1
(k0−1)t1

− β1
(k0−2)t1

≤ c4(γ1
(k0−1)t1

− γ1
(k0−2)t1

).

By (1.b) of Step 1, for some c5 > 0,

(3.8) bγc(k0−2)t1,(k0−1)t1 − bβc(k0−2)t1,(k0−1)t1 ≥ c5.

If bγc(k−1)t1,kt1 ≤ ε for some k ≤ j + 1 then

|γ(k−1)t1 − β(k−1)t1 | = |γ(k−1)t1 − γkt1 | ≤ bγc(k−1)t1,kt1 ≤ ε,

and we can take c2 = jt1, i.e., there exists t ≤ jt1 with |γt − βt| ≤ ε.
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If bγc(k−1)t1,kt1 > ε for all k ≤ j + 1, then by Step 1 and (3.8),

bγc0,jt1 − bβc0,jt1 =
j∑

k=1

bγc(k−1)t1,kt1 − bβc(k−1)t1,kt1

≥ bγc(k0−2)t1,(k0−1)t1 − bβc(k0−2)t1,(k0−1)t1 ≥ c5.

Thus we have shown that either there exists 0 ≤ t ≤ jt1 with |γt − βt| ≤ ε
or bγct1,(j+1)t1 = bβc0,jt1 ≤ bγc0,jt1 − c5. The same argument shows that
either there exists t ∈ [kt1, (k + j)t1] with |γt − βt| ≤ ε or

(3.9) bγc(k+1)t1,(k+1+j)t1 = bβckt1,(k+j)t1 ≤ bγckt1,(k+j)t1 − c5.

Recall that bγc0,t1 = t1 ≤ c1, and

bγckt1,(k+1)t1 = bβc(k−1)t1,kt1 ≤ bγc(k−1)t1,kt1

for all k. Hence, bγc0,jt1 ≤ jc1, and if (3.9) holds for all k ≤ m, then

0 ≤ bγcmt1,(m+j)t1 ≤ jc1 −mc5.

This can be true only if m ≤ jc1/c5. Hence, for some k ≤ jc1/c5 + 1 and
some t ∈ [0, (k + j)t1] we have |γt − βt| ≤ ε.

Step 3. First, we will present a version of the “support theorem” stronger
than that given in Theorem I (6.6) in [Ba]. Recall that one calls a continuous
non-decreasing function ψ : [0,∞) → [0,∞) with ψ(0) = 0 a modulus of
continuity for a function γ : [0, t1] → R2 if for all s, t ∈ [0, t1] we have
|γt− γs| ≤ ψ(|t− s|). Let Kψ,t1 denote the family of all functions γ : [0, t1]→
R2 with modulus of continuity ψ. Let P denote the Wiener measure on
C[0, t1]2, i.e., the distribution of the planar Brownian motion. It follows
easily from the existence of “Lévy’s modulus of continuity” (see Theorem
2.9.25 in [KS]), that for every t1 ∈ (0,∞) and p0 < 1 there exists ψ such that
P(Kψ,t1) > p0. This fact can be used to modify the proof of Proposition I
(6.5) of [Ba] to show that there exists ψ such that for any ε > 0 one can find
p1 > 0 with

(3.10) P({γ ∈ Kψ,t1 : sup
0≤t≤t1

|γt| ≤ ε}) ≥ p1.

Let ψλ(t) = ψ(t) + λt and for φ : [0, t1]→ R2, let

Kψ,t1,φ,ε = {γ ∈ Kψ,t1 : sup
0≤t≤t1

|γt − φt| ≤ ε}.

If γ ∈ Kψ,t1 and φ is Lipschitz with constant λ then γ+φ ∈ Kψλ,t1 . The proof
of Theorem I (6.6) in [Ba] can be easily modified to yield the following version
of the support theorem. Suppose that ε, p1 > 0 and ψ satisfy (3.10). Then
for every λ, t1 <∞ and ε′ > 0 one can find p2 > 0 such that for any function
φ : [0, t1]→ R2 which is Lipschitz with constant λ and satisfies φ(0) = 0, we
have P(Kψλ,t1,φ,ε′) ≥ p2. The important aspect of the last assertion is that
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p2 does not depend on φ. Fix a function ψ satisfying this statement for the
rest of the proof.

Recall that S(γ) denotes the Skorokhod transform of γ (see Step 1) and
let ε0 be as in the statement of the lemma. Let c1 be the constant defined
in Step 2 and c2 > c1 be the constant in Step 2 relative to ε0/5 in place
of ε. By Theorem 1.1 in [LS], the Skorokhod mapping S : C([0, c2],R2) →
C([0, c2],R2) is Hölder continuous on compact sets. Let K = {γ ∈ Kψ2,c2 :
γ0 ∈ D}. The set K is compact so one can find ε1 ∈ (0, ε0/5) such that if
γ, γ̂ ∈ K and |γ̂t − γt| ≤ ε1 for 0 ≤ t ≤ c2, then |S(γ̂)t − S(γ)t| ≤ ε0/5 for
0 ≤ t ≤ c2.

Recall from Step 2 that for every pair of points x, y ∈ D there is a curve
γ = γx,y : [0,∞) → D such that γ0 = x, γt1 = y for some 0 < t1 < c1, and
bγcs,t ≤ t − s, for all s and t in [0, t1]. By Step 2, we can extend γ to be
a curve in D satisfying (3.4) and (3.5). Note that γ is a Lipschitz curve on
[0,∞) with Lipschitz constant 1.

Recall that reflected Brownian motions Xt and Yt are defined in (1.1)–
(1.2) relative to a Brownian motion Bt and assume that X0 = x and Y0 = y.
Find p2 > 0 such that P(Kψ2,c2,φ,ε1) ≥ p2 for every Lipschitz function φ with
Lipschitz constant 1 satisfying φ(0) = 0. It follows that

(3.11) P ({Bt + x, 0 ≤ t ≤ c2} ∈ Kψ2,c2,γx,y,ε1) ≥ p2.

Consider ω such that B·(ω) + x ∈ Kψ2,c2,γx,y,ε1 ⊂ Kψ2,c2 . Then

|S(B· + x)t − S(γx,y)t| ≤ ε0/5 for every 0 ≤ t ≤ c2.
Clearly B· + y ∈ Kψ2,c2 . Since |Bt + y− (γx,yt + y− x)| ≤ ε1 for t ∈ [0, c2], we
have

|S(B· + y)t − S(γx,y + y − x)t| ≤ ε0/5 for 0 ≤ t ≤ c2.
Note that by Step 2 and our choice of c2, there is some t0 ∈ [0, c2] such

that |γx,yt0 − S(γx,y + y − x)t0 | ≤ ε0/5, for some t0 ∈ [0, c2]. Note also that
since γ[0,∞) ⊂ D, by the uniqueness of the Skorokhod problem, S(γ) = γ.
Combining these observations, we conclude that

|Xt0 − Yt0 | = |S(B· + x)t0 − S(B· + y)t0 |
= |S(B· + x)t0 − γt0 |+ |γt0 − S(γ + y − x)t0 |

+ |S(γ + y − x)t0 − S(B· + y)t0 |
≤ ε0/5 + ε0/5 + ε0/5 < ε0.

It follows from (3.11) that there exists p2 > 0 such that for any x, y ∈ D,
X0 = x, Y0 = y, the probability that there exists t0 ≤ c2 with d(Xt0 , Yt0) ≤ ε0

is greater than p2. By the Markov property applied at times jc2, j = 1, 2, . . . ,
the probability that there is no t0 ≤ kc2 with d(Xt0 , Yt0) ≤ ε0 is bounded
above by (1− p2)k. This implies easily that with probability one, there exists
t <∞ with d(Xt, Yt) ≤ ε0. �
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Lemma 3.2. Let δ(x) denote the Euclidean distance between x and ∂D.
Define τD = inf{t ≥ 0 : Xt /∈ D} and τB(x,r) = inf{t ≥ 0 : Xt /∈ B(x, r)}.
Then there exists c1 <∞ such that for X0 = x0 ∈ D,

(3.12) P(τB(x0,r) ≤ τD) ≤ c1δ(x0)/r for r ≥ δ(x0).

Proof. We are going to prove that (3.12) holds for any bounded C1,1-
smooth domain in Rn, for any n ≥ 2.

Since D is a bounded C1,1-smooth domain, the “uniform” boundary Har-
nack principle holds for D (see [A]), that is, there exist r0 > 0 and c > 0 such
that for z ∈ ∂D, r ∈ (0, r0] and any non-negative harmonic functions u and v
in D ∩ B(z, 2r) that vanish continuously on ∂D ∩ B(z, 2r), we have

u(x)
v(x)

≤ c u(y)
v(y)

for any x, y ∈ D ∩ B(z, r).

Let {KD(x, z); x ∈ D, z ∈ ∂D} denote the Poisson kernel of the Brownian
motion W killed upon leaving D; that is,

E
x [φ(WτD )] =

∫
∂D

KD(x, z)φ(z)σ(dz)

for every continuous function φ on ∂D, where σ denotes the surface area
measure. Since D is bounded C1,1-smooth, it is known (see [Z]) that there
are constants c3 > c2 > 0 such that

(3.13)
c2δ(x)
|x− z|n

≤ KD(x, z) ≤ c3δ(x)
|x− z|n

for every x ∈ D and z ∈ ∂D.

Note that x 7→ KD(x, z) is a harmonic function inD and vanishes continuously
on ∂D \ {z}.

The lemma clearly holds when δ(x0) ≥ r0/8. This is because, since D is
bounded, there is R > 0 such that for every x0 ∈ D, D ⊂ B(x0, R) and so
(3.12) holds trivially for r > R. Thus in the case of δ(x0) ≥ r0/8, (3.12) holds
for every r > 0 by choosing c1 sufficiently large.

We now assume δ(x0) < r0/8. Without loss of generality, we may and do
assume that r > 8δ(x0) and B(x0, 2r)c ∩D 6= ∅. We can further assume that
r ≤ r0 since D is bounded.

Define h(x) = Px(τB(x0,r) ≤ τD). Clearly, h is a harmonic function in
D∩B(x0, r) and vanishes continuously on ∂D∩B(x0, r). Let y0 ∈ ∂D be such
that δ(x0) = dist(x0, y0). By the triangle inequality, B(y0, r/2) ⊂ B(x0, r).
Now take z ∈ D \ B(x0, 2r). Since x0 ∈ B(y0, r/4), we have by the boundary
Harnack inequality,

h(x0)
KD(x0, z)

≤ c h(x)
KD(x, z)

for every x ∈ B(y0, r/4).



206 KRZYSZTOF BURDZY, ZHEN-QING CHEN, AND PETER JONES

Let x = x0 + r
8 (x0 − y0). Note that h(x) ≤ 1,

1
2
|z − x0| ≤ |z − x| ≤ 2|z − x0|,

and δ(x) ≥ r/8. These facts and (3.13) imply that h(x0) ≤ c1δ(x0)/r. This
proves the lemma. �

We fix parameters a1, a2 > 0 for the rest of the paper. We will impose
bounds on their values later on. Let S0 = U0 = 0 and for k ≥ 1 define

Sk = inf{t > Uk−1 : d(Xt, ∂D) ∨ d(Yt, ∂D) ≤ a2d(Xt, Yt)2},
Uk = inf{t > Sk : d(Xt, XSk) ∨ d(Yt, YSk) ≥ a1d(XSk , YSk)}.

We will assume that a1 < 1/4. Then it is easy to see that P(Uk < ∞ |
Sk <∞) = 1, for every k. Finiteness of Sk’s is less obvious. The next lemma
contains a result that is significantly stronger than the finiteness of Sk’s. This
stronger result is needed in later arguments.

Lemma 3.3. There exist c1, c2, c3, c4 ∈ (0,∞) and ε0, r0, p0 > 0 with the
following properties. Assume that X0 ∈ ∂D, d(X0, Y0) = ε, d(Y0, ∂D) = r
and let

T1 = inf{t ≥ 0 : d(Xt, X0) ∨ d(Yt, Y0) ≥ c1r}.
(i) If ε ≤ ε0 and r ≤ r0 then P(S1 ≤ T1, L

X
S1
− LX0 ≤ c2r) ≥ p0.

(ii) If ε ≤ ε0 and r ≤ c3ε then E(LXS1∧τ+(ε0) − L
X
0 ) ≤ c4r.

Proof. (i) Recall the notation from the beginning of this section. Let CS1

be the orthonormal coordinate system such that X0 = 0 and n(X0) lies on the
second axis. Assume that r0 < ε0 < 1/(200ν∗). Let c5 ∈ (0, 1/6) be a small
constant whose value will be chosen later. The following definitions refer to
the coordinates in CS1,

T2 = inf{t ≥ 0 : Y 2
t ≥ 2r},

T3 = inf{t ≥ 0 : |Y 1
t − Y 1

0 | ≥ c5r},
T4 = inf{t ≥ 0 : Yt ∈ ∂D},
A1 = {T4 ≤ T2 ∧ T3},
T5 = inf{t ≥ 0 : |X1

t −X1
0 | ≥ 2c5r}.

First we will assume that r ≤ ε/2. We will show that T5 ≥ T2 ∧ T3 ∧ T4

if A1 holds. We will argue by contradiction. Assume that A1 holds and
T5 < T2 ∧T3 ∧T4. Then B1

t −B1
0 = Y 1

t −Y 1
0 for t ∈ [0, T5] so |B1

t −B1
0 | ≤ c5r

for the same range of t’s. We have

X1
T5
−X1

0 = B1
T5
−B1

0 +
∫ T5

0

n1(Xt)dLXt ,
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so
∣∣∣∫ T5

0
n1(Xt)dLXt

∣∣∣ ≥ c5r. We assume that ε0 > 0 is so small that for r < ε0

and x ∈ B(0, 2c5r), we have n2(x) ≥ |n1(x)|/(2ν∗ · 2c5r). It follows that∫ T5

0

n2(Xt)dLXt ≥ c5r/(2ν∗ · 2c5r) = 1/(4ν∗).

Note that B2
t −B2

0 = Y 2
t − Y 2

0 for t ∈ [0, T4]. Since d(X0, Y0) = ε, we have

d(X0, Yt) ≤ ε+
√

(2r)2 + (c5r)2 < ε+ 3r < 3ε for t ≤ T2 ∧ T3 ∧ T4.

Therefore for t ≤ T2 ∧ T3 ∧ T4, |Y 2
t | ≤ 3ε. Since T5 < T2 ∧ T3 ∧ T4, it follows

that

|B2
t −B2

s | = |Y 2
t − Y 2

s | ≤ |Y 2
t |+ |Y 2

s | ≤ 6ε for s, t ∈ [0, T5].

Thus

X2
T5
−X2

0 ≥ −|B2
T5
−B2

0 |+
∫ T5

0

n2(Xt)dLXt

≥ −6ε+ 1/(4ν∗) ≥ −6ε0 + 1/(4ν∗) ≥ 44ε0,

and X2
T5
≥ 44ε0 + X2

0 = 44ε0. Let T6 = sup{t ≤ T5 : Xt ∈ ∂D}. Then
B2
T5
−B2

T6
= X2

T5
−X2

T6
≥ 44ε0− r ≥ 43ε0, a contradiction with the fact that

|B2
t − B2

s | ≤ 6ε ≤ 6ε0 for s, t ∈ [0, T5]. This proves that T5 ≥ T2 ∧ T3 ∧ T4 if
A1 holds.

We will show that if A1 holds then S1 ≤ T4. Assume that A1 holds and
let T7 = sup{t ≤ T4 : Xt ∈ ∂D}. Note that neither Xt nor Yt visit ∂D on the
interval (T7, T4). Hence, XT7 − YT7 = XT4 − YT4 . If ε0 and r0 are sufficiently
small then |X1

0 − Y 1
0 | ≥ ε/2 because r ≤ ε/2 and d(Y0, ∂D) = r. We have

assumed that A1 holds so |Y 1
T4
− Y 1

0 | ≤ c5r. We have proved that T5 ≥ T4 on
A1, so |X1

T4
−X1

0 | ≤ 2c5r. Recall that c5 ≤ 1/6 and r ≤ ε/2. It follows that

d(XT7 , YT7) = d(XT4 , YT4) ≥ |X1
T4
− Y 1

T4
|

≥ |X1
0 − Y 1

0 | − |Y 1
T4
− Y 1

0 | − |X1
T4
−X1

0 | ≥ ε/2− 3c5r ≥ ε/4.
On the other hand, assuming ε0 > 0 is small,

d(XT7 , YT7) ≤ d(XT7 , X0) + d(X0, Y0) + d(Y0, YT7)

≤ 2|X1
T7
−X1

0 |+ ε+ d(Y0, YT7) ≤ 2 · 2c5r + ε+ 3r ≤ 3ε.

We have

|Y 1
T4
− Y 1

T7
| = |Y 1

T4
− Y 1

0 |+ |Y 1
0 − Y 1

T7
| ≤ c5r + c5r = 2c5r.

Since YT4 ∈ ∂D, XT7 ∈ ∂D, XT7 − YT7 = XT4 − YT4 , d(XT7 , YT7) ≤ 3ε, and
|Y 1
T4
− Y 1

T7
| ≤ 2c5r, we have ∠(n(YT4),n(XT7)) ≤ 2ν∗ · 2(3ε+ 2c5r) ≤ 16ν∗ε.

This and easy geometry show that d(YT7 , ∂D) ≤ 2 · 2c5r · 16ν∗ε = 64c5rν∗ε.
Hence,

d(YT7 , ∂D)
d(XT7 , YT7)

≤ 64c5rν∗ε
ε/4

= 256c5rν∗ ≤ 128c5ν∗ε ≤ 32c5ν∗d(XT7 , YT7).
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We choose c5 > 0 so small that 32c5ν∗ ≤ a2. It follows that d(YT7 , ∂D) ≤
a2d(XT7 , YT7)2. We obviously have d(XT7 , ∂D) ≤ a2d(XT7 , YT7)2 because
XT7 ∈ ∂D. This shows that S1 ≤ T7 and completes the proof that if A1 holds
then S1 ≤ T4.

Assume that A1 holds and suppose that
∫ T4

0
n2(Xt)dLXt ≥ 20r. We will

show that this leads to a contradiction. Recall that |B2
t − B2

s | ≤ 8r for
s, t ∈ [0, T4]. We obtain

X2
T4

= X2
T4
−X2

0 ≥ −|B2
T4
−B2

0 |+
∫ T4

0

n2(Xt)dLXt ≥ −8r + 20r = 12r.

Recall that T7 = sup{t ≤ T4 : Xt ∈ ∂D}. We have B2
T4
−B2

T7
= X2

T4
−X2

T7
≥

12r−r = 11r, a contradiction with the fact that |B2
t−B2

s | ≤ 8r for s, t ∈ [0, T4].
Hence, if A1 holds then

∫ T4

0
n2(Xt)dLXt ≤ 20r. Note that n2(x) ≥ 1/2 for all

x ∈ ∂D ∩ B(0, 6r), assuming that ε0 > 0 is small and r ≤ r0 < ε0. We have
shown that if A1 holds then T5 ≥ T4, so n2(Xt) ≥ 1/2 for t ∈ [0, T4] such that
Xt ∈ ∂D. This implies that,

(1/2)(LXS1
− LX0 ) ≤ (1/2)(LXT4

− LX0 ) ≤
∫ T4

0

n2(Xt)dLXt ≤ 20r.

We have shown that {S1 ≤ T1, L
X
S1
− LX0 ≤ 40r} ⊂ A1. It is easy to see that

P(A1) > p1 for some p1 > 0 which depends only on c5. This completes the
proof of part (i) in the case r ≤ ε/2, with c1 = 2 and c2 = 40.

Next consider the case when r ≥ ε/2. Let

T8 = inf{t > 0 : d(Yt, X0) ≥ 2ε},
T9 = inf{t > 0 : Xt ∈ ∂D,d(Yt, ∂D) ≤ d(Xt, Yt)/2},
T10 = inf{t > 0 : LXt − LX0 ≥ 20ε},
A2 = {T4 ≤ T8},
A3 = {T9 ≤ T8 ∧ T10}.

We will show that A2 ⊂ A3. Assume that A2 holds. First, we will prove
that LXT4

− LX0 ≤ 20ε. Suppose otherwise, i.e., LXT4
− LX0 ≥ 20ε. Recall that

we are using the coordinate system CS1 with the origin at X0 ∈ ∂D. Let
T11 = inf{t ≥ 0 : |X1

t − X1
0 | ≥ 5ε}. We will show that T11 ≥ T4. We will

argue by contradiction. Assume that T11 < T4. We have assumed that A2

holds, so T11 < T8. Then B1
t −B1

0 = Y 1
t −Y 1

0 for t ∈ [0, T11] and |B1
t −B1

0 | ≤ 4ε
for the same range of t’s. We have∣∣∣∣∣

∫ T11

0

n1(Xt)dLXt

∣∣∣∣∣ = |X1
T11
−X1

0 − (B1
T11
−B1

0)|

≥ |X1
T11
−X1

0 | − |B1
T11
−B1

0 | ≥ 5ε− 4ε = ε.
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If ε0 > 0 is sufficiently small and ε < ε0 then n2(x) ≥ |n1(x)|/(2ν∗ · 5ε) for
x ∈ ∂D ∩ B(0, 5ε), so

∫ T11

0
n2(Xt)dLXt ≥ ε/(2ν∗ · 5ε) = 1/(10ν∗). We have

B2
t − B2

0 = Y 2
t − Y 2

0 for t ∈ [0, T11], because T11 ≤ T4, so |B2
t − B2

s | ≤ 4ε for
s, t ∈ [0, T11]. Recall that ε < ε0 < 1/(100ν∗). We obtain,

X2
T11

= X2
T11
−X2

0 ≥ −|B2
T11
−B2

0 |+
∫ T11

0

n2(Xt)dLXt

≥ −4ε+ 1/(10ν∗) ≥ 6ε.

Let T12 = sup{t ≤ T11 : Xt ∈ ∂D}. Then B2
T11
− B2

T12
= X2

T11
− X2

T12
≥

6ε − ε = 5ε, a contradiction, because |B2
t − B2

s | ≤ 4ε for s, t ∈ [0, T11]. This
proves that T11 ≥ T4.

Recall that we have assumed that LXT4
− LX0 ≥ 20ε. We have n2(x) ≥ 1/2

for x ∈ ∂D ∩ B(0, 10ε), assuming ε0 > 0 is small and ε ≤ ε0. Since T11 ≥ T4,
n2(Xt) ≥ 1/2 for t ≤ T4 such that Xt ∈ ∂D, so

X2
T4

= X2
T4
−X2

0 ≥ −|B2
T4
−B2

0 |+
∫ T4

0

n2(Xt)dLXt

≥ −4ε+ (1/2)(LXT4
− LX0 )

≥ −4ε+ 10ε = 6ε.

Recall that T7 = sup{t ≤ T4 : Xt ∈ ∂D}. Then B2
T4
− B2

T7
= X2

T4
− X2

T7
≥

6ε − ε = 5ε, a contradiction, because |B2
t − B2

s | ≤ 4ε for s, t ∈ [0, T11]. This
proves that if A2 holds then LXT4

− LX0 ≤ 20ε ≤ 40r.
Note that XT4 − YT4 = XT7 − YT7 , YT4 , XT7 ∈ ∂D, and T7 ≤ T4 ≤ T11.

Assuming that ε0 > 0 is small, these facts easily imply that the angle be-
tween XT7 − YT7 and the tangent line to ∂D at XT7 is smaller than π/8, so
d(YT7 , ∂D) ≤ d(XT7 , YT7)/2. Hence, T9 ≤ T4 and, therefore, if A2 occurs
then T9 ≤ T4 ≤ T8 ∧ T10. This completes the proof that A2 ⊂ A3.

It is easy to see that P(A2) > p2 > 0, where p2 depends only on ε0 and D.
It follows that P(A3) > p2.

We may now apply the strong Markov property at the stopping time T9

and repeat the argument given in the first part of the proof, discussing the
case r ≤ ε/2. It is straightforward to complete the proof of part (i), adjusting
the values of c1, c2, ε0, r0 and p0, if necessary.

(ii) Let c1 and c2 be as in part (i) of the lemma, let T 0
5 = 0, and for k ≥ 1

let

T k1 = inf{t ≥ T k−1
5 : d(XTk−1

5
, Xt) ∨ d(YTk−1

5
, Yt) ≥ c1d(YTk−1

5
, ∂D)},

T k2 = inf{t ≥ T k−1
5 : LXt − LXTk−1

5
≥ c2d(YTk−1

5
, ∂D)},

T k3 = inf{t ≥ T k−1
5 : Yt ∈ ∂D},
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T k4 = T k1 ∧ T k2 ∧ T k3 ,

T k5 = inf{t ≥ T k4 : Xt ∈ ∂D}.

Let ε0 > 0 be the constant which works for part (i) of the lemma. An
examination of the proof of part (i) shows that we have in fact proved a
statement stronger than that in part (i) of the lemma, namely, using the
notation of the first part of the proof,

(3.14) P(S1 ≤ T1 ∧ T4, L
X
S1
− LX0 ≤ c2r) ≥ p0.

Next we will estimate Ed(YTk5 ∧τ+(ε0), ∂D). By Lemma 3.2,

P( sup
t∈[Tk4 ,T

k
5 ]

d(Xt, XTk4
) ∈ [2−j−1, 2−j ] | FTk4 ) ≤ c6d(XTk4

, ∂D)/2−j(3.15)

≤ c7d(YTk−1
5

, ∂D)/2−j .

Write γ = d(YTk−1
5

, ∂D), and let j0 be the largest integer such that 2−j0 ≥
diam(D). Consider j such that supt∈[Tk4 ,T

k
5 ∧τ+(ε0)] d(Xt, XTk4

) ≤ 2−j . It is
not hard to show that if j0 ≤ j ≤ | log ε0| then d(YTk5 ∧τ+(ε0), ∂D) ≤ c7ε02−j

for some c7 <∞. If j ≥ | log ε0| then d(YTk5 ∧τ+(ε0), ∂D) ≤ γ + c8ε02−j . This
and (3.15) imply that

E(d(YTk5 ∧τ+(ε0), ∂D) | FTk4 )

≤
∑

j0≤j≤| log ε0|

c7ε02−jP( sup
t∈[Tk4 ,T

k
5 ]

d(Xt, XTk4
) ∈ [2−j−1, 2−j ] | FTk4 )

+
∑

| log ε0|≤j≤| log γ|

(γ + c8ε02−j)

×P( sup
t∈[Tk4 ,T

k
5 ]

d(Xt, XTk4
) ∈ [2−j−1, 2−j ] | FTk4 )

+
∑

j≥| log γ|

(γ + c8ε02−j)P( sup
t∈[Tk4 ,T

k
5 ]

d(Xt, XTk4
) ∈ [2−j−1, 2−j ] | FTk4 )

≤
∑

j0≤j≤| log ε0|

c9ε02−j(γ/2−j)

+ γ +
∑

| log ε0|≤j≤| log γ|

c10ε02−j(γ/2−j) +
∑

j≥| log γ|

c10ε02−j

≤ c11ε0γ| log ε0|+ γ + c12γε0| log γ|+ c13γε0 ≤ γ(1 + c13ε0| log ε0|).

Thus

E(d(YTk5 ∧τ+(ε0), ∂D) | FTk4 )1{Tk−1
5 <τ+(ε0)}

≤ 1{Tk−1
5 <τ+(ε0)}(1 + c13ε0| log ε0|)d(YTk−1

5 ∧τ+(ε0), ∂D).
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This, (3.14) and the strong Markov property yield,

E(d(YTk5 ∧τ+(ε0), ∂D)1{S1≥Tk4 }1{Tk−1
5 <τ+(ε0)})

= E(1{S1≥Tk4 }1{Tk−1
5 <τ+(ε0)}E(d(YTk5 ∧τ+(ε0), ∂D) | FTk4 ))

≤ (1 + c13ε0| log ε0|)E(1{S1≥Tk4 }1{Tk−1
5 <τ+(ε0)}d(YTk−1

5 ∧τ+(ε0), ∂D))

≤ (1 + c13ε0| log ε0|)
×E(d(YTk−1

5 ∧τ+(ε0), ∂D)1{Tk−1
5 <τ+(ε0)}E(1{S1≥Tk4 } | FTk−1

5
))

≤ (1 + c13ε0| log ε0|)E(d(YTk−1
5 ∧τ+(ε0), ∂D)1{S1≥Tk−1

4 }1{Tk−1
5 <τ+(ε0)}

× (1−P(T k−1
5 ≤ S1 ≤ T k4 | S1 ≥ T k−1

5 ))

≤ (1 + c13ε0| log ε0|)(1− p0)

×E(d(YTk−1
5 ∧τ+(ε0), ∂D)1{S1≥Tk−1

4 }1{Tk−1
5 <τ+(ε0)})

≤ (1 + c13ε0| log ε0|)(1− p0)

×E(d(YTk−1
5 ∧τ+(ε0), ∂D)1{S1≥Tk−1

4 }1{Tk−2
5 <τ+(ε0)}).

We obtain by induction,

E(d(YTk5 ∧τ+(ε0), ∂D)1{S1≥Tk4 }1{Tk−1
5 <τ+(ε0)})

≤ (1 + c13ε0| log ε0|)k(1− p0)kEd(YT 0
5
, ∂D).

It follows that

E(LXS1∧τ+(ε0) − L
X
0 ) =

∞∑
k=0

E
(

(LXS1∧τ+(ε0) − L
X
0 )1{S1∈[Tk5 ,T

k+1
5 )}

)

=
∞∑
k=0

E

1{S1∈[Tk5 ,T
k+1
5 )}

k∑
j=0

1{T j5<τ+(ε0)}(L
X
T j+1

5 ∧τ+(ε0)
− LX

T j5∧τ+(ε0)
)


≤
∞∑
k=0

E

1{S1∈[Tk5 ,T
k+1
5 )}

k∑
j=0

1{T j−1
5 <τ+(ε0)}c2d(YT j5∧τ+(ε0), ∂D)


≤
∞∑
k=0

c2E(d(YTk5 ∧τ+(ε0), ∂D)1{S1≥Tk4 }1{Tk−1
5 <τ+(ε0)})

≤
∞∑
k=0

c2(1 + c13ε0| log ε0|)k(1− p0)kEd(YT 0
5
, ∂D).

If we assume that ε0 > 0 is sufficiently small, this is bounded by
c14Ed(YT 0

5
, ∂D) = c14d(Y0, ∂D). �

Recall that a1 and a2 are parameters in the definitions of Sk’s and Uk’s
stated at the paragraph preceding Lemma 3.3.
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Corollary 3.4. For any a1, a2 > 0, and any starting points (X0, Y0) =
(x0, y0) ∈ D ×D, all stopping times Sk are finite a.s.

Proof. Let ε0 and r0 be as in Lemma 3.3. By Lemma 3.1, there is a finite
stopping time T1 such that d(XT1 , YT1) ≤ ε0 ∧ r0. So there exist p1 > 0 and
c1 <∞ such that P(T1 ≤ c1) ≥ p1 > 0. Let T2 be the first time after T1 when
either X or Y hits ∂D, and note that d(XT2 , YT2) = d(XT1 , YT1) ≤ ε0 ∧ r0.
Let

T3 = inf{t ≥ T2 : d(Xt, XT2) ∨ d(Yt, YT2) ≥ c2r0}.
It is easy to see that P(T2 ≤ T3 < ∞ | T1 < ∞) = 1 when c2 > 0 is small.
Select such c2 > 0 and apply the strong Markov property at T2 and Lemma 3.3
(i) to see that there exists p2 > 0 such that P(S1 ≤ T3 | T1 <∞) ≥ p2. On the
other hand, for some c3 <∞, we have P(T3 ≤ T1+c3 | T1 <∞) ≥ 1−p2/2. It
follows that P(S1 ≤ T3 ≤ c1 +c3) > p1p2/2 and so P(S1 > c1 +c3) < 1− p1p2

2 .
By the Markov property, P(S1 > k(c1 + c3)) ≤ (1 − p1p2

2 )k for k ≥ 1, so
S1 <∞, a.s.

Recall that P(Uk < ∞ | Sk < ∞) = 1 for every k, according to the
remark made before the statement of Lemma 3.3. By induction and the
strong Markov property applied at Sk’s and Uk’s, all stopping times Sk and
Uk are finite a.s. �

Lemma 3.5. For any c1 > 0, one can choose a1, a2 > 0 and ε0 > 0 so
that for every k ≥ 1 and all s, t ∈ (Sk ∧ τ+(ε0), Uk ∧ τ+(ε0)), a.s.,

∠(Xt − Yt, Xs − Ys) ≤ c1d(XSk∧τ+(ε0), YSk∧τ+(ε0)).

Proof. Recall that D is assumed to be C4-smooth. Elementary geome-
try shows that for any c1 > 0 there exist ε0, a1, a2 > 0 with the following
properties. Suppose that x, y ∈ ∂D and r = d(x, y) ≤ ε0/2. Let

A1 = B(x, 2a1r) ∩ ∂D,(3.16)

A2 = B(y, 2a1r) ∩ ∂D,
A3 = {z ∈ D : d(x, z) ≤ 2a1r,d(z, ∂D) ≤ 2a2r

2},
A4 = {z ∈ D : d(y, z) ≤ 2a1r,d(z, ∂D) ≤ 2a2r

2},
A5 = {z ∈ D : ∃v ∈ A1, u, w ∈ A2 : z = v − u+ w},
A6 = {z ∈ D : ∃v ∈ A2, u, w ∈ A1 : z = v − u+ w},
A7 = A3 ∪A5,

A8 = A4 ∪A6,

β = sup{∠(x0 − y0, x1 − y1) : x0, x1 ∈ A7, y0, y1 ∈ A8}.
With a suitable choice of small ε0, a1, a2 > 0, we have β ≤ (c1/4)r.

We will assume that Sk < τ+(ε0) because otherwise (Sk ∧ τ+(ε0), Uk ∧
τ+(ε0)) = ∅ and there is nothing to prove. Let x ∈ ∂D be the closest point



SYNCHRONOUS COUPLINGS 213

to XSk and let y ∈ ∂D be the closest point to YSk . Note that if ε0 and a2

are small then d(x, y) = r ≤ 2d(XSk , YSk). We use points x and y to define
sets Ak, as in (3.16). We will argue that ∠(Xt − Yt, Xs − Ys) ≤ 2β, for all
s, t ∈ (Sk, Uk ∧ τ+(ε0)). Note that XSk ∈ A3 and YSk ∈ A4. This and the
definition of β imply that ∠(XSk − YSk , x− y) ≤ β.

Suppose that there exists t ∈ (Sk, Uk ∧ τ+(ε0)) with ∠(Xt − Yt, x− y) > β
and let T = inf{t ≥ Sk : ∠(Xt − Yt, x − y) > β}. By continuity, ∠(XT −
YT , x− y) = β. It is impossible that both XT and YT are in D, because then
we would have Xt−Yt = XT −YT for some t0 > 0 and all t ∈ (T − t0, T + t0).
This would imply that ∠(Xt − Yt, x − y) = β for t ∈ (T − t0, T + t0), and,
therefore, inf{t ≥ Sk : ∠(Xt − Yt, x − y) > β} ≥ T + t0, a contradiction.
We will show that it cannot happen that XT , YT ∈ ∂D. Suppose that it is
true that XT , YT ∈ ∂D and recall that we are working under assumption that
T < Uk. The definition of Uk implies that XT ∈ A3 ⊂ A7 and YT ∈ A4 ⊂ A8.
Since ∠(XT − YT , x− y) = β, it follows that the supremum in the definition
of β is attained for points x0, x1, y0, y1 ∈ ∂D (take x0 = x, y0 = y, x1 = XT

and y1 = YT ). Easy geometry shows that this cannot be the case because we
can slightly move either y0 or y1 into the interior of D to increase the value
of ∠(x0 − y0, x1 − y1).

Suppose without loss of generality that XT ∈ ∂D and YT ∈ D. For some
random t1 > 0, the process Y will not touch the boundary within [T, T + t1],
while the local time LX will have a non-zero increment, a.s. It is easy to
see that the local-time-term push that X will get over [T, T + t1] will make
∠(Xt − Yt, x− y) smaller, and hence ∠(Xt − Yt, x− y) ≤ β for t ∈ [T, T + t1],
contradicting the definition of T . We conclude that ∠(Xt− Yt, x− y) ≤ β for
t ∈ (Sk, Uk ∧ τ+(ε0)). This and the fact that ∠(XSk − YSk , x− y) ≤ β imply
that

∠(Xt − Yt, Xs − Ys) ≤ 2β ≤ (c1/2)r ≤ c1d(XSk , YSk),

for all s, t ∈ (Sk, Uk ∧ τ+(ε0)). �

Recall the definition of the stopping times Sk, Uk from the paragraph
preceding Lemma 3.3. For k ≥ 1, define

ρt =
d(Xt, Yt)
d(X0, Y0)

,

ρ̃t =
∞∏
j=1

d(XUj∧t, YUj∧t)
d(XSj∧t, YSj∧t)

,

ρt =
∞∏
j=0

d(XSj+1∧t, YSj+1∧t)
d(XUj∧t, YUj∧t)

,

with the convention 0/0 = 1. Note that ρt = ρ̃tρt. Let T =
⋃
k≥1(Sk, Uk] and

T c = (0,∞) \ T .
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Lemma 3.6. For any c1 > 0 there exist a0, ε0 > 0 such that if a1, a2 ∈
(0, a0) and d(X0, Y0) ≤ ε0 then for all t ≥ 0, a.s.,∣∣∣∣∣log ρ̃t∧τ(ε0) +

1
2

∫
[0,t∧τ(ε0)]∩T

(
ν(Xs)dLXs + ν(Ys)dLYs

)∣∣∣∣∣
≤ c1

(
LXt∧τ(ε0) + LYt∧τ(ε0)

)
.

Proof. Since D is assumed to be C4-smooth, for any c2 ∈ (0, 1) and c3 > 0,
we can find ε0 > 0 so small that for any x, y ∈ ∂D with d(x, y) ≤ 2ε0,

(
− (1 + c2)(1/2)ν(x)− c3/2

)
d(x, y) ≤ x− y

d(x, y)
· n(x)

≤
(
− (1− c2)(1/2)ν(x) + c3/2

)
d(x, y).

This, Lemma 3.5, differentiability of ν and simple geometry show that one
can choose small a1, a2 > 0 and ε0 > 0 so that for every k ≥ 1 and all
t ∈ [Sk, Uk ∧ τ+(ε0)] such that Xt ∈ ∂D, assuming Sk < τ+(ε0),

(−(1 + c2)(1/2)ν(Xt)− c3)d(XSk , YSk) ≤ Xt − Yt
d(Xt, Yt)

· n(Xt)

≤ (−(1− c2)(1/2)ν(Xt) + c3)d(XSk , YSk).

Analogous estimates hold for Yt−Xt
d(Yt,Xt)

· n(Yt). We obtain for t ∈ [Sk, Uk ∧
τ+(ε0)],

d(Xt, Yt)− d(XSk , YSk)

=
∫ t

Sk

(Xs − Ys)
d(Xs, Ys)

· n(Xs)dLXs +
∫ t

Sk

(Ys −Xs)
d(Ys, Xs)

· n(Ys)dLYs

≤
∫ t

Sk

(−(1− c2)(1/2)ν(Xs) + c3)d(XSk , YSk)dLXs

+
∫ t

Sk

(−(1− c2)(1/2)ν(Ys) + c3)d(XSk , YSk)dLYs .

Thus

d(Xt, Yt)
d(XSk , YSk)

≤ 1− (1− c2)(1/2)
∫ t

Sk

(ν(Xs)dLXs + ν(Ys)dLYs ) + c3

∫ t

Sk

(dLXs + dLYs ).
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We obtain in a similar way,

d(Xt, Yt)
d(XSk , YSk)

≥ 1− (1 + c2)(1/2)
∫ t

Sk

(ν(Xs)dLXs + ν(Ys)dLYs )− c3
∫ t

Sk

(dLXs + dLYs ).

Note that d(Xt, Yt)/d(XSk , YSk) ∈ [1− 2a1, 1 + 2a1] for t ∈ [Sk, Uk ∧ τ+(ε0)],
so

d(Xt, Yt)
d(XSk , YSk)
≤ (1 + 2a1)

∧
(

1− (1− c2)(1/2)
∫ t

Sk

(ν(Xs)dLXs + ν(Ys)dLYs ) + c3

∫ t

Sk

(dLXs + dLYs )
)
,

and
d(Xt, Yt)

d(XSk , YSk)
≥ (1− 2a1)

∨
(

1− (1 + c2)(1/2)
∫ t

Sk

(ν(Xs)dLXs + ν(Ys)dLYs )− c3
∫ t

Sk

(dLXs + dLYs )
)
.

We have 1 + a ≤ ea for all a. For any c4 > 0 we can choose a1 > 0 so small
that 1+a ≥ eae−c4|a| for a ∈ [−2a1, 2a1]. Hence, for sufficiently small a1, and
t ∈ [Sk, Uk ∧ τ+(ε0)], assuming Sk < τ+(ε0),

ρ̃t =
d(Xt, Yt)

d(XSk , YSk)

k−1∏
j=1

d(XUj , YUj )
d(XSj , YSj )

≤
(

1− (1/2− c2/2)
∫ t

Sk

(ν(Xs)dLXs + ν(Ys)dLYs ) + c3

∫ t

Sk

(dLXs + dLYs )
)

×
k−1∏
j=1

(
1− (1/2− c2/2)

∫ Uj

Sj

(ν(Xs)dLXs + ν(Ys)dLYs )

+ c3

∫ Uj

Sj

(dLXs + dLYs )

)

≤ exp

(
− (1/2− c2/2)

∫
[0,t∧τ(ε0)]∩T

(ν(Xs)dLXs + ν(Ys)dLYs )

+ c3

∫
[0,t∧τ(ε0)]∩T

(dLXs + dLYs )

)
,
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and

ρ̃t ≥ exp

(
− (1/2 + c2)

∫
[0,t∧τ(ε0)]∩T

(ν(Xs)dLXs + ν(Ys)dLYs )

− 2c3
∫

[0,t∧τ(ε0)]∩T
(dLXs + dLYs )

− c4
(

(1/2 + c2)
∫

[0,t∧τ(ε0)]∩T
(|ν(Xs)|dLXs + |ν(Ys)|dLYs )

+ 2c3
∫

[0,t∧τ(ε0)]∩T
(dLXs + dLYs )

))
.

Since |ν| is bounded and c2, c3 and c4 are arbitrarily small, the last two esti-
mates yield the lemma. �

Recall that we have assumed that for every x ∈ ∂D, there are only finitely
many points y ∈ ∂D with α(x, y) = 0.

Lemma 3.7. Suppose that z ∈ ∂D and let K = {y ∈ ∂D : α(z, y) = 0}
and Mk = {y ∈ ∂D : α(z, y) ∈ [2−k, 2−k+1]}. There exist k0, c1 < ∞ and
c2 > 0 not depending on z such that for k ≥ k0, the arc length measure of
Mk is less than c12−k/2 and the distance from Mk to K is bounded below by
c22−k.

Proof. We have assumed that the boundary of D is C4-smooth and that
there exist at most a finite number of points x1, x2, . . . , xn such that ν(xk) = 0,
k = 1, . . . , n. Moreover, we have assumed that the third derivative of the
function representing the boundary does not vanish at any xk. This implies
that there exist δ0, c3, c4 > 0 such that if x ∈ ∂D and d(x, xk) ≤ δ0 for some
k then |ν(x)| ≥ c3d(x, xk); moreover, if x ∈ ∂D and d(x, xk) ≥ δ0 for every
k = 1, . . . , n, then |ν(x)| ≥ c4. We make δ0 smaller, if necessary, so that
d(xj , xk) ≥ 4δ0 for all j 6= k. It is elementary to see that there exists c5 > 0
with the following properties (i)–(iii).

(i) For every point x ∈ ∂D such that d(x, xk) ≥ 2δ0 for every k = 1, . . . , n,
and every y ∈ ∂D with d(x, y) ≤ δ0, we have |α(x, y)| ≥ c5d(x, y).

(ii) If x ∈ ∂D and d(x, xk) < 2δ0 for some k, y ∈ ∂D, d(x, y) ≤ δ0, and y
lies on the same side of xk as x then |α(x, y)| ≥ c5d(x, y)d(x, xk).

(iii) If x = xk for some k, y ∈ ∂D and d(x, y) ≤ δ0 then |α(x, y)| ≥
c5d(x, y)2.

Make δ0 smaller, if necessary, so that for any x, y ∈ ∂D with |α(x, y)| ≥ π/4,
we have d(x, y) ≥ 4δ0.

Consider any z ∈ ∂D and let z1, z2, . . . , zm be all points in ∂D such
that α(z, zk) = 0 or α(z, zk) = π/2. The number m of such points is
bounded by a constant m0 depending on D but not on z. The family of
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points {z1, . . . , zm, x1, . . . , xn} divides ∂D into n + m Jordan arcs Γk, k =
1, . . . , n + m. Let λ denote the arc length measure on ∂D, i.e., λ(dx) is an
alternative notation for dx.

Fix some Γk and note that the curvature ν(x) has a constant sign on this
arc because there are no xj ’s between the endpoints of Γk. Since there are no
points zj between the endpoints of Γk, the function x→ α(z, x) is monotone
on this arc. For an arc Γk, let y−k and y+

k denote its endpoints and assume
that α(z, x) takes the maximum on Γk at x = y−k . It is elementary to deduce
from (i)–(iii) that for some c6 > 0 depending only on D, and all j,

λ({x ∈ Γk : α(x, y−k ) ∈ [2−j , 2−j−1]}) ≤ c62−j/2.

Since the number of Γk’s is bounded by a constant independent of z,

λ({x ∈ ∂D : α(x, z) ∈ [2−j , 2−j−1]}) ≤ c72−j/2.

Conditions (i)–(iii) easily imply that d(Mj ,K) ≥ c82−j for some c8 de-
pending only on D. �

Lemma 3.8. There exists c1 <∞ such that for any s > 0,

ρs ≤ exp(c1(LXs + LYs )).

Proof. Since D is assumed to be C4-smooth, there exists c2 <∞ such that
for any x ∈ ∂D and y ∈ D,

(3.17)
x− y

d(x, y)
· n(x) ≤ c2d(x, y).

Let T0 = 0, and for k ≥ 1,

Tk = inf{t ≥ Tk−1 : d(Xt, Yt) /∈ ( 1
2d(XTk−1 , YTk−1), 2d(XTk−1 , YTk−1))}

∧ inf{t ≥ Tk−1 : LXt − LXTk−1
≥ 1} ∧ inf{t ≥ Tk−1 : LYt − LYTk−1

≥ 1}.

Then, by (3.17), for any k ≥ 1 and t ∈ (Tk−1, Tk],

d(Xt, Yt)− d(XTk−1 , YTk−1)

=
∫ t

Tk−1

(Xs − Ys)
d(Xs, Ys)

· n(Xs)dLXs +
∫ t

Tk−1

(Ys −Xs)
d(Ys, Xs)

· n(Ys)dLYs

≤
∫ Tk

Tk−1

c2d(Xs, Ys)dLXs +
∫ Tk

Tk−1

c2d(Xs, Ys)dLYs

≤ 2c2d(XTk−1 , YTk−1)
∫ Tk

Tk−1

(dLXs + dLYs ).
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This implies that for any t ∈ (Tk−1, Tk],

d(Xt, Yt)
d(XTk−1 , YTk−1)

≤ 1 + 2c2(LXTk − L
X
Tk−1

+ LYTk − L
Y
Tk−1

)

≤ exp(2c2(LXTk − L
X
Tk−1

+ LYTk − L
Y
Tk−1

)),

and

d(Xt, Yt) =
d(Xt, Yt)

d(XTk−1 , YTk−1)

k−1∏
j=1

d(XTj , YTj )
d(XTj−1 , YTj−1)

≤
k∏
j=1

exp(2c2(LXTj − L
X
Tj−1

+ LYTj − L
Y
Tj−1

))

≤ exp(2c2(LXTk + LYTk)).

This proves the lemma. �

We define a partial order for two distinct points x = (x1, x2) and y =
(y1, y2) by saying that x ≺ y if x1 < y1, or x1 = y1 and x2 < y2. Let Zt be
the closest point in ∂D to the pair {Xt, Yt}, if there is only one such point.
In the case when there are multiple points in ∂D with the minimum distance
to {Xt, Yt}, we let Zt be the point which is the smallest one according to ≺;
an easy argument based on compactness of ∂D shows that there exists such
a point. Our choice of the tie-breaking convention is arbitrary—it plays no
role in the proofs. Note that if T0 = inf{t ≥ 0 : Xt ∈ ∂D or Yt ∈ ∂D} then
ZT0 = XT0 if XT0 ∈ ∂D and YT0 /∈ ∂D; ZT0 = YT0 if YT0 ∈ ∂D and XT0 /∈ ∂D;
ZT0 can be either XT0 or YT0 if both XT0 ∈ ∂D and YT0 ∈ ∂D.

The following piece of notation will be used in many lemmas,

F (s, u, x, a) =
{

sup
s≤t≤u

d(Xt, x) ≤ a
}
.

The proof of the next lemma is the most complicated and delicate argument
in this paper.

Lemma 3.9. Let T0 = inf{t ≥ 0 : Xt ∈ ∂D or Yt ∈ ∂D} and ε =
d(X0, Y0). There exist β0 ∈ (1/2, 1) and c1, c2 < ∞ such that the follow-
ing hold. Assume that
(3.18)
|π/2− ∠(X0 − Y0,n(Z0))| ≤ c1d(X0, Y0)β0 and d(X0, ∂D) ≤ c2d(X0, Y0).

(i) There exist c3 <∞ and ε0 > 0 such that whenever ε ≤ ε0,

E| log d(XS1 , YS1)− log d(X0, Y0)| ≤ c3ε.
(ii) For some β1 > 0, β2 > 1, c4 <∞ and ε0 > 0, we have for all ε ≤ ε0,

E
(
1F c(T0,S1,Z(T0),εβ1 ) | log d(XS1 , YS1)− log d(X0, Y0)|

)
≤ c4εβ2 .
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(iii) Let K = {x ∈ ∂D : tanα(Z0, x) ≥ ε−β1}. For some β1 > 0, β2 > 1,
c5 <∞ and ε0 > 0, we have for all ε ≤ ε0,

E
(
1{ZT0∈K} | log d(XS1 , YS1)− log d(X0, Y0)|

)
≤ c5εβ2 .

Proof. (i) Step 1. For some c6 <∞, let

T1 = inf{t > T0 : d(Xt, ∂D) ∧ d(Yt, ∂D) ≤ d(Xt, Yt),

|π/2− ∠(n(Zt), Xt − Yt)| ≤ c1d(Xt, Yt)β0},

T2 = inf{t > T0 : d(Xt, XT0) ≥ c6d(XT0 , YT0)β0},
T3 = inf{t > T0 : Xt ∈ ∂D}1{YT0∈∂D} + inf{t > T0 : Yt ∈ ∂D}1{YT0 /∈∂D},

T4 = inf{t > T2 : Xt ∈ ∂D or Yt ∈ ∂D},

T5 = inf{t > T4 : d(Xt, XT4) ≥ c6d(XT4 , YT4)β0},
T6 = inf{t > T4 : Xt ∈ ∂D}1{YT4∈∂D} + inf{t > T4 : Yt ∈ ∂D}1{YT4 /∈∂D}.

It is elementary to see that for a suitable choice of c6, {T3 < T2} ⊂ {T1 < T2},
and similarly {T6 < T5} ⊂ {T1 < T5}.

We will now estimate changes in the distance between Xt and Yt over
the interval [T0, T1 ∧ T2] under various scenarios, and probabilities of these
scenarios.

Let M∗ = {x ∈ ∂D : α(x,Z0) = π/2}. For integer k and any x ∈ M∗, let
Mk = {y ∈ ∂D : tanα(y, x) ∈ [2−k, 2−k+1)}. Let N be such that ZT0 ∈ MN .
Let k1 be the largest integer with d(Mk1 ,M∗) ≥ 4c6d(X0, Y0)β0 . Since we are
concerned with the case when d(X0, Y0) is small, we can assume that k1 > 0.

Suppose that −k1 ≤ k ≤ 0. Then, by Lemmas 3.2 and 3.7, P(N = k) ≤
c7d(X0, Y0)2−k. If N = k then d(XT0 , ∂D) ∨ d(YT0 , ∂D) ≤ c8d(X0, Y0)2k.
This and Lemma 3.2 imply that

P(T1 ≥ T2 | N = k) ≤ P(T3 ≥ T2 | N = k) ≤ c9d(XT0 , YT0)1−β02k,

and, therefore,

P(N = k, T1 ≥ T2) ≤ c10d(XT0 , YT0)2−β0 .

Elementary geometry shows that the distance between Xt and Yt is reduced
by at most a factor of 1 − c1122k over the interval [T0, T1 ∧ T2], so we have
d(XT1∧T2 , YT1∧T2) ≥ (1− c1122k)d(X0, Y0).

Next assume that 0 < k ≤ k1. It follows from Lemmas 3.2 and 3.7
that P(N = k) ≤ c12d(X0, Y0)2−k/2. We obviously have d(XT0 , ∂D) ∨
d(YT0 , ∂D) ≤ d(X0, Y0). This and Lemma 3.2 imply that

P(T1 ≥ T2 | N = k) ≤ P(T3 ≥ T2 | N = k) ≤ c13d(XT0 , YT0)1−β0 ,

and, therefore,

P(N = k, T1 ≥ T2) ≤ c14d(XT0 , YT0)2−β02−k/2.
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We have ∠(n(Zt), Xt − Yt) ∈ (c152−k, π − c152−k) for t ∈ [T0, T2]. It follows
that the distance between Xt and Yt is reduced by at most a factor of c162k

over the interval [T0, T1 ∧ T2], so d(XT1∧T2 , YT1∧T2) ≥ c162−kd(X0, Y0).
The next case is N ≤ −k1. We trivially have P(N ≤ −k1) ≤ 1. If N ≤ −k1

then d(XT0 , ∂D) ∨ d(YT0 , ∂D) ≤ c17d(X0, Y0)1+β0 . Lemma 3.2 implies that

P(N ≤ −k1, T1 ≥ T2) ≤ P(T1 ≥ T2 | N ≤ −k1)(3.19)

≤ P(T3 ≥ T2 | N ≤ −k1) ≤ c18d(XT0 , YT0).

The distance between Xt and Yt is reduced by at most a factor of 1 −
c19d(XT0 , YT0)2β0 over the interval [T0, T1 ∧ T2], so d(XT1∧T2 , YT1∧T2) ≥ (1−
c19d(XT0 , YT0)2β0)d(X0, Y0).

Let N ′ be such that XT4 ∈MN ′ if XT4 ∈ ∂D and YT4 ∈MN ′ if YT4 ∈ ∂D.
We will analyze the change to d(Xt, Yt) over the interval [T0, T1 ∧ T5] for
different values of N ′, assuming that T1 ≥ T2 and N ≤ −k1.

Suppose that −k1 ≤ k ≤ 0. Since d(XT2 , ∂D) ≤ c20d(X0, Y0)β0 , Lemmas
3.2 and 3.7 imply that P(N ′ = k | N ≤ −k1, T1 ≥ T2) ≤ c21d(X0, Y0)β02−k.
If N ′ = k then d(XT4 , ∂D) ∨ d(YT4 , ∂D) ≤ c22d(X0, Y0)2k. This and Lemma
3.2 imply that

P(T1 ≥ T5 | N ≤ −k1, T1 ≥ T2, N
′ = k)

≤ P(T6 ≥ T5 | N ≤ −k1, T1 ≥ T2, N
′ = k)

≤ c23d(XT0 , YT0)1−β02k.

We combine estimates of probabilities in this paragraph with (3.19) to obtain,

P(N ≤ −k1, N
′ = k, T1 ≥ T5) ≤ c24d(XT0 , YT0)2.

The distance between Xt and Yt is reduced by at most a factor of 1− c2522k

over the interval [T0, T1 ∧ T5], so d(XT1∧T5 , YT1∧T5) ≥ (1− c2522k)d(X0, Y0).
Next consider the case 0 < k ≤ k1. By Lemmas 3.2 and 3.7,

P(N ′ = k | N ≤ −k1, T1 ≥ T2) ≤ c26d(X0, Y0)β02−k/2.

If the event {N ≤ −k1, T1 ≥ T2} holds then d(XT4 , ∂D) ∨ d(YT4 , ∂D) ≤
d(X0, Y0). This and Lemma 3.2 imply that

P(T1 ≥ T5 | N ≤ −k1, T1 ≥ T2, N
′ = k)

≤ P(T6 ≥ T5 | N ≤ −k1, T1 ≥ T2, N
′ = k)

≤ c27d(XT0 , YT0)1−β0 ,

and, using (3.19),

P(N ≤ −k1, N
′ = k, T1 ≥ T5) ≤ c28d(XT0 , YT0)22−k/2.

We have ∠(n(Zt), Xt − Yt) ∈ (c292−k, π − c292−k) for t ∈ [T0, T5]. It follows
that the distance between Xt and Yt is reduced by at most a factor of c302k

over the interval [T0, T1 ∧ T5], so d(XT1∧T5 , YT1∧T5) ≥ c302−kd(X0, Y0).
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Consider the case N ′ ≤ −k1. We trivially have P(N ′ ≤ −k1 | N ≤
−k1, T1 ≥ T2) ≤ 1. If N ′ ≤ −k1 then it holds that d(XT4 , ∂D)∨d(YT4 , ∂D) ≤
c31d(X0, Y0)1+β0 . This and Lemma 3.2 imply that

P(T1 ≥ T5 | N ≤ −k1, T1 ≥ T2, N
′ ≤ −k1)

≤ P(T6 ≥ T5 | N ≤ −k1, T1 ≥ T2, N
′ ≤ −k1)

≤ c32d(XT0 , YT0),

and, using (3.19),

P(N ≤ −k1, N
′ ≤ −k1, T1 ≥ T5) ≤ c33d(XT0 , YT0)2.

If N ′ ≤ −k1, the distance between Xt and Yt is reduced by at most a
factor of 1 − c34d(XT0 , YT0)2β0 over the interval [T0, T1 ∧ T5], so we have
d(XT1∧T5 , YT1∧T5) ≥ (1− c34d(XT0 , YT0)2β0)d(X0, Y0).

An argument similar to those given above yields

P(N ≤ −k1, T1 ≥ T2, N
′ ≥ k1) ≤ c35d(X0, Y0)1+3β0/2.

If {N ≤ −k1, T1 ≥ T2, N
′ ≥ k1} holds then we have d(XT4 , YT4) ≥ (1 −

c36d(XT0 , YT0)2β0)d(X0, Y0).
Finally, Lemmas 3.2 and 3.7 imply that P(N ≥ k1) ≤ c37d(X0, Y0)1+β0/2.

Step 2. Recall that θ denotes the usual Markov shift operator and let

A =
(
{|N | ≤ k1} ∩ {T1 ≤ T2}

)
∪
(
{N < −k1} ∩ {N ′ ≤ k1} ∩ {T1 ≤ T5}

)
,

T7 = T11A + T0 ◦ θT21{|N |≤k1}∩{T1>T2} + T01{N>k1}

+ T0 ◦ θT51{N<−k1}∩{N ′≤k1}∩{T1>T5} + T41{N<−k1}∩{N ′>k1}.

Note that d(XT7 , YT7) ≤ d(X0, Y0).
Let D(a) = {x ∈ D : d(x, ∂D) ≤ a}. We will define a number of stopping

times and events involving a parameter β3 > 1 whose value will be chosen
later. Recall that Zt is the closest point on ∂D to the pair {Xt, Yt}. Let
δ = d(XT7 , YT7) and for k ≥ 0,

Vk = inf{t ≥ T7 : Xt, Yt ∈ D(δβ
k
3 )},

Gk = {|π/2− ∠(n(ZVk), XVk − YVk)| > c1d(XVk , YVk)β0}.

We will define some stopping times V jk and related events Ajk assuming that
Vk > T7 (otherwise V jk ’s and Ajk’s can be defined in an arbitrary way). If
Gck holds, we let V jk = Vk for all j. We will state the definitions in the case
when Gk holds and XVk ∈ ∂D(δβ

k
3 ) \ ∂D. In the case when Gk holds and

YVk ∈ ∂D(δβ
k
3 ) \ ∂D, the roles of Xt and Yt should be interchanged in the

definitions of V jk ’s and Ajk’s. Let CSk be the orthonormal coordinate system
with the origin at the point in ∂D that is closest to XVk , whose first axis is
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tangent to ∂D. We will write Xt = (X1
t , X

2
t ) in this coordinate system. Note

that X1
Vk

= 0 in CSk. Let

V 1
k = inf{t ≥ Vk : Xt ∈ D(δβ

k
3 /2)},

A1
k =

{
V 1
k ≤ inf{t ≥ Vk : Xt ∈ D(2δβ

k
3 )c or |X1

t | = δβ
k
3 }
}
,

V 2
k = inf{t ≥ V 1

k : Xt ∈ D(δβ
k
3 )c},

A2
k =

{
V 2
k ≤ inf{t ≥ V 1

k : Xt ∈ D(δβ
k
3 /4) or |X1

t | = 2δβ
k
3 }
}
.

If δ is small then ∂D ∩ B(XVk , 2d(XVk , YVk) ∨ 2δβ
k
3 ) is almost flat. If events

A1
k and A2

k occur, the process Xt moves towards the boundary of D and then
away from the boundary, without moving too much in the horizontal direction
in CSk. The result is that the distance from YV 2

k
to ∂D is greater than δβ

k
3 /8.

It follows from Lemma 3.7 and its proof that there exists δ0, c38 > 0 de-
pending only on D, such that if δ ≤ δ0 then either (i) ∠(n(x),n(y)) ≥ c38δ

2βk3

for all x = (x1, x2) ∈ ∂D and y = (y1, y2) ∈ ∂D with 3δβ
k
3 ≤ −x1 ≤ 9δβ

k
3

and 3δβ
k
3 ≤ y1 ≤ 9δβ

k
3 , or (ii) ∠(n(x),n(y)) ≥ c38δ

2βk3 for all x, y ∈ ∂D

with 10δβ
k
3 ≤ −x1 ≤ 16δβ

k
3 and 10δβ

k
3 ≤ y1 ≤ 16δβ

k
3 , in CSk. We have to

consider cases (i) and (ii) because there might be a (single) z ∈ ∂D with
−16δβ

k
3 ≤ z1 ≤ 16δβ

k
3 and ν(z) = 0. Depending on the sign of X1

V 2
k
− Y 1

V 2
k

,
one of the following events holds,

∠(XV 2
k
− YV 2

k
,n(x)) ≥ c38δ

2βk3 , for x ∈ ∂D, 3δβ
k
3 ≤ x1 ≤ 9δβ

k
3 ,(3.20)

∠(XV 2
k
− YV 2

k
,n(x)) ≥ c38δ

2βk3 , for x ∈ ∂D, 3δβ
k
3 ≤ −x1 ≤ 9δβ

k
3 ,(3.21)

∠(XV 2
k
− YV 2

k
,n(x)) ≥ c38δ

2βk3 , for x ∈ ∂D, 10δβ
k
3 ≤ x1 ≤ 16δβ

k
3 ,(3.22)

∠(XV 2
k
− YV 2

k
,n(x)) ≥ c38δ

2βk3 , for x ∈ ∂D, 10δβ
k
3 ≤ −x1 ≤ 16δβ

k
3 .(3.23)

We will discuss only cases (3.20) and (3.22). The other cases are symmetric—
we leave them to the reader. In case (3.20) we let

V 3
k = inf{t ≥ V 2

k : X1
t = 6δβ

k
3 },

A3
k =

{
V 3
k ≤ inf{t ≥ V 2

k : X1
t = −3δβ

k
3 or Xt ∈ D(2δβ

k
3 )c ∪D(δβ

k
3 /2)}

}
,

V 4
k = inf{t ≥ V 3

k : Xt ∈ D(δβ
k+1
3 )},

A4
k =

{
V 4
k ≤ inf{t ≥ V 3

k : Xt ∈ D(3δβ
k
3 )c or |X1

t − 6δβ
k
3 | = δβ

k
3 }
}
.
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In case (3.22), we let

V 3
k = inf{t ≥ V 2

k : X1
t = 13δβ

k
3 },

A3
k =

{
V 3
k ≤ inf{t ≥ V 2

k : X1
t = −3δβ

k
3 or Xt ∈ D(2δβ

k
3 )c ∪D(δβ

k
3 /2)}

}
,

V 4
k = inf{t ≥ V 3

k : Xt ∈ D(δβ
k+1
3 )},

A4
k =

{
V 4
k ≤ inf{t ≥ V 3

k : Xt ∈ D(3δβ
k
3 )c or |X1

t − 13δβ
k
3 | = δβ

k
3 }
}
.

In either case, let Ak = A1
k ∩A2

k ∩A3
k ∩A4

k, and similarly in cases (3.21) and
(3.23).

We will assume that δ0 > 0 is so small that δβ
k+1
3 < δβ

k
3 /4 for δ ≤ δ0. We

will later impose an upper bound on β3 which, in turn, will impose an upper
bound on δ0. Note that given this assumption about δ0, if d(X0, Y0) ≤ δ0
and Ak holds then V 4

k ≤ Vk+1, so we can estimate the probability of the
intersection of consecutive Ak’s using the strong Markov property at times
Vk. Let

V 5
k = inf{t > Vk : Xt ∈ ∂D},

Ck =

{
sup

t∈[Vk,V 5
k ]

d(Xt, XVk) ≤ δβ
k−1
3 /2

}
.

By Lemma 3.2,

(3.24) P(Cck | XVk ∈ ∂D(δβ
k
3 ) \ ∂D) ≤ c39δ

βk3 /δβ
k−1
3 = c39δ

βk−1
3 (β3−1).

We will find a lower bound for supt∈[Vk,V 5
k ] d(Xt, Yt) under assumption that

d(XT7 , YT7) ≥ δβk3 and Gk∩Ak∩Ck+1 occurred. First consider the case when
|X1

Vk
−Y 1

Vk
| > δβ

k
3 /8. Then it is easy to see that the distance between Xt and

Yt is reduced between times Vk and V 5
k by at most a constant factor c40, so

d(Xt, Yt) ≥ c41δ
βk3 for t ∈ [Vk, V 5

k ]. Next suppose that |X1
Vk
− Y 1

Vk
| ≤ δβ

k
3 /8.

Then |X1
t − Y 1

t | ≤ δβ
k
3 /4 for t ∈ [Vk, V 5

k ], because the boundary of D is “flat”
in the neighborhood under consideration. After time V 2

k , processes Xt and
Yt move along ∂D without touching it, to the place where the angle between
the line passing through both particles and the normal to the boundary of
the domain is bounded below by c38δ

2βk3 . It follows that for t ∈ [Vk, V 5
k ], the

process Yt is reflecting on the part of the boundary where the angle between
the line passing through both particles and the normal to the boundary of the
domain is bounded below by c38δ

2βk3 . Hence, the distance between Xt and
Yt is reduced between times Vk and V 5

k by at most a factor of c42δ
2βk3 . This

implies that if Gk ∩Ak ∩Ck+1 holds then d(Xt, Yt) ≥ c43δ
3βk3 for t ∈ [Vk, V 5

k ].
Let

Fk =
⋃

k≤m<2k

(Gcm ∪ (Gm ∩Am ∩ Cm+1)) ,
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and note that⋃
k≤m<2k

Am ∩
⋂

k≤m<2k

Cm+1 ⊂
⋃

k≤m<2k

(Gcm ∪ (Gm ∩Am)) ∩
⋂

k≤m<2k

Cm+1

⊂ Fk.

It is elementary to see that the probability of Ak is bounded below by p1 > 0,
not depending on k or β3, assuming δ is small. By the strong Markov property
applied at stopping times Vm, we have P(

⋂
k≤m<2k A

c
m) ≤ (1− p1)k, so

(3.25) P

 ⋃
k≤m<2k

Am

 ≥ 1− (1− p1)k.

By (3.24),

P

 ⋂
k≤m<2k

Cm

 ≥ 1−
∑

k≤m<2k

c39δ
βm−1

3 (β3−1).

The quantity on the right hand side is bounded below by 1 − (1 − p1)k, for
small δ. This and (3.25) imply that P(Fk) ≥ 1− 2(1− p1)k, for small δ. Let

T8 = inf{t > T7 : d(Xt, ∂D) ∧ d(Yt, ∂D) ≤ d(Xt, Yt),

|π/2− ∠(n(Zt), Xt − Yt)| ≤ c1d(Xt, Yt)β0}.

Note that if Gck ∪ (Gk ∩ Ak ∩ Ck+1) occurs then T8 ≤ V 5
k and d(XT8 , YT8) ≥

c43δ
3βk3 . In view of the estimate for the probability of Fk, we see that for

k ≥ 1,
P(d(XT8 , YT8) ≤ c43δ

3β2k
3 ) ≤ 2(1− p1)k.

We choose β3 > 1 so that β2
3(1− p1) < 1.

Step 3. Let c44 be the same as c2 in the statement of Lemma 3.3, and let
c45 be the same as c1 in the statement of that lemma. Let T 1

9 = T8 and for
k ≥ 1,

T k10 = inf{t ≥ T k9 : d(Xt, XTk9
) ∨ d(Yt, YTk9 )

≥ 2(d(XTk9
, ∂D) ∨ d(YTk9 , ∂D))},

T k11 = inf{t ≥ T k9 : Xt ∈ ∂D},

T k12 = inf{t ≥ T k9 : Yt ∈ ∂D},

T k13 = inf{t ≥ T k11 : LXt − LXTk11
≥ c44d(YTk11

, ∂D)}1{Tk11≤Tk12},

T k14 = inf{t ≥ T k12 : LYt − LYTk11
≥ c44d(XTk11

, ∂D)}1{Tk11>T
k
12},

T k15 = inf{t ≥ T k11 : Yt ∈ ∂D}1{Tk11≤Tk12},

T k16 = inf{t ≥ T k11 : Xt ∈ ∂D}1{Tk11>T
k
12},
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T k+1
9 = inf{t ≥ T k9 : d(Xt, XTk9

) ∨ d(Yt, YTk9 )

≥ 2c45(d(XTk9
, ∂D) ∨ d(YTk9 , ∂D))}

∧ (T k13 + T k14) ∧ (T k15 + T k16).

Note that d(XT 1
9
, YT 1

9
) = d(XT8 , YT8) ≤ d(X0, Y0). It is easy to see that if

ε0 > 0 is small and d(X0, Y0) ≤ ε0, we have P(T k11 < T k10) ≥ p2 > 0, where p2

depends only on D. By the strong Markov property applied at T k11 ∧ T k12 and
Lemma 3.3 (i), for some p3 > 0,

P(S1 ≤ T k+1
9 | FTk9 , {S1 > T k9 }) ≥ p3.

Let k2 be such that (1− p3)k2−1 ≤ 1/2. Then

P(S1 ≥ T k2
9 ) ≤ (1− p3)k2−1 ≤ 1/2.

Step 4. Let T17 = T k2
9 and note that

d(XT 1
9
, XT17) ∨ d(YT 1

9
, YT17) ≤ c46(d(XT 1

9
, ∂D) ∨ d(YT 1

9
, ∂D)),

where c46 = (2c45)k2 . For t between T 1
9 and T17, the angle between the

vector of reflection for any of the processes and Xt − Yt is bounded below
by a quantity depending on N ; we will next discuss this dependence and its
consequences. We will examine various cases in the same order as in Step 1
and we will also recall some estimates from Step 1. There will be many cases
to consider—we will label them for future reference.

We start with a general remark that applies to many of the cases discussed
below. If T1 ≤ T2 then the lower bounds for d(XT1∧T2 , YT1∧T2) obtained in
Step 1 apply also to d(XT17 , YT17), for the same reasons, but with constants
that may be different. The same is true when T1 ≤ T5.

(a) Consider the case when N = k and −k1 ≤ k ≤ 0. Then we have
P(N = k) ≤ c47d(X0, Y0)2−k,

P(N = k, T1 ≥ T2) ≤ c48d(XT0 , YT0)2−β0 ,

and (1− c4922k)d(X0, Y0) ≤ d(XT1∧T2 , YT1∧T2) ≤ d(X0, Y0). If T1 ≤ T2 then
d(XT17 , YT17) ≥ (1−c5022k)d(X0, Y0). Note that the distance between Xt and
Yt does not increase before time T8 = T 1

9 . The increase of the local time LXt
between times T 1

9 and T17 is bounded by c51d(X0, Y0), and a similar bound
holds for the increment of LYt , so, according to Lemma 3.8, d(XT17 , YT17) ≤
d(X0, Y0)(1+c52d(X0, Y0)), assuming that d(X0, Y0) is small. Combining the
two estimates, we obtain

(1− c5022k)d(X0, Y0) ≤ d(XT17 , YT17) ≤ d(X0, Y0)(1 + c52d(X0, Y0)).

(b) Next consider the case when N = k, −k1 ≤ k ≤ 0, and T2 < T1.
Then, d(X7, Y7) ≤ d(X0, Y0), d(X17, Y17) ≤ c53d(X8, Y8), and using Step 2,
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for n ≥ 1,

P(N = k, T1 ≥ T2,d(XT17 , YT17) ≤ c54d(X0, Y0)3β2n
3 )

≤ c55d(XT0 , YT0)2−β0(1− p1)n+1.

(c) Assume that 0 < k ≤ k1. Then P(N = k) ≤ c56d(X0, Y0)2−k/2,

P(N = k, T1 ≥ T2) ≤ c57d(XT0 , YT0)2−β02−k/2,

and c582−kd(X0, Y0) ≤ d(XT1∧T2 , YT1∧T2) ≤ d(X0, Y0). If T1 ≤ T2 then
we have d(XT17 , YT17) ≥ c592−kd(X0, Y0). The inequality d(XT17 , YT17) ≤
d(X0, Y0)(1 + c60d(X0, Y0)) holds for the same reason as in case (a). Com-
bining the two estimates, we see that

c582−kd(X0, Y0) ≤ d(XT17 , YT17) ≤ d(X0, Y0)(1 + c60d(X0, Y0)).

(d) Next consider the case when N = k, 0 < k ≤ k1, and T2 < T1. Then,
d(X7, Y7) ≤ d(X0, Y0), d(X17, Y17) ≤ c61d(X8, Y8), and using Step 2, for
n ≥ 1,

P(N = k, T1 ≥ T2,d(XT17 , YT17) ≤ c62(c582−kd(X0, Y0))3β2n
3 )

≤ c63d(XT0 , YT0)2−β02−k/2(1− p1)n+1.

(e) The next case is when N ≤ −k1. We will use the trivial estimate P(N ≤
−k1) ≤ 1. We have d(XT1∧T2 , YT1∧T2) ≥ (1− c64d(XT0 , YT0)2β0)d(X0, Y0). If
T1 ≤ T2 then

(1− c65d(XT0 , YT0)2β0)d(X0, Y0) ≤ d(XT17 , YT17)

≤ d(X0, Y0)(1 + c66d(X0, Y0)).

(f) Recall that N ′ is defined by the following conditions, XT4 ∈ MN ′ if
XT4 ∈ ∂D, and YT4 ∈MN ′ if YT4 ∈ ∂D. Suppose that −k1 ≤ k ≤ 0. Then

P(N ≤ −k1, N
′ = k, T1 ≥ T5) ≤ c67d(XT0 , YT0)2,

and (1 − c6822k)d(X0, Y0) ≤ d(XT1∧T5 , YT1∧T5) ≤ d(X0, Y0). If N ≤ −k1,
N ′ = k, −k1 ≤ k ≤ 0, and T1 ≤ T5 then we have d(XT17 , YT17) ≥ (1 −
c6922k)d(X0, Y0) and

(1− c6922k)d(X0, Y0) ≤ d(XT17 , YT17) ≤ d(X0, Y0)(1 + c70d(X0, Y0)).

(g) If N ≤ −k1, N ′ = k, −k1 ≤ k ≤ 0, and T5 < T1 then, d(X7, Y7) ≤
d(X0, Y0), d(X17, Y17) ≤ c71d(X8, Y8), and using Step 2, for n ≥ 1,

P(N ≤ −k1, N
′ = k, T1 ≥ T5,d(XT17 , YT17) ≤ c72d(X0, Y0)3β2n

3 )

≤ c73d(XT0 , YT0)2(1− p1)n+1.

(h) If 0 < k ≤ k1 then

P(N ≤ −k1, N
′ = k, T1 ≥ T5) ≤ c74d(XT0 , YT0)22−k/2,
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and c752−kd(X0, Y0) ≤ d(XT1∧T5 , YT1∧T5) ≤ d(X0, Y0). If N ≤ −k1, N ′ = k,
0 < k ≤ k1, and T1 ≤ T5 then d(XT17 , YT17) ≥ c762−kd(X0, Y0) and

c762−kd(X0, Y0) ≤ d(XT17 , YT17) ≤ d(X0, Y0)(1 + c77d(X0, Y0)).

(i) If N ≤ −k1, N ′ = k, 0 < k ≤ k1, and T5 < T1 then, d(X7, Y7) ≤
d(X0, Y0), d(X17, Y17) ≤ c78d(X8, Y8), and using Step 2, for n ≥ 1,

P(N ≤ −k1, N
′ = k, T1 ≥ T5,d(XT17 , YT17) ≤ c79(c752−kd(X0, Y0))3β2n

3 )

≤ c80d(XT0 , YT0)22−k/2(1− p1)n+1.

(j) The next case to be considered is when N ≤ −k1 and N ′ ≤ −k1. We
have P(N ′ ≤ −k1 | N ≤ −k1, T1 ≥ T2) ≤ 1,

P(N ≤ −k1, N
′ ≤ −k1, T1 ≥ T5) ≤ c81d(XT0 , YT0)2,

and d(XT1∧T5 , YT1∧T5) ≥ (1 − c82d(XT0 , YT0)2β0)d(X0, Y0). If N ≤ −k1,
N ′ ≤ −k1, and T1 ≤ T5 then d(XT17 , YT17) ≥ (1−c83d(XT0 , YT0)2β0)d(X0, Y0)
and

(1− c83d(XT0 , YT0)2β0)d(X0, Y0) ≤ d(XT17 , YT17)

≤ d(X0, Y0)(1 + c84d(X0, Y0)).

(k) If N ≤ −k1, N ′ ≤ −k1, and T5 < T1 then, d(X7, Y7) ≤ d(X0, Y0),
d(X17, Y17) ≤ c85d(X8, Y8), and using Step 2, for n ≥ 1,

P(N ≤ −k1, N
′ ≤ −k1, T1 ≥ T5,d(XT17 , YT17) ≤ c86d(X0, Y0)3β2n

3 )

≤ c87d(XT0 , YT0)2(1− p1)n+1.

(l) Consider the case when N ′ ≥ k1 and note that P(N ≤ −k1, T1 ≥
T2, N

′ ≥ k1) ≤ c88d(X0, Y0)1+3β0/2. If N ≤ −k1, N ′ ≥ k1, and T1 ≥ T2

then we have d(XT4 , YT4) ≥ (1− c89d(XT0 , YT0)2β0)d(X0, Y0). If, in addition,
T1 ≤ T5 then

d(XT17 , YT17) ≥ (1− c90d(XT0 , YT0)2β0)d(X0, Y0)

and

(1− c90d(XT0 , YT0)2β0)d(X0, Y0) ≤ d(XT17 , YT17)

≤ d(X0, Y0)(1 + c91d(X0, Y0)).

(m) If N ≤ −k1, N ′ ≥ k1, and T5 < T1 then, d(X7, Y7) ≤ d(X0, Y0),
d(X17, Y17) ≤ c92d(X8, Y8), and using Step 2, for n ≥ 1,

P(N ≤ −k1, N
′ ≤ −k1, T1 ≥ T5,d(XT17 , YT17) ≤ c93d(X0, Y0)3β2n

3 )

≤ c94d(XT0 , YT0)2(1− p1)n+1.
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(n) Finally, we consider the case N ≥ k1. We have P(N ≥ k1) ≤
c95d(X0, Y0)1+β0/2. It follows that d(X7, Y7) ≤ d(X0, Y0), d(X17, Y17) ≤
c96d(X8, Y8), and using Step 2, for n ≥ 1,

P(N ≤ −k1, N
′ ≤ −k1, T1 ≥ T5,d(XT17 , YT17) ≤ c97d(X0, Y0)3β2n

3 )

≤ c98d(XT0 , YT0)1+β0/2(1− p1)n+1.

The estimates for values of d(XT17 , YT17) and the corresponding probabili-
ties listed above as (a)–(n) yield the following inequality. Its lines are labeled
according to the case they represent.

E| log d(XT17 , YT17)− log d(X0, Y0)|
(3.26)

≤
∑

−k1≤k≤0

c99d(X0, Y0)2−k(c10022k + c101d(X0, Y0)) (a)

+
∑

−k1≤k≤0

∑
n≥1

c102d(X0, Y0)2−β0(1− p1)n+1

× (c103 + (3β2n
3 − 1)| log d(X0, Y0)|) (b)

+
∑

0≤k≤k1

c104d(X0, Y0)2−k/2(c105k + c106d(X0, Y0)) (c)

+
∑

0≤k≤k1

∑
n≥1

c107d(X0, Y0)2−β02−k/2(1− p1)n+1

× (c108 + c109β
2n
3 + c110kβ

2n
3 + (3β2n

3 − 1)| log d(X0, Y0)|) (d)

+ c111d(X0, Y0)2β0 + c112d(X0, Y0) (e)

+
∑

−k1≤k≤0

c113d(X0, Y0)2(c11422k + c115d(X0, Y0)) (f)

+
∑

−k1≤k≤0

∑
n≥1

c116d(X0, Y0)2(1− p1)n+1

× (c117 + (3β2n
3 − 1)| log d(X0, Y0)|) (g)

+
∑

0≤k≤k1

c118d(X0, Y0)22−k/2(c119k + c120d(X0, Y0)) (h)

+
∑

0≤k≤k1

∑
n≥1

c121d(X0, Y0)22−k/2(1− p1)n+1

× (c122 + c123β
2n
3 + c124kβ

2n
3 + (3β2n

3 − 1)| log d(X0, Y0)|) (i)

+ c125d(X0, Y0)2β0 + c126d(X0, Y0) (j)

+
∑
n≥1

c127d(X0, Y0)2(1− p1)n+1(c128 + (3β2n
3 − 1)| log d(X0, Y0)|) (k)
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+ c129d(X0, Y0)1+3β0/2(c130d(X0, Y0)2β0 + c131d(X0, Y0)) (l)

+
∑
n≥1

c132d(X0, Y0)2(1− p1)n+1(c133 + (3β2n
3 − 1)| log d(X0, Y0)|) (m)

+
∑
n≥1

c134d(X0, Y0)1+β0/2(1− p1)n+1

× (c135 + (3β2n
3 − 1)| log d(X0, Y0)|). (n)

Recall that β0 ∈ (1/2, 1) and β2
3(1− p1) < 1. Given these constraints on the

values of the parameters, it is straightforward to check that (3.26) implies
that

E| log d(XT17 , YT17)− log d(X0, Y0)| ≤ c136d(X0, Y0).

Step 5. It is easy to check that our estimates on the size of d(Xt, Yt)
apply not only at T17 but on the whole interval [0, T17]. Hence,

E sup
t∈[0,T17]

| log d(Xt, Yt)− log d(X0, Y0)| ≤ c136d(X0, Y0).

At several places in our argument we have assumed that d(X0, Y0) is small.
Let ε1 > 0 be such that the last inequality holds if d(X0, Y0) ≤ ε1. Let Q0 = 0,
Q1 = T17∧τ+(ε1) and Qk = Q1◦θQk−1 for k ≥ 2. Note that if d(XQk , YQk) =
ε1 then d(XQn , YQn) = ε1 for all n ≥ k. If Qk = T17 ◦ θQk−1 < τ+(ε1) ◦ θQk−1

then we can apply the argument given in Steps 1-4 to the post-Qk process, by
the strong Markov property, because condition (3.18) is satisfied for t = Qk
in place of t = 0. It follows that if d(X0, Y0) ≤ ε1 then

E sup
t∈[0,Q1]

| log d(Xt, Yt)− log d(X0, Y0)| ≤ c136d(X0, Y0),

and

E( sup
t∈[Qk−1,Q1]

| log d(Xt, Yt)− log d(XQk−1 , YQk−1)| | FQk−1)

≤ c137d(XQk−1 , YQk−1).

The argument given in part (a) of Step 4 shows that, a.s.,

d(XQk , YQk) ≤ d(XQk−1 , YQk−1) + c138d(XQk−1 , YQk−1)2.

If d(XQk−1 , YQk−1) ≤ 2d(X0, Y0) then

c138d(XQk−1 , YQk−1)2 ≤ 4c138d(XQ0 , YQ0)2

and, therefore, d(XQk , YQk) ≤ 2d(X0, Y0) for

k ≤ d(XQ0 , YQ0)/(4c138d(XQ0 , YQ0)2) = 1/(4c138d(X0, Y0)).

This implies that for k ≤ 1/(4c138d(X0, Y0)),

E( sup
t∈[Qk−1,Qk]

| log d(Xt, Yt)− log d(XQk−1 , YQk−1)| | FQk−1) ≤ c139d(X0, Y0),
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and

E( sup
t∈[Qk−1,Qk]

| log d(Xt, Yt)− log d(X0, Y0)| | FQk−1) ≤ c140kd(X0, Y0).

For k ≥ 1/(4c138d(X0, Y0)), we use the bound d(XQk−1 , YQk−1) ≤ ε1 to con-
clude that

E( sup
t∈[Qk−1,Qk]

| log d(Xt, Yt)− log d(XQk−1 , YQk−1)| | FQk−1) ≤ c141,

and

E( sup
t∈[Qk−1,Qk]

| log d(Xt, Yt)− log d(X0, Y0)| | FQk−1) ≤ c142k.

By Step 3, if d(X0, Y0) ≤ ε1 then P(S1 ≥ Qk) ≤ 2−k. Hence

E

| log d(XS1 , YS1)− log d(X0, Y0)| · 1

⋃
k≥0

{S1 ∈ [Qk, Qk+1]}


(3.27)

≤
∑
k≥0

E(1{S1∈[Qk,Qk+1]} sup
t∈[Qk,Qk+1]

| log d(Xt, Yt)− log d(X0, Y0)|)

≤
∑
k≥0

E(1{S1≥Qk} sup
t∈[Qk,Qk+1]

| log d(Xt, Yt)− log d(X0, Y0)|)

≤
∑

k≤1/(4c138d(X0,Y0))

2−kc140kd(X0, Y0) +
∑

k>1/(4c138d(X0,Y0))

2−kc142k

≤ c143d(X0, Y0) + c144d(X0, Y0)−1 exp(−c145d(X0, Y0)−1)

≤ c146d(X0, Y0).

Suppose that d(X0, Y0) ≤ ε2
1 and let

W ′ = min{Qk : d(XQk , YQk) = ε1},
W ′′ = inf{t ≥ 0 : Xt ∈ ∂D,n(Xt) · (Yt −Xt) ≤ 0}

∧ inf{t ≥ 0 : Yt ∈ ∂D,n(Yt) · (Xt − Yt) ≤ 0},

with the convention that inf ∅ = ∞. Note that supt∈[0,W ′′) d(Xt, Yt) ≤
d(X0, Y0). This implies that W ′′ ≤W ′, and if W ′′ <∞ then,

d(XW ′′ , ∂D) ∨ d(YW ′′ , ∂D) ≤ c147d(XW ′′ , YW ′′)2 ≤ c147d(X0, Y0)2.

By Lemma 3.8,

(LXW ′ − LXW ′′) + (LYW ′ − LYW ′′)(3.28)

≥ c148| log d(XW ′′ , YW ′′)− log d(XW ′ , YW ′)|
≥ c148| log d(X0, Y0)− log d(XW ′ , YW ′)| ≥ c149.
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Suppose ε1 is less than ε0 in Lemma 3.3. Then, by Lemma 3.3 (ii) and the
strong Markov property applied at W ′′,

E(LXS1∧W ′ − L
X
W ′′) + E(LYS1∧W ′ − L

Y
W ′′) ≤ c150d(X0, Y0)2.

This and (3.28) imply that,

(3.29) P(W ′ ≤ S1) ≤ c151d(X0, Y0)2.

Let W ′′′ = inf{t ≥ W ′ : d(Xt, Yt) = d(X0, Y0)} and W1 = T1 ◦ θW ′′′ . By
the last formula in Step 2 and the strong Markov property,

(3.30) E| log d(XW1 , YW1)− log d(XW ′′′ , YW ′′′)| ≤ c152.

Let QW1
k = Qk ◦ θW1 . Then, by the strong Markov property at W1, (3.27),

(3.29) and (3.30),

E

(
| log d(XS1 , YS1)− log d(X0, Y0)|

× 1

( ⋃
k≥0

{S1 ∈ [QW1
k , QW1

k+1]}

)
1{W ′≤S1}

)
≤ c153d(X0, Y0)2.

Let Wk = W1 ◦ θWk−1 and Q
Wj

k = Qk ◦ θWj
. By induction we have

P(Wk ≤ S1) ≤ c154d(X0, Y0)2k,

and for j ≥ 1,

E

(
| log d(XS1 , YS1)− log d(X0, Y0)|·(3.31)

× 1

(⋃
k≥0

{S1 ∈ [QWj

k , Q
Wj

k+1]}

)
1{Wj≤S1}

)
≤ c155d(X0, Y0)2j .

Note that d(X0, Y0) is bounded by the diameter of the domain, so

log d(XS1 , YS1)− log d(X0, Y0) ≤ c156 + c157| log d(X0, Y0)|.
This, (3.29) and (3.30) imply that

E(| log d(XS1 , YS1)− log d(X0, Y0)| · 1{W ′≤S1≤W1})(3.32)

≤ c158d(X0, Y0)2| log d(X0, Y0)|.

Let W ′k = W ′ ◦ θWk
. Then, for k ≥ 1,

E(| log d(XS1 , YS1)− log d(X0, Y0)| · 1{W ′k≤S1≤Wk+1})(3.33)

≤ c159d(X0, Y0)2k+2| log d(X0, Y0)|.
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It is straightforward to check that⋃
k

[Qk, Qk+1] ∪
⋃
j

⋃
k

[QWj

k , Q
Wj

k+1] ∪ [W ′,W1] ∪
⋃
k

[W ′k,Wk+1] = [0,∞).

Hence, part (i) of the lemma follows from (3.27), (3.31), (3.32) and (3.33).
(ii) Let A∗ = F c(T0, S1, Z(T0),d(X0, Y0)β1) and assume that β1 ∈ (0, 1).

Recall the estimates for the probabilities that N takes values in [−k1, 0] or
[0, k1] from Step 1 of part (i) of the proof. Analogous estimates, the strong
Markov property applied at time T0, and an argument similar to that given
in Step 3 but with k2 replaced by k3 = min{k : 2−k ≤ d(X0, Y0)β1}, yield for
some β4 > 0,

P(A∗) ≤ c160d(X0, Y0)β4 ,(3.34)

P({−k3 ≤ N ≤ 0} ∩A∗) ≤ c161d(X0, Y0)1+β42k3 ,

P({0 < N ≤ k3} ∩A∗) ≤ c162d(X0, Y0)1+β4 .

We will estimate

E(| log d(XT17 , YT17)− log d(X0, Y0)|1A∗)
by splitting the integral into the sum of integrals over various events, as in
(3.26). An upper bound for the above expectation can be obtained by using
the same estimates as in (3.26), lines (b), (d), and (f)–(n), and replacing
estimates in lines (a), (c) and (e) by the following estimates. By estimates
similar to those in Step 2 (a), for some β5 > 0,

E(| log d(XT17 , YT17)− log d(X0, Y0)|1{−k1≤N≤0,T1≤T2}∩A∗)(3.35)

≤
∑

−k1≤k≤−k3

P(N = k, T1 ≤ T2)(c16322k + c164d(X0, Y0))

+ P({−k3 < N ≤ 0} ∩A∗)(c16522k3 + c166d(X0, Y0))

≤
∑

−k1≤k≤−k3

c167d(X0, Y0)2−k(c16822k + c169d(X0, Y0))

+ c170d(X0, Y0)1+β42k3(c1712−2k3 + c172d(X0, Y0))

≤ c173d(X0, Y0)1+β1 + c174d(X0, Y0)2−β0

+ c175d(X0, Y0)1+β4+β1 + c176d(X0, Y0)2+β4−β1

≤ c177d(X0, Y0)1+β5 .

Similarly, by estimates similar to Step 2 (c), for some β6 > 0,

E(| log d(XT17 , YT17)− log d(X0, Y0)|1{0<N≤k1,T1≤T2}∩A∗)(3.36)

≤
∑

k3≤k≤k1

P(N = k, T1 ≤ T2)(c178k + c179d(X0, Y0))

+ P({0 < N < k3} ∩A∗)(c180k3 + c181d(X0, Y0))
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≤
∑

k3≤k≤k1

c182d(X0, Y0)2−k/2(c183k + c184d(X0, Y0))

+ c185d(X0, Y0)1+β4(c186k3 + c187d(X0, Y0))

≤ c188d(X0, Y0)1+β4/2| log d(X0, Y0)|+ c189d(X0, Y0)2+β4/2

+ c190d(X0, Y0)1+β4 | log d(X0, Y0)|+ c191d(X0, Y0)2+β4

≤ c192d(X0, Y0)1+β6 .

Recall that β0 ∈ (1/2, 1). We apply estimates similar to those in Step 2 (e)
to see that for some β7 > 0,

E(| log d(XT17 , YT17)− log d(X0, Y0)|1{N≤−k1,T1≤T2}∩A∗)(3.37)

≤ P(A∗)(c193d(X0, Y0)2β0 + c194d(X0, Y0))

≤ c195d(X0, Y0)β4(c196d(X0, Y0)2β0 + c197d(X0, Y0))

≤ c198d(X0, Y0)1+β7 .

Note that the sum of lines (b), (d), and (f)–(n) in (3.26) is bounded by
c199d(X0, Y0)β8 for some c199 and β8 > 1. This and (3.35)–(3.37) imply that
for some c200 and β9 > 1,

E(| log d(XT17 , YT17)− log d(X0, Y0)|1A∗) ≤ c200d(X0, Y0)β9 .

As in part (i), we note that in fact we have proved that

E( sup
t∈[0,T17]

| log d(Xt, Yt)− log d(X0, Y0)|1A∗) ≤ c200d(X0, Y0)β9 .

Recall from part (i) that for k ≤ 1/(4c138d(X0, Y0)) we have d(XQk , YQk) ≤
2d(X0, Y0). Let

A∗k = F c(T0 ◦ θQk−1 , S1, Z(T0 ◦ θQk−1),d(XQk−1 , YQk−1)β1).

Then for k ≤ 1/(4c138d(X0, Y0)),

E( sup
t∈[Qk−1,Qk]

| log d(Xt, Yt)− log d(XQk−1 , YQk−1)|1A∗)

≤ E( sup
t∈[Qk−1,Qk]

| log d(Xt, Yt)− log d(XQk−1 , YQk−1)|1A∗k)

≤ c201d(X0, Y0)β9 .
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We have the following estimate analogous to (3.27),

E

(
| log d(XS1 , YS1)− log d(X0, Y0)|

(3.38)

× 1

( ⋃
k≥0

{S1 ∈ [Qk, Qk+1]}

)
1A∗

)
≤
∑
k≥0

E(1{S1∈[Qk,Qk+1]} sup
t∈[Qk,Qk+1]

| log d(Xt, Yt)− log d(X0, Y0)|1A∗)

≤
∑
k≥0

E(1{S1∈[Qk,Qk+1]} sup
t∈[Qk,Qk+1]

| log d(Xt, Yt)− log d(X0, Y0)|1A∗k+1
)

≤
∑
k≥0

E(1{S1≥Qk} sup
t∈[Qk,Qk+1]

| log d(Xt, Yt)− log d(X0, Y0)|1A∗k+1
)

≤
∑

k≤1/(4c138d(X0,Y0))

2−kc201kd(X0, Y0)β9 +
∑

k>1/(4c138d(X0,Y0))

2−kc142k

≤ c202d(X0, Y0)β9 + c203d(X0, Y0)−1 exp(−c204d(X0, Y0)−1)

≤ c205d(X0, Y0)β9 .

The expectation

E
(
| log d(XS1 , YS1)− log d(X0, Y0)|1F c(T0,S1,Z(T0),εβ1 )

)
is bounded by the estimates on the right hand sides of (3.31), (3.32), (3.33)
and (3.38). This easily implies part (ii) of the lemma.

(iii) Let C = {ZT0 ∈ K}. Note that C signifies the event discussed in part
(n) of Step 4 in part (i) of the proof. Recall from that step that P(C) ≤
c206d(X0, Y0)β10 for some β10 > 1. If we add the factor 1C to the left hand
side of (3.26), the right hand side of (3.26) is reduced to line (n), and we
obtain

E (| log d(XT17 , YT17)− log d(X0, Y0)|1C)

≤
∑
n≥1

c207d(X0, Y0)1+β0/2(1− p1)n+1(c208 + (3β2n
3 − 1)| log d(X0, Y0)|)

≤ c209d(X0, Y0)β11 ,

for some β11 > 1. We have the following formula similar to (3.38),
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E

| log d(XS1 , YS1)− log d(X0, Y0)| · 1

⋃
k≥0

{S1 ∈ [Qk, Qk+1]}

1C


(3.39)

≤ E(1{S1≤Q1}| log d(XS1 , YS1)− log d(X0, Y0)|1C)

+
∑
k≥1

E(1{S1∈[Qk,Qk+1]}| log d(XS1 , YS1)− log d(X0, Y0)|1C)

≤ E(1{S1≤Q1}| log d(XS1 , YS1)− log d(X0, Y0)|1C)

+
∑
k≥1

E(1{S1≥Qk} sup
t∈[Qk,Qk+1]

| log d(Xt, Yt)− log d(X0, Y0)|1C)

≤ c209d(X0, Y0)β11 +
∑

k≤1/(4c210d(X0,Y0))

2−kc211kd(X0, Y0)β10+1

+
∑

k>1/(4c210d(X0,Y0))

2−kc212kd(X0, Y0)β10+1

≤ c209d(X0, Y0)β11 + c213d(X0, Y0)β10

+ c214d(X0, Y0)−1+β10 exp(−c215d(X0, Y0)−1)

≤ c216d(X0, Y0)β12 ,

for some β12 > 1. We can bound

E
(
| log d(XS1 , YS1)− log d(X0, Y0)|1{ZT0∈K}

)
by the sum of the right hand sides of (3.31), (3.32), (3.33) and (3.39). Part
(iii) of the lemma follows. �

4. Arguments based on excursion theory

We start this section with a review of the excursion theory. See, e.g., [M]
for the foundations of the theory in the abstract setting and [B] for the special
case of excursions of Brownian motion. Although [B] does not discuss reflected
Brownian motion, all results we need from that book readily apply in the
present context. We will use two different but closely related “exit systems.”
The first one, presented below, is a simple exit system representing excursions
of a single reflected Brownian motion from ∂D. The second exit system,
presented after Lemma 4.2, is more complex as it encodes the information
about two reflected Brownian motions X and Y , and stopping times Sk and
Uk.

An “exit system” for excursions of the reflected Brownian motion X from
∂D is a pair (L∗t ,H

x) consisting of a positive continuous additive functional
L∗t and a family of “excursion laws” {Hx}x∈∂D. We will soon show that
L∗t = LXt . Let ∆ denote the “cemetery” point outside R2 and let C be
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the space of all functions f : [0,∞) → R2 ∪ {∆} which are continuous and
take values in R2 on some interval [0, ζ), and are equal to ∆ on [ζ,∞). For
x ∈ ∂D, the excursion law Hx is a σ-finite (positive) measure on C, such
that the canonical process is strong Markov on (t0,∞), for every t0 > 0,
with the transition probabilities of Brownian motion killed upon hitting ∂D.
Moreover, Hx gives zero mass to paths which do not start from x. We will be
concerned only with the “standard” excursion laws; see Definition 3.2 of [B].
For every x ∈ ∂D there exists a unique standard excursion law Hx in D, up
to a multiplicative constant.

Excursions of X from ∂D will be denoted e or es, i.e., if s < u, Xs, Xu ∈
∂D, and Xt /∈ ∂D for t ∈ (s, u) then es = {es(t) = Xt+s, t ∈ [0, u − s)}
and ζ(es) = u − s. By convention, es(t) = ∆ for t ≥ ζ, so et ≡ ∆ if
inf{s > t : Xs ∈ ∂D} = t. Let Eu = {es : s ≤ u}.

Let σt = inf{s ≥ 0 : L∗s ≥ t} and let I be the set of left endpoints of
all connected components of (0,∞) \ {t ≥ 0 : Xt ∈ ∂D}. The following is a
special case of the exit system formula of [M],

(4.1) E

[∑
t∈I

Vt · f(et)

]
= E

∫ ∞
0

VσsH
X(σs)(f)ds = E

∫ ∞
0

VtH
Xt(f)dL∗t ,

where Vt is a predictable process and f : C → [0,∞) is a universally mea-
surable function which vanishes on excursions et identically equal to ∆. Here
and elsewhere Hx(f) =

∫
C fdH

x.
The normalization of the exit system is somewhat arbitrary; for example,

if (L∗t ,H
x) is an exit system and c ∈ (0,∞) is a constant then (cL∗t , (1/c)H

x)
is also an exit system. One can even make c dependent on x ∈ ∂D. Let Py

D

denote the distribution of Brownian motion starting from y and killed upon
exiting D. Theorem 7.2 of [B] shows how to choose a “canonical” exit system;
that theorem is stated for the usual planar Brownian motion but it is easy to
check that both the statement and the proof apply to the reflected Brownian
motion. According to that result, we can take L∗t to be the continuous addi-
tive functional whose Revuz measure is a constant multiple of the arc length
measure on ∂D and Hx’s to be standard excursion laws normalized so that

(4.2) Hx(A) = lim
δ↓0

1
δ
Px+δn(x)
D (A),

for any event A in a σ-field generated by the process on an interval [t0,∞), for
any t0 > 0. The normalization of the local time is linked to the normalization
of ωx, given before the statement of Theorem 1.2.

The Revuz measure of LX is the measure dx/(2|D|) on ∂D, i.e., if the
initial distribution of X is the uniform probability measure µ in D then
Eµ
∫ 1

0
1A(Xs)dLXs =

∫
A
dx/(2|D|) for any Borel set A ⊂ ∂D; see Example

5.2.2 of [FOT].
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We will show that L∗t = LXt . It is sufficient to verify that the normalization
L∗t = LXt works for the half-space D∗ = {(x1, x2) : x2 > 0}. Let Ka =
{(x1, x2) ∈ R2 : x2 = a} and Ta = inf{t > 0 : Bt ∈ Ka}. Note that
P(0,0)+δn((0,0))(Ta < T∂D∗) = δ/a for δ < a, so H(0,0)(Ta < T∂D∗) = 1/a,
assuming that H(0,0) is normalized as in (4.2). The reflected Brownian motion
Xt in the half-plane D∗ with X0 = (0, 0), and its local time LXt on ∂D∗ may
be constructed from the planar Brownian motion Bt = (B1

t , B
2
t ) starting from

(0, 0) by the following formula,

(Xt, L
X
t ) =

((
B1
t , B

2
t − min

0≤s≤t
B2
s

)
, − min

0≤s≤t
B2
s

)
.

Note that the y-coordinate of an excursion of the reflecting Brownian motion
X from ∂D∗ is just an excursion of 1-dimensional Brownian motion away
from 0. It is well-known that such 1-dimensional excursions form a Poisson
point process. The event that Xt− (0, LXt ) does not hit K1 before time σX1 is
the same as the event that there is no excursion of X from ∂D∗ such that it
starts at a time t with LXt = a, a ∈ [0, 1], and the height of the y-coordinate
of the excursion exceeds 1 + a. If we assume that L∗t = LXt , then according
to the exit system formula (4.1), the probability of this event is equal to the
probability that a Poisson random variable with parameter

∫ 1

0
1

1+ada takes
value 0, i.e., this probability is equal to

(4.3) exp
(
−
∫ 1

0

1
1 + a

da

)
= 1/2.

The event “Xt − (0, LXt ) does not hit K1 before time σX1 ” is the same as the
event “Bt does not hit K1 before hitting K−1,” and, obviously, the last event
has probability 1/2. This agrees with (4.3) so the assumption that L∗t = LXt
is correct. In other words, the normalization of the local time LXt contained
implicitly in (1.1) and the normalization of excursion laws Hx given in (4.2)
match so that (dLXt ,H

x) is an exit system for Xt from ∂D.
Let T∂D∗ = inf{t > 0 : Bt ∈ ∂D∗}. Then by Theorem II.1.16 of [Ba],

P(0,0)+δn((0,0))(B1(T∂D∗) ∈ dy) =
1

δπ(1 + (y/δ)2)
dy.

Hence,

H(0,0)(e(ζ−) ∈ dy) = lim
δ↓0

1
δ
P(0,0)+δn((0,0))(B1(T∂D∗) ∈ dy)

= lim
δ↓0

1
δ
· 1
δπ(1 + (y/δ)2)

dy =
1
πy2

.

This means that ωx(dy) = Hx(e(ζ−) ∈ dy), and it is easy to see that this
result extends to all C2-smooth domains D.

Lemma 4.1. For some c1, c2, c3 ∈ (0,∞) and any x, y ∈ D and a > 0,
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(i) Px,y(LX1 > a) ≤ 2e−c1a, and
(ii) Px,y(LYσX(1) > a) ≤ c2e−c3a.

Proof. (i) Since D is a bounded C2-smooth domain in R2, it is known (cf.
[BH]) that the transition density function p(t, x, y) of the reflecting Brownian
motion in D satisfies the estimate

p(t, x, y) ≤ c4t−1e−c5|x−y|
2/t for t ∈ (0, 1] and x, y ∈ D.

Therefore,

sup
x∈D

Ex[LX1 ] = c6 sup
x∈D

∫
∂D

∫ 1

0

p(s, x, y)dsdy <∞.

Take c7 > 0 so that supx∈D Ex[LX1 ] < 1/(2c7). It follows from Khasminskii’s
inequality that

sup
x∈D

Ex
[
ec7L

X
t0

]
< 2.

This implies that for any a > 0,

Px,y(LX1 > a) < 2e−c7a.

(ii) We have proved in part (i) that supx∈D Exec7L
X
t0 < 2. This, the addi-

tivity of LX and the Markov property of (X,Y ), imply that E exp(c7(LXj −
LXj−1)) < 2. A routine application of the Markov property at times t = 1, 2, . . .
shows that

Ex,y exp(c7LXk ) = Ex,y exp

c7 ∑
1≤j≤k

(LXj − LXj−1)

 ≤ 2k.

It follows that if c8 > 0 is sufficiently small, then for integer k of the form
k = c8a,

Px,y(LXk ≥ a) = Px,y
(
exp(c7LXk ) ≥ exp(c7a)

)
≤ 2k exp(−c7a) = 2c8a exp(−c7a) ≤ exp(−c7a/2)

Since y 7→ Py(LY1 > 1) =
∫
D
p( 1

2 , y, z)P
z(LY1/2 > 1)dz is continuous on D,

there is p1 > 0 such that infx∈D Py(LY1 > 1) ≥ p1. Hence

Px,y(LYc8a ≤ 1) = Px,y(LYk ≤ 1) ≤ (1− p1)k = (1− p1)c8a = e−c9a.

For a of the form a = k/c8, where k ≥ 1 is an integer, we obtain,

Px,y(LXσY (1) > a) ≤ Px,y(LXc8a > a) + Px,y(σY (1) ≥ c8a)

≤ Px,y(LXc8a > a) + Px,y(LYc8a ≤ 1)

≤ e−c7a/2 + e−c9a ≤ c10e
−c11a.
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It is elementary to see that by adjusting the values of the constants c10 and
c11 we can make the formula valid for all a ≥ 0. By interchanging the roles
of Xt and Yt, we obtain part (ii) of the lemma. �

Recall that |D| and |∂D| denote the area of D and the length of its bound-
ary.

Lemma 4.2. Let ϕ ∈ C(∂D). For any δ, p > 0 there exists t0 < ∞ such
that for every x ∈ D, we have

(i) Px

(
sup
t≥t0

∣∣∣∣1t
∫ t

0

ϕ(Xs)dLXs −
1

2|D|

∫
∂D

ϕ(y)dy
∣∣∣∣ ≥ δ) < p.

(ii) In particular,

Px

(
sup
t≥t0

∣∣∣∣LXtt − |∂D|2|D|

∣∣∣∣ ≥ δ) < p.

Proof. Let µ be the uniform probability distribution on D. By Lemma
4.1 (i), supx∈D ExLX1 < ∞. Since ϕ(x) is bounded, we can conclude that
supx∈D Ex|

∫ 1

0
ϕ(Xs)dLXs | < ∞ and Eµ|

∫ 1

0
ϕ(Xs)dLXs | < ∞. Since µ is the

stationary distribution for X, the ergodic theorem shows that Pµ-a.s.,

lim
t→∞

1
t

∫ t

0

ϕ(Xs)dLXs = lim
k→∞

(1/k)
∑

1≤n≤k

∫ n

n−1

ϕ(Xs)dLXs

= Eµ

∫ 1

0

ϕ(Xs)dLXs .

The Revuz measure of LX is dx/(2|D|) on ∂D and ϕ(x) is a continuous
function, so it is easy to see that

Eµ

∫ 1

0

ϕ(Xs)dLXs =
1

2|D|

∫
∂D

ϕ(y)dy.

Therefore, Pµ-a.s.,

lim
t→∞

1
t

∫ t

0

ϕ(Xs)dLXs =
1

2|D|

∫
∂D

ϕ(y)dy,

and

(4.4) Pµ

(
sup
t≥t0

∣∣∣∣1t
∫ t

0

ϕ(Xs)dLXs −
1

2|D|

∫
∂D

ϕ(y)dy
∣∣∣∣ ≥ δ/6) < p/6,

for any given δ, p > 0 and some t0 <∞.
The arguments on p. 6 of [BB] or Theorem 2.4 in [BH] show that there are

constants c1, c2 > 0 such that

(4.5) sup
x,y∈D

∣∣pt(x, y)− 1
|D|
∣∣ ≤ c1 e−c2t for t ≥ 1.
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Let t1 < ∞ be so large that the right hand side of (4.5) is p/6. Then the
Markov property applied at t1, (4.4) and (4.5) imply that for x ∈ D,

Px

(
sup
t≥t0

∣∣∣∣1t
∫ t1+t

t1

ϕ(Xs)dLXs −
1

2|D|

∫
∂D

ϕ(y)dy
∣∣∣∣ ≥ δ/6)

(4.6)

≤ Pµ

(
sup
t≥t0

∣∣∣∣1t
∫ t1+t

t1

ϕ(Xs)dLXs −
1

2|D|

∫
∂D

ϕ(y)dy
∣∣∣∣ ≥ δ/6)+

p

6
<
p

3
.

We can increase t0, if necessary, so that for all x ∈ D,
(4.7)

Px

(
sup
t≥t0

∣∣∣∣1t
∫ t1+t

t1

ϕ(Xs)dLXs −
1

t1 + t

∫ t1+t

t1

ϕ(Xs)dLXs

∣∣∣∣ ≥ δ/3) ≤ p/3,
and

(4.8) Px

(
sup
t≥t0

∣∣∣∣ 1
t1 + t

∫ t1

0

ϕ(Xs)dLXs

∣∣∣∣ ≥ δ/3) < p/3.

Part (i) of the lemma follows from (4.6)–(4.8) and the triangle inequality. Part
(ii) follows from (i) by taking ϕ = 1. �

We will have to analyze excursions of X from ∂D containing intervals
(Sk, Uk). The exit system (LXt ,H

x) is inadequate for this purpose so we will
now introduce a “richer” version of this exit system, capable of keeping track
of some extra information.

Let `(t) = max{Sk : k ≥ 0, Sk ∈ [0, t]}. Consider the strong Markov
process (Xt, Yt, X`(t), Y`(t)) and let es(t) = (Xs+t, Ys+t, X`(s+t), Y`(s+t)) for

t ≥ 0 and s such that Xs ∈ ∂D and ζ(es)
df= inf{t > s : Xt ∈ ∂D} − s > 0.

For all other s, we let es ≡ ∆ (a cemetery state added to R8). Note a technical
difference with the previous version of the exit system—here, the excursions
are not killed at ζ(es) but are continued after that time; this version of the
exit system is discussed in Maisonneuve [M].

We will describe an exit system (LXt ,H
(x1,y1,x2,y2)) for the process

(Xt, Yt, X`(t), Y`(t)) from the set ∂D×D3
. For any (x1, y1, x2, y2) ∈ ∂D×D3

,
H(x1,y1,x2,y2) is a σ-finite measure defined as follows. The first component
of (Xt, Yt, X`(t), Y`(t)) under H(x1,y1,x2,y2) has the same distribution on [0, ζ)
as an excursion under Hx1 , defined previously. Under H(x1,y1,x2,y2), the pro-
cess Xt continues after ζ as a reflected Brownian motion in D, starting from
Xζ−, but otherwise independent of {Xt, t ∈ [0, ζ)}. The other components of
(Xt, Yt, X`(t), Y`(t)) are determined by the first component as follows. First,
we find B, the Brownian motion driving X, using the uniqueness of the solu-
tion to (1.1). Then we use B and (1.2) to define a reflected Brownian motion
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Y in D staring from y1. We set Se1 = Ue0 = 0 and for k ≥ 1,

Ue1 = inf{t > 0 : d(Xt, x2) ∨ d(Yt, y2) ≥ a1d(x2, y2)},
Sek = inf{t > Uek−1 : d(Xt, ∂D) ∨ d(Yt, ∂D) ≤ a2d(Xt, Yt)2},
Uek = inf{t > Sek : d(Xt, XSek

) ∨ d(Yt, YSek) ≥ a1d(XSek
, YSek)}.

Let `e(t) = max{Sek : k ≥ 1, Sek ∈ [0, t]}. The last two components of the
process under H(x1,y1,x2,y2) are defined to be X`e(t) and Y`e(t) if `e(t) > 0,
and x2 and y2, if `e(t) = 0.

Note that the exit system for (Xt, Yt, X`(t), Y`(t)) from ∂D ×D3
is equiva-

lent, in a sense, to the exit system of Xt from ∂D because D
3

is the state space
for (Yt, X`(t), Y`(t)). Moreover, since X and Y are strong solutions to the sto-
chastic Skorokhod equations (1.1)–(1.2) driven by the same Brownian motion,
it follows that (Yt, X`(t), Y`(t)) is a deterministic function of {Xs, 0 ≤ s ≤ t}.
We included (Yt, X`(t), Y`(t)) in the process so that we can keep track of the
stopping times Sk and Tk inside the excursions of Xt away from ∂D.

In the present context, the exit system formula of [M] changes its form
from that in (4.1) to

E
∑
t≥0

Vt · f(et) = E
∫ ∞

0

VσXs H
(X(σXs ),Y (σXs ),X(`(σXs )),Y (`(σXs )))(f)ds(4.9)

= E
∫ ∞

0

VtH
(X(t),Y (t),X(`(t)),Y (`(t)))(f)dLXt ,

where Vt is a predictable process and f is a non-negative universally measur-
able function which vanishes on excursions identically equal to ∆, and those
with ζ(e) = 0.

Let
T e = inf{t ≥ Ue1 : Xt ∈ ∂D or Yt ∈ ∂D},

and recall that ZT e = XT e if XT e ∈ ∂D and ZT e = YT e otherwise. Recall
also that F (s, u, x, a) denotes {sups≤t≤u d(Xt, x) ≤ a}. Let TX(A) = inf{t ≥
0 : Xt ∈ A}.

We assume that the constant a1 in the next lemma satisfies Lemma 3.6.

Lemma 4.3.

(i) For any c0 > 0 there exist c1 < ∞ and ε0 > 0 such that if x1 ∈
∂D, y1, x2, y2 ∈ D, d(x1, x2) ∨ d(y1, y2) < a1d(x2, y2), d(x1, y1) ≥
c0d(x2, y2), d(x1, y1) ≤ ε ≤ ε0, and |π/2 − ∠(y1 − x1,n(x1))| ≤
c−1
0 d(x1, y1), then

H(x1,y1,x2,y2)
(
| log ρUe1 − log ρSe2 | | U

e
1 ≤ ζ

)
≤ c1ε.

(ii) For any c0, β1 > 0, there exist c1 < ∞ and ε0 > 0 such that if x1 ∈
∂D, y1, x2, y2 ∈ D, d(x1, x2) ∨ d(y1, y2) < a1d(x2, y2), d(x1, y1) ≥
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c0d(x2, y2), d(x1, y1) ≤ ε ≤ ε0, k ≥ 1, and |π/2−∠(y1−x1,n(x1))| ≤
c−1
0 d(x1, y1), then

H(x1,y1,x2,y2)
(
| log ρUek − log ρSek+1

|1{Uek≤τ+(εβ1 )∧ζ} | Ue1 ≤ ζ
)
≤ c1ε1+(k−1)β1 .

(iii) For any c0 > 0 there exist β1 > 0, β2 > 1, and ε0 > 0 such that if x1 ∈
∂D, y1, x2, y2 ∈ D, d(x1, x2) ∨ d(y1, y2) < a1d(x2, y2), d(x1, y1) ≥
c0d(x2, y2), d(x1, y1) ≤ ε ≤ ε0, and |π/2 − ∠(y1 − x1,n(x1))| ≤
c−1
0 d(x1, y1), then

H(x1,y1,x2,y2)
(
| log ρUe1 − log ρSe2 |1{T e≤Se2}1F c(T e,Se2 ,ZTe ,εβ1 ) | Ue1 ≤ ζ

)
≤ εβ2 .

(iv) For any c0 > 0 there exist β1 > 0, β2 > 1, and ε0 > 0 such that if x1 ∈
∂D, y1, x2, y2 ∈ D, d(x1, x2) ∨ d(y1, y2) < a1d(x2, y2), d(x1, y1) ≥
c0d(x2, y2), d(x1, y1) ≤ ε ≤ ε0, and |π/2 − ∠(y1 − x1,n(x1))| ≤
c−1
0 d(x1, y1), then

H(x1,y1,x2,y2)
(
| log ρUe1 − log ρSe2 |1{Se2≤T e}1F c(Se2 ,T e,ZTe ,εβ1 ) | Ue1 ≤ ζ

)
≤ εβ2 .

(v) For any c0, β0 > 0 there exist β1 > 0, β2 > 1 and ε0 > 0 such
that if x1 ∈ ∂D, y1, x2, y2 ∈ D, d(x1, x2) ∨ d(y1, y2) < a1d(x2, y2),
d(x1, y1) ≥ c0d(x2, y2), d(x1, y1) ≤ ε ≤ ε0, and |π/2 − ∠(y1 −
x1,n(x1))| ≤ c−1

0 d(x1, y1), then

H(x1,y1,x2,y2)

(
| log ρUe1 − log ρSe2 |1{Se2≤τ+(εβ0 )}

× 1F c(T e,TX(∂D),ZTe ,εβ1 ) | Ue1 ≤ ζ
)
≤ εβ2 .

(vi) Let K = K(x1, ε, β1) = {x ∈ ∂D : tanα(x1, x) ≥ ε−β1}. For any
c0 > 0 there exist c1 <∞, β1 > 0, β2 > 1 and ε0 > 0 such that if x1 ∈
∂D, y1, x2, y2 ∈ D, d(x1, x2) ∨ d(y1, y2) < a1d(x2, y2), d(x1, y1) ≥
c0d(x2, y2), d(x1, y1) ≤ ε ≤ ε0, and |π/2 − ∠(y1 − x1,n(x1))| ≤
c−1
0 d(x1, y1), then

H(x1,y1,x2,y2)
(
| log ρUe1 − log ρSe2 |1{ZTe∈K} | U

e
1 ≤ ζ

)
≤ c1εβ2 .

(vii) Let K be defined as in (vi). For any c0 > 0 there exist β0, β1 > 0,
β2 > 1 and ε0 > 0 such that if x1 ∈ ∂D, y1, x2, y2 ∈ D, d(x1, x2) ∨
d(y1, y2) < a1d(x2, y2), d(x1, y1) ≥ c0d(x2, y2), d(x1, y1) ≤ ε ≤ ε0,
and |π/2− ∠(y1 − x1,n(x1))| ≤ c−1

0 d(x1, y1), then

H(x1,y1,x2,y2)

(
| log ρUe1 − log ρSe2 |1{Se2≤τ+(εβ0 )}

× 1{X(TX(∂D))∈K} | Ue1 ≤ ζ
)
≤ εβ2 .
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Proof. Parts (i), (iii) and (vi) of the lemma follow from the strong Markov
property applied at Ue1 and Lemma 3.9 (i), (ii) and (iii). Part (vii) follows
from (v) (proved below) and (vi). It remains to prove (ii), (iv) and (v).

(ii) For k ≥ 2, if d(XSek−1
, YSek−1

) ≤ εβ1 then both processes are within
distance c2ε

2β1 of ∂D at time Sek−1. Brownian motion starting at a point
z at most c2ε2β1 units away from ∂D will hit ∂D before hitting ∂B(z, εβ1)
with probability no less than 1− c3εβ1 . This and the strong Markov property
applied at Sej−1, j = 2, 3, . . . , k, imply that

H(x1,y1,x2,y2)
(
Uek ≤ τ+(εβ1) ∧ ζ | Ue1 ≤ ζ

)
≤ c4ε(k−1)β1 .

We combine this with part (i), using the strong Markov property at time Uek ,
to see that (ii) holds.

(iv) If Se2 ≤ T e then d(XSe2
, YSe2 ) ≤ ε and d(XS2

e
, ∂D) ≤ c1ε

2. Suppose
that β1 ∈ (0, 2). Brownian motion starting at a point z at most c1ε2 units
away from ∂D will hit ∂D before hitting ∂B(z, εβ1) with probability not less
than 1− c2ε2−β1 . By the strong Markov property applied at Se2 ,

H(x1,y1,x2,y2)
(
F c(Se2 , TX(∂D), XSe2

, εβ1) | Ue1 ≤ ζ, Se2 ≤ T e,FSe2
)
≤ c3ε2−β1 .

This, the strong Markov property applied at Se2 and part (i) of the lemma
imply part (iv), for a suitable choice of β1 and β2.

(v) We have for some β2 > 1,

H(x1,y1,x2,y2)

(
| log ρUe1 − log ρSe2 |1{τ+(εβ0 )≥Se2}(4.10)

× 1F c(T e,TX(∂D),ZTe ,εβ1 ) | Ue1 ≤ ζ
)

≤ H(x1,y1,x2,y2)
(
| log ρUe1 − log ρSe2 |1F c(T e,Se2 ,ZTe ,εβ1/2) | Ue1 ≤ ζ

)
+H(x1,y1,x2,y2)

(
| log ρUe1 − log ρSe2 |1{Se2≤τ+(εβ0 )∧TX(∂D)}

× 1F (T e,Se2 ,ZTe ,ε
β1/2)

× 1F c(Se2 ,TX(∂D),X(Se2),εβ1/2) | Ue1 ≤ ζ
)

≤ εβ2 +H(x1,y1,x2,y2)
(
| log ρUe1 − log ρSe2 |1{Se2≤τ+(εβ0 )∧TX(∂D)}

× 1F c(Se2 ,TX(∂D),X(Se2),εβ1/2) | Ue1 ≤ ζ
)
,

where the last inequality follows from (iii). It will suffice to bound the second
term on the right hand side. If d(XSe2

, YSe2 ) ≤ εβ0 , then d(XS2
e
, ∂D) ≤ c1ε2β0 .

Choose β1 > 0 so that 2β0 − β1 > 0. Brownian motion starting at a point
z at most c1ε2β0 units away from ∂D will hit ∂D before hitting ∂B(z, εβ1/2)
with probability not less than 1− c2ε2β0−β1 . By the strong Markov property
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applied at Se2 ,

H(x1,y1,x2,y2)
(
F c(Se2 , TX(∂D), XSe2

, εβ1/2) | Ue1 ≤ ζ, Se2 ≤ τ+(εβ0),FSe2
)

≤ c3ε2β0−β1 .

This, the strong Markov property applied at Se2 and part (i) of the lemma
imply that the second term on the right hand side of (4.10) is bounded by
c4ε

1+2β0−β1 . This completes the proof of the lemma. �

Lemma 4.4.

(i) There exists c1 <∞ such that for x1 ∈ ∂D, y1, x2, y2 ∈ D,

H(x1,y1,x2,y2)| log cosα(x1, Xζ−)| ≤ c1.

(ii) Let K = K(x1, ε, β1) = {x ∈ ∂D : tanα(x1, x) ≥ ε−β1}. For any
c0 > 0 there exist β1 > 0, β2 > 1 and ε0 > 0 such that if x1 ∈
∂D, y1, x2, y2 ∈ D, d(x1, x2) ∨ d(y1, y2) < a1d(x2, y2), d(x1, y1) ≥
c0d(x2, y2), d(x1, y1) ≤ ε ≤ ε0, and |π/2 − ∠(y1 − x1,n(x1))| ≤
c−1
0 d(x1, y1), then

H(x1,y1,x2,y2)
(
| log cosα(x1, Xζ−)|1{X(TX(∂D))∈K} | Ue1 ≤ ζ

)
≤ εβ2 .

(iii) For any c0 > 0 there exist β1 > 0, β2 > 1 and ε0 > 0 such that if x1 ∈
∂D, y1, x2, y2 ∈ D, d(x1, x2) ∨ d(y1, y2) < a1d(x2, y2), d(x1, y1) ≥
c0d(x2, y2), d(x1, y1) ≤ ε ≤ ε0, and |π/2 − ∠(y1 − x1,n(x1))| ≤
c−1
0 d(x1, y1), then

H(x1,y1,x2,y2)
(
| log cosα(x1, Xζ−)|1{T e≤Se2}1F c(T e,Se2 ,ZTe ,εβ1 ) | Ue1 ≤ ζ

)
≤ εβ2 .

(iv) For any c0 > 0 there exist β1 > 0, β2 > 1 and ε0 > 0 such that if x1 ∈
∂D, y1, x2, y2 ∈ D, d(x1, x2) ∨ d(y1, y2) < a1d(x2, y2), d(x1, y1) ≥
c0d(x2, y2), d(x1, y1) ≤ ε ≤ ε0, and |π/2 − ∠(y1 − x1,n(x1))| ≤
c−1
0 d(x1, y1), then

H(x1,y1,x2,y2)
(
| log cosα(x1, Xζ−)|1{Se2≤T e}1F c(Se2 ,T e,ZTe ,εβ1 ) | Ue1 ≤ ζ

)
≤ εβ2 .

(v) For any c0 > 0 there exist β1 > 0, β2 > 1 and ε0 > 0 such that if x1 ∈
∂D, y1, x2, y2 ∈ D, d(x1, x2) ∨ d(y1, y2) < a1d(x2, y2), d(x1, y1) ≥
c0d(x2, y2), d(x1, y1) ≤ ε ≤ ε0, and |π/2 − ∠(y1 − x1,n(x1))| ≤
c−1
0 d(x1, y1), then

H(x1,y1,x2,y2)
(
| log cosα(x1, Xζ−)|1F c(T e,TX(∂D),ZTe ,εβ1 ) | Ue1 ≤ ζ

)
≤ εβ2 .
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Proof. (i) Recall from Section 1 that we have assumed that the boundary
of D is C4-smooth and that there exist at most a finite number of points
x1, x2, . . . , xn such that ν(xk) = 0, k = 1, . . . , n, and the third derivative
of the function representing the boundary does not vanish at any xk. This
implies that there exist δ0, c2, c3 > 0 such that if x ∈ ∂D and d(x, xk) ≤ δ0
then |ν(x)| ≥ c2d(x, xk); moreover, if x ∈ ∂D and d(x, xk) ≥ δ0 for every
k = 1, . . . , n, then |ν(x)| ≥ c3. We make δ0 smaller, if necessary, so that we
can assume that d(xj , xk) ≥ 4δ0 for all j 6= k. It is elementary to see that
there exists c4 > 0 with the following properties (a)–(c).

(a) For every x ∈ ∂D such that d(x, xk) ≥ 2δ0 for k = 1, . . . , n, and every
y ∈ ∂D with d(x, y) ≤ δ0, we have |α(x, y)| ≥ c4d(x, y).

(b) If x ∈ ∂D and d(x, xk) < 2δ0 for some k, y ∈ ∂D, d(x, y) ≤ δ0, and y
lies on the same side of xk as x then |α(x, y)| ≥ c4d(x, y)d(x, xk).

(c) Suppose that x = xk for some k. If y ∈ ∂D and d(x, y) ≤ δ0 then
|α(x, y)| ≥ c4d(x, y)2.

Make δ0 smaller, if necessary, so that for any x, y ∈ ∂D with |α(x, y)| ≥ π/4,
we have d(x, y) ≥ 4δ0.

It is standard to prove, using the same methods as in the proof of Lemma
3.2, that for some c5, c6 <∞ and all x ∈ ∂D, we have ωx(dy) ≤ c5d(x, y)−2dy
if d(x, y) ≤ δ0, and ωx(dy) ≤ c6dy if d(x, y) ≥ δ0.

Consider any z ∈ ∂D and let z1, z2, . . . , zm be all points in ∂D such that
α(z, zk) = π/2. The number m of such points is bounded by a constant
m0 depending on D but not on z. Let Γ1 be the set of points on the same
connected component of ∂D as z, within the distance δ0 from z. The family of
points {z1, . . . , zm, x1, . . . , xn} divides ∂D\Γ1 into Jordan arcs Γk, 2 ≤ k ≤ n0,
with n0 ≤ n + m. For an arc Γk, let y−k and y+

k denote its endpoints, and
let Γ−k = {x ∈ Γk : d(y−k , x) ≤ δ0}, Γ+

k = {x ∈ Γk : d(y+
k , x) ≤ δ0}, and

Γ0
k = Γk \ (Γ−k ∪ Γ+

k ).
Since

H(z,y1,x2,y2)| log cosα(z,Xζ−)| = Hz| log cosα(z,Xζ−)|

=
∫
∂D

| log cosα(z, y)|ωz(dy),

we will estimate the integral on the right hand side. We will split the integral
into the sum of integrals over Γk’s. Let λ denote the arc length measure on
∂D, i.e., λ(dx) is an alternative and equivalent notation for dx.

Since ν(x) is bounded over ∂D, for x ∈ Γ1 we have α(x, z) ≤ c7d(x, z)
and so | log cosα(x, z)| ≤ c8d(x, z)2. Recall that ωx(dy) ≤ c5d(x, y)−2dy if
d(x, y) ≤ δ0. This implies that

(4.11)
∫

Γ1

| log cosα(z, y)|ωz(dy) ≤ 2
∫ δ0

0

c8u
2c5u

−2du ≤ c9δ0.
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Consider an arc Γk with k ≥ 2. First assume that the distance between y−k
and y+

k is greater than δ0. Since the curvature ν(x) has the constant sign on
Γk, the function x→ α(z, x) takes its maximum at one or both endpoints of
Γk. Recall that, by convention, α(z, x) ≤ π/2. This and (a)–(c) show that

λ({x ∈ Γ−k : π/2− α(x, y−k ) ∈ [2−j , 2−j−1]}) ≤ c102−j/2.

We have ωz(dx) ≤ c6dx for x ∈ Γk so

(4.12)
∫

Γ−k

| log cosα(z, y)|ωz(dy) ≤ c11

∑
j≥1

j2−j/2 = c12,

and similarly ∫
Γ+
k

| log cosα(z, y)|ωz(dy) ≤ c12.

By (a), for x ∈ Γ0
k, π/2− α(x, z) ≥ c13 > 0, where c13 does not depend on z

or k. Hence, ∫
Γ0
k

| log cosα(z, y)|ωz(dy) ≤ c14|∂D| = c15.

Next suppose that the distance between y−k and y+
k is less than δ0. Then

one of the endpoints of Γk, say y−k , is a point xj1 , and y+
k is a point zj2 . By

Lemma 3.7,

λ({x ∈ Γk : π/2− α(x, y−k ) ∈ [2−j , 2−j−1]}) ≤ c162−j/2,

for 2−j ≤ c17d(y−k , y
+
k ). Hence,

(4.13)
∫

Γk

| log cosα(z, y)|ωz(dy) ≤ c18

∑
2−j≤c17d(y−k ,y

+
k )

j2−j/2 ≤ c19.

Since the number of arcs n0 is bounded by a constant independent of z, we
obtain

H(z,y1,x2,y2)| log cosα(z,Xζ−)| ≤
∑
k

∫
Γk

| log cosα(z, y)|ωz(dy) ≤ c20.

(ii) It is not hard to prove, using (4.2), that H(x1,y1,x2,y2)(Ue1 ≤ ζ) ≥ c2ε−1,
so part (i) implies that

(4.14) H(x1,y1,x2,y2) (| log cosα(x1, Xζ−)| | Ue1 ≤ ζ) ≤ c3ε.

The proof of part (ii) can be finished by applying the same ideas as in part
(i). The only modification that is needed is to restrict the range of j in (4.12)
to 2−j ≤ εβ1 , and similarly for (4.13).
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(iii) We have

H(x1,y1,x2,y2)

(
| log cosα(x1, Xζ−)|1{T e≤Se2}(4.15)

× 1F c(T e,Se2 ,ZTe ,εβ1 ) | Ue1 ≤ ζ
)

≤ H(x1,y1,x2,y2)

(
| log cosα(x1, Xζ−)|1F c(T e,Se2 ,XTe ,εβ1 )

× 1{T e≤Se2 ,XTe=ZTe} | U
e
1 ≤ ζ

)
+H(x1,y1,x2,y2)

(
| log cosα(x1, Xζ−)|1F c(TX(∂D),Se2 ,ZTe ,ε

β1/2)

× 1{YTe=ZTe ,TX(∂D)≤Se2} | U
e
1 ≤ ζ

)
+H(x1,y1,x2,y2)

(
| log cosα(x1, Xζ−)|1F c(T e,TX(∂D),YTe ,εβ1/2)

× 1{YTe=ZTe ,T e≤TX(∂D)} | Ue1 ≤ ζ
)
.

The first term on the right hand side is bounded by c1εβ3 for some β3 > 1 by
(4.14), the strong Markov property applied at Te(∂D), and (3.34). A similar
bound holds for the second term, by the strong Markov property applied at
TX(∂D). To estimate the last term, we fix a β4 ∈ (1, 1 + β1) and note that,

H(x1,y1,x2,y2)
(
| log cosα(x1, Xζ−)|1F c(T e,TX(∂D),YTe ,εβ1/2)

(4.16)

× 1{YTe=ZTe ,T e≤TX(∂D)} | Ue1 ≤ ζ
)

≤ H(x1,y1,x2,y2)
(
| log cosα(x1, Xζ−)|1{d(TX(∂D),x1)≤2εβ1} | Ue1 ≤ ζ

)
+H(x1,y1,x2,y2)

(
| log cosα(x1, Xζ−)|1{d(XUe1

,∂D)≤εβ4} | Ue1 ≤ ζ
)

+H(x1,y1,x2,y2)
(
| log cosα(x1, Xζ−)|1{d(TX(∂D),x1)>2εβ1 ,d(XUe1

,∂D)>εβ4}

× 1F c(T e,TX(∂D),YTe ,εβ1/2)1{YTe=ZTe ,T e≤TX(∂D)} | Ue1 ≤ ζ
)
.

To bound the first term on the right hand side we use the same idea that
underlies (4.11). The conditioning on {Ue1 ≤ ζ} transforms the excursion law
H into a probability distribution. The event in question concerns Brownian
motion starting at X(Ue1 ) and killed upon hitting the boundary. The starting
point, X(Ue1 ), is at most c2ε units away from x1. For points y ∈ ∂D with
d(x1, y) ∈ (2−k, 2−k+1], we have | log cosα(x1, y)| ≤ c32−2k, and the proba-
bility of hitting the set of such points is bounded by c4ε2k, by Lemma 3.2.
Let k1 be the smallest integer such that 2−k1 ≤ ε, and let k2 be the smallest
integer such that 2−k2 ≤ 2εβ1 . Then the first term on the right hand side of
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(4.16) is bounded by
k2∑
k=k1

c32−2kc4ε2k ≤ c5ε2.

We turn to the second term on the right hand side of (4.16). It is rather
easy to show, using (4.14) and the same ideas as in part (i) of the proof, that
for any r > 0,

H(x1,y1,x2,y2)(| log cosα(x1, Xζ−)| | Ue1 ≤ ζ,d(XUe1
, ∂D) = r) ≤ c6ε.

It is straightforward to see that

H(x1,y1,x2,y2)(d(XUe1
, ∂D) ≤ r | Ue1 ≤ ζ) ≤ c7rε−1.

One can use these estimates to find a bound of the form c8ε
β5 with β5 > 1,

for the second term on the right hand side of (4.16).
To bound the third term on the right hand side of (4.16), we condition

the process {Xt, t ∈ (Ue1 , ζ)} under H(x1,y1,x2,y2) on its endpoints XUe1
and

XTX(∂D). The result is an h-process R, in the sense of Doob, starting at XUe1
and killed at XTX(∂D). Consider random sets

K1 = {x ∈ D : d(x, ∂D) ≤ c9ε1+β1 ,d(x, x1) ≤ εβ1/2,

d(x,XTX(∂D)) ≥ εβ1/2},

K2 = {x ∈ D : d(x, ∂D) ≤ ε,d(x, x1) ≥ εβ1/2,d(x,XTX(∂D)) ≥ εβ1/2},
for some c9. Suppose that the events in the indicator functions in the last
term on the right hand side of (4.16) hold. If d(x1, ZT e) ≤ εβ1/2 then the
process R must hit K1, otherwise it must hit K2. The following two estimates
follow from standard properties of harmonic measure. If d(XUe1

, ∂D) > εβ4

then the probability that the h-process R hits K1 is bounded by c10ε
1+β1−β4 ,

and the probability that it hits K2 is bounded by c11ε
1−β1 . The conditioning

on {Ue1 ≤ ζ} contributes a factor of c12ε (see (4.14)), so we obtain a bound
c13(ε2+β1−β4 + ε2−β1) ≤ c14ε

β5 for the third term on the right hand side of
(4.16), for some β5 > 1. All terms on the right hand side of (4.16) have bounds
of this form so this finishes the proof of part (ii) of the lemma.

(iv) We have

H(x1,y1,x2,y2)
(
| log cosα(x1, Xζ−)|1{Se2≤T e}1F c(Se2 ,T e,ZTe ,εβ1 ) | Ue1 ≤ ζ

)
≤ H(x1,y1,x2,y2)

(
| log cosα(x1, Xζ−)|1{Se2≤TX(∂D)}

× 1F c(Se2 ,TX(∂D),XTX (∂D),ε
β1 ) | Ue1 ≤ ζ

)
.

This can be estimated just like the last term on the right hand side of (4.15),
i.e., (4.16). The crucial point is that the distance from X to ∂D must be less
than c1ε2 at time Se2 . The estimates of the third term on the right hand side
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of (4.16) are based on the fact that the distance from X to ∂D at time T e is
bounded by c2ε1+β1 (see the definition of K1).

(v) This estimate has been already proved in part (iii) because the relevant
expression appears as the last term on the right hand side in (4.15). �

Lemma 4.5.

(i) There exist β0, β1 > 0, β2 > 1 and c0, ε0 > 0 such that if x1 ∈
∂D, y1, x2, y2 ∈ D, d(x1, x2) ∨ d(y1, y2) < a1d(x2, y2), d(x1, y1) ≥
c0d(x2, y2), d(x1, y1) ≤ ε ≤ ε0, and |π/2 − ∠(y1 − x1,n(x1))| ≤
c−1
0 d(x1, y1), then

H(x1,y1,x2,y2)
( ∣∣log ρUe1 − log ρSe2 − | log cosα(x1, Xζ−)|

∣∣1{Se2≤τ+(εβ0 )}

× 1F (T e,Se2 ,ZTe ,ε
β1 )1F (T e,TX(∂D),ZTe ,εβ1 ) | Ue1 ≤ ζ

)
≤ εβ2 .

(ii) There exist β0 > 0, β1 > 1 and c0, ε0 > 0 such that if x1 ∈ ∂D,
y1, x2, y2 ∈ D, d(x1, x2) ∨ d(y1, y2) < a1d(x2, y2), d(x1, y1) ≥
c0d(x2, y2), d(x1, y1) ≤ ε ≤ ε0, and |π/2 − ∠(y1 − x1,n(x1))| ≤
c−1
0 d(x1, y1), then

H(x1,y1,x2,y2)

( ∣∣log ρUe1 − log ρSe2 − | log cosα(x1, Xζ−)|
∣∣

× 1{Se2≤τ+(εβ0 )} | Ue1 ≤ ζ
)
≤ εβ1 .

Proof. (i) Let z1, z2, . . . , zm0 ∈ ∂D be all points with α(x1, zk) = π/2. For
integer k, let Mk ⊂ ∂D be the set of all points y such that tanα(y, x1) ∈
[2−k, 2−k+1]. Fix some β3 such that 0 < β3 < β1 < 1. Let k0 be the smallest
integer with 2−k0 ≤ ε−β3 and K =

⋃
k≤k0

Mk. By Lemmas 4.3 (vii) and 4.4
(ii), we have for some β0 > 0, β2 > 1,

H(x1,y1,x2,y2)
( ∣∣log ρUe1 − log ρSe2 − | log cosα(x1, Xζ−)|

∣∣
× 1{Se2≤τ+(εβ0 )}1{X(TX(∂D))∈K} | Ue1 ≤ ζ

)
≤ H(x1,y1,x2,y2)

(
| log ρUe1 − log ρSe2 |1{Se2≤τ+(εβ0 )}1{X(TX(∂D))∈K} | Ue1 ≤ ζ

)
+H(x1,y1,x2,y2)

(
| log cosα(x1, Xζ−)|1{X(TX(∂D))∈K} | Ue1 ≤ ζ

)
≤ εβ2 .

It follows that it will suffice to show that for some β4 > 1,

H(x1,y1,x2,y2)
( ∣∣log ρUe1 − log ρSe2 − | log cosα(x1, Xζ−)|

∣∣
× 1{X(TX(∂D))/∈K}1F (T e,Se2 ,ZTe ,ε

β1 )1F (T e,TX(∂D),ZTe ,εβ1 ) | Ue1 ≤ ζ
)
≤ εβ4 .
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Let

T1 = Se2

∧ inf{t ≥ Ue1 : Yt ∈ ∂D and |∠(n(Yt), Xt − Yt)− π/2| ≤ c1d(x1, y2)β1}

∧ inf{t ≥ Ue1 : Xt ∈ ∂D and |∠(n(Xt), Xt − Yt)− π/2| ≤ c1d(x1, y2)β1}.

for some c1. We will assume that events F (T e, Se2 , ZT e , ε
β1) and

F (T e, TX(∂D), ZT e , εβ1) hold. Using this assumption, we will estimate∣∣log ρUe1 − log ρT1 − | log cosα(x1, Xζ−)|
∣∣. Let k1 be the smallest integer with

d(x1,Mk1) ≤ εβ1 . If X(TX(∂D)) ∈
⋃
k≥k1

Mk then T1 = TX(∂D) ∧ TY (∂D).
Hence, d(XUe1

, YUe1 ) = d(XT1 , YT1) and | log cosα(x1, Xζ−)| ≤ c2ε
2β1 . Thus,

in this case, ∣∣log ρUe1 − log ρT1 − | log cosα(x1, Xζ−)|
∣∣ ≤ c2ε2β1 .

Now we make an extra assumption that β1 > 1/2 and we conclude that

H(x1,y1,x2,y2)
( ∣∣log ρUe1 − log ρSe2 − | log cosα(x1, Xζ−)|

∣∣(4.17)

× 1{X(TX(∂D))∈
⋃
k≥k1

Mk}1F (T e,Se2 ,ZTe ,ε
β1 )

× 1F (T e,TX(∂D),ZTe ,εβ1 ) | Ue1 ≤ ζ
)

≤ c2ε2β1 = c2ε
β5 ,

for some β5 > 1.
Suppose that X(TX(∂D)) ∈Mk with k1 ≤ k ≤ k0. Note that, by assump-

tion, |α(x1, Zt)− α(x1, Xζ−)| ≤ c3εβ1 for all t ∈ [Ue1 , T1] such that one of the
processes X or Y is on the boundary at time t. We have (d/dγ)| log cos γ| =
tan γ for γ ∈ (0, π/2). This and easy geometry imply that the change in ρt on
the interval [Ue1 , T1] is equal to log cosα(x1, Xζ−) up to an additive constant
bounded by c42−kεβ1 , i.e.,∣∣log ρUe1 − log ρT1 − | log cosα(x1, Xζ−)|

∣∣ ≤ c42−kεβ1 .

By the strong Markov property applied at Ue1 and Lemma 3.2,

H(x1,y1,x2,y2)(X(TX(∂D)) ∈Mk | Ue1 ≤ ζ) ≤ c5ε2k,

so for k1 ≤ k ≤ k0,

H(x1,y1,x2,y2)
( ∣∣log ρUe1 − log ρSe2 − | log cosα(x1, Xζ−)|

∣∣1{X(TX(∂D))∈Mk}

× 1F (T e,Se2 ,ZTe ,ε
β1 )1F (T e,TX(∂D),ZTe ,εβ1 ) | Ue1 ≤ ζ

)
≤ c6ε1+β1 ,
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and

H(x1,y1,x2,y2)
( ∣∣log ρUe1 − log ρSe2 − | log cosα(x1, Xζ−)|

∣∣
× 1{X(TX(∂D))∈

⋃
k1≤k≤k0

Mk}1F (T e,Se2 ,ZTe ,ε
β1 )

× 1F (T e,TX(∂D),ZTe ,εβ1 ) | Ue1 ≤ ζ
)

≤ c7ε1+β1 | log ε| ≤ c8εβ6 ,

for some β6 > 1. This and (4.17) imply that for some β7 > 1,

H(x1,y1,x2,y2)
( ∣∣log ρUe1 − log ρT1 − | log cosα(x1, Xζ−)|

∣∣(4.18)

× 1{X(TX(∂D))/∈K}1F (T e,Se2 ,ZTe ,ε
β1 )

× 1F (T e,TX(∂D),ZTe ,εβ1 ) | Ue1 ≤ ζ
)
≤ c9εβ7 .

The following definitions assume that XTk1
∈ ∂D. If YTk1 ∈ ∂D then the

roles of X and Y should be interchanged in the definitions of T k2 , T
k
3 , T

k
4 , T

k
5

and T k+1
1 . Let T 1

1 = T1 and for k ≥ 1,

T k2 = inf{t ≥ T k1 : d(Yt, YTk1 ) ≥ 2d(YTk1 , ∂D)},

T k3 = inf{t ≥ T k1 : Yt ∈ ∂D},

T k4 = inf{t ≥ T k1 : LXt − LXTk1 ≥ c10d(YTk1 , ∂D)},

T k5 = T k2 ∧ T k3 ∧ T k4 ,

T k+1
1 = inf{t ≥ T k5 : Xt ∈ ∂D or Yt ∈ ∂D}.

If T k+1
1 ≤ τ+(εβ0) and d(XTk1

, XT e) ≤ εβ1 then |π/2 − ∠(n(Zt), Xt − Yt)| ≤
c11ε

β1 for t ∈ [T k1 , T
k+1
1 ] and LX

Tk+1
1
− LX

Tk1
≤ c12d(XTk1

, YTk1 )εβ1 . The change

of d(Xt, Yt) on the interval [T k1 , T
k+1
1 ] is bounded by the product of these num-

bers, that is c13d(XTk1
, YTk1 )ε2β1 . This implies that the increment of | log ρt|

on the interval [T k1 , T
k+1
1 ] is bounded by c14ε

2β1 . By Lemma 3.3 (i), the prob-
ability that Se2 ≥ T k5 is bounded by pk1 , for some p1 < 1. We obtain, by the
strong Markov property applies at T1,

H(x1,y1,x2,y2)
( ∣∣log ρT1 − log ρSe2

∣∣1{Se2≤τ+(εβ0 )}1F (T e,Se2 ,ZTe ,ε
β1 ) | Ue1 ≤ ζ

)
≤
∑
k≥1

pk1c14ε
2β1 ≤ c15ε

2β1 = c15ε
β8 .

The exponent β8 is greater than 1 provided β1 > 1/2. Part (i) of the lemma
follows from the last estimate and (4.18).
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(ii) We have

H
(∣∣log ρUe1 − log ρSe2 − | log cosα(x1, Xζ−)|

∣∣1{Se2≤τ+(εβ0 )} | Ue1 ≤ ζ
)

≤ H(x1,y1,x2,y2)
( ∣∣log ρUe1 − log ρSe2 − | log cosα(x1, Xζ−)|

∣∣1{Se2≤τ+(εβ0 )}

× 1F (T e,Se2 ,ZTe ,ε
β1 )1F (T e,TX(∂D),ZTe ,εβ1 ) | Ue1 ≤ ζ

)
+H(x1,y1,x2,y2)

(
| log ρUe1 − log ρSe2 |1{T e≤Se2}1F c(T e,Se2 ,ZTe ,εβ1 ) | Ue1 ≤ ζ

)
+H(x1,y1,x2,y2)

(
| log ρUe1 − log ρSe2 |1{Se2≤T e}1F c(Se2 ,T e,ZTe ,εβ1 ) | Ue1 ≤ ζ

)
+H(x1,y1,x2,y2)

(
| log ρUe1 − log ρSe2 |1{Se2≤τ+(εβ0 )}

× 1F c(T e,TX(∂D),ZTe ,εβ1 ) | Ue1 ≤ ζ
)

+H(x1,y1,x2,y2)
(
| log cosα(x1, Xζ−)|1{T e≤Se2}1F c(T e,Se2 ,ZTe ,εβ1 ) | Ue1 ≤ ζ

)
+H(x1,y1,x2,y2)

(
| log cosα(x1, Xζ−)|1{Se2≤T e}1F c(Se2 ,T e,ZTe ,εβ1 ) | Ue1 ≤ ζ

)
+H(x1,y1,x2,y2)

(
| log cosα(x1, Xζ−)|1F c(T e,TX(∂D),ZTe ,εβ1 ) | Ue1 ≤ ζ

)
.

Part (ii) of the lemma follows from the above formula, part (i) of this lemma,
and estimates in Lemma 4.3 (iii)–(v) and Lemma 4.4 (iii)–(v). �

Lemma 4.6. For any β1 ∈ (1, 2) there exist β2 > 0, and ε0 > 0 such that
if ε ≤ ε0 and d(X0, Y0) ≤ ε then

P(d(YσX1 , ∂D) ≥ εβ1) ≤ εβ2 .

Proof. By Lemma 4.1 (ii), P(LY
σX1
≥ a) ≤ c1e

−c2a. Hence, for any β3 > 0
and some β4 > 0,

P(LYσX1 ≥ β3| log ε|) ≤ c1 exp(−c2β3| log ε|) = εβ4 .

If the event A1
df= {LY

σX1
≤ β3| log ε|} holds then, by Lemma 3.8,

sup
t∈[0,σX1 ]

d(Xt, Yt) ≤ d(X0, Y0) exp(c4(1 + β3| log ε|)) ≤ c5ε1−c4β3 = c5ε
1−β5 .

Choose β3 > 0 so small that we can find β6 and β7 such that β5 < β6 < β7 <
1− β5 and β1 = 1− β5 + β6.

Let T1 = inf{t ≥ 0 : Xt ∈ ∂D} and {Vt, 0 ≤ t ≤ σX1 − T1}
df= {XσX1 −t, 0 ≤

t ≤ σX1 − T1}. If we condition on the values of XT1 and XσX1
, the process V

is a reflected Brownian motion in D starting from XσX1
and conditioned to

approach XT1 at its lifetime. It is easy to see that P(d(XT1 , XσX1
) ≤ εβ6) ≤

c6ε
β6 .
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Suppose that the event A2 = {d(XT1 , XσX1
) ≥ εβ6} holds. Conditional on

this event, the probability that V does not spend εβ7 units of local time on the
boundary of ∂D before leaving the disc B(V0, ε

β6) is bounded by εβ7−β6 . Let
A3 be the event that V spends εβ7 or more units of local time on the boundary
of ∂D before leaving the disc B(V0, ε

β6). If A3 holds then it is easy to see
that d(YσX1 , ∂D) ≤ ε1−β5+β6 = εβ1 .We have shown that d(YσX1 , ∂D) ≤ εβ1 if
A1 ∩ A2 ∩ A3 holds. Since P((A1 ∩ A2 ∩ A3)c) ≤ εβ4 + c6ε

β6 + εβ7−β6 , the
lemma follows. �

Recall that es denotes an excursion of X from the boundary of D starting
at time s and let α(es) = α(es(0), es(ζ−)).

Lemma 4.7. For any δ, p > 0 there exist t0, c0 < ∞ such that for every
x ∈ D, we have

(i) Px

 ∑
es∈Et0

| log cosα(es)| ≥ c0

 < p,

(ii) Px

(
sup
u≥t0

∣∣∣∣∣ 1u ∑
es∈Eu

| log cosα(es)|

− 1
2|D|

∫
∂D

∫
∂D

| log cosα(z, y)|ωz(dy)dz
∣∣∣∣ ≥ δ) < p.

Proof. (i) It suffices to show that
∑
es∈Et0

| log cosα(es)| has a finite expec-
tation, bounded by a constant independent of x. This follows from the exit
system formula (4.1), Lemma 4.1 (i) and Lemma 4.4 (i).

(ii) Suppose that X0 has the uniform distribution in D. Then, by the exit
system formula, and since the Revuz measure of LXt is dx/(2|D|),

E
∑
es∈E1

| log cosα(es)| = E
∫ 1

0

HX(s)(| log cosα(es)|)dLXs

=
1

2|D|

∫
∂D

∫
∂D

| log cosα(z, y)|ωz(dy)dz.

By Lemma 4.4 (i) and its proof, the last integral is finite.
Let Vk =

∑
es∈Ek\Ek−1

| log cosα(es)|. By the ergodic theorem,

lim
u→∞

1
u

∑
es∈Eu

| log cosα(es)| = lim
k→∞

(1/k)
∑

1≤n≤k

Vn

=
1

2|D|

∫
∂D

∫
∂D

| log cosα(z, y)|ωz(dy)dz.

Recall from (4.5) that the transition density pt(x, y) of reflected Brownian
motion converges to 1/|D| exponentially fast as t→∞, uniformly in (x, y) ∈
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D
2
. This can be used to finish the proof of part (ii) of the present lemma,

using the same argument as in the proof of Lemma 4.2 (i). �

Recall that T c =
⋃
k(Uk, Sk+1].

Lemma 4.8. There exist c1, ε0 > 0 such that if d(X0, Y0) ≤ ε ≤ ε0 then
for any t ≥ 1,

E
∫
T c∩[0,σXt ∧τ

+
ε ]

dLXs ≤ c1tε| log ε|.

Proof. It is easy to deduce from Lemma 3.3 that

(4.19) E(LX
S1∧τ+

ε
− LXU0

) ≤ c2ε.

Next we will estimate (LXSk+1
−LXUk)1{Uk<τ+

ε }. Fix some k ≥ 1 and assume
that Uk < τ+

ε . Note that d(XUk , ∂D) ∨ d(YUk , ∂D) ≤ c3d(XUk , YUk). Let T1

be the first time after Uk when either X or Y is in ∂D. Let n0 be the greatest
integer such that 2−n0 is greater than the diameter of D and let n1 be the
least integer greater than | log d(XUk , YUk)|/ log 2. By Lemma 3.2,

P(d(XUk , XT1) ≥ 2−n) ≤ c3d(XUk , YUk)2n,

for n0 ≤ n ≤ n1. This obviously implies that

P(d(XUk , XT1) ∈ [2−n, 2−n+1]) ≤ c3d(XUk , YUk)2n,

for n0 ≤ n ≤ n1. Simple geometry shows that if d(XUk , XT1) ∈ [2−n, 2−n+1]
and ZT1 = XT1 then d(YT1 , ∂D) ≤ c4d(XUk , YUk)2−n, and if ZT1 = YT1 then
d(XT1 , ∂D) ≤ c4d(XUk , YUk)2−n. Hence,

P(d(XT1 , ∂D) ∨ d(YT1 , ∂D) ∈ [c4d(XUk , YUk)2−n−1, c4d(XUk , YUk)2−n])

≤ c3d(XUk , YUk)2n,

for n0 ≤ n ≤ n1, and

E(d(XT1 , ∂D) ∨ d(YT1 , ∂D)) ≤ c5d(XUk , YUk)2| log d(XUk , YUk)|.
By Lemma 3.3 (ii), assuming that ε0 is small,

E
(
LXSk+1

− LXUk | Uk < τ+
ε

)
≤ c6d(XUk , YUk)2| log d(XUk , YUk)|.

It is elementary to check that

E
(
LXUk − L

X
Sk
| Sk < τ+

ε

)
≥ c7d(XSk , YSk),

and the conditional distribution of LXUk−L
X
Sk

given {Sk < τ+
ε } is stochastically

bounded by an exponential random variable with mean c8d(XSk , YSk). Note
that d(XUk , YUk) ≤ c9d(XSk , YSk). Hence,

Nm
df=

m∑
k=1

c10ε| log ε|(LXUk − L
X
Sk

)1{Sk<τ+
ε } − (LXSk+1

− LXUk)1{Uk<τ+
ε }
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is a submartingale with respect to the filtration F∗m = FX,YSm+1
. If

M = inf{m :
m∑
k=1

(LXUk − L
X
Sk

) ≥ t}

and Mj = M ∧ j then

E
Mj∑
k=1

(
c10ε| log ε|(LXUk − L

X
Sk

)1{Sk<τ+
ε } − (LXSk+1

− LXUk)1{Uk<τ+
ε }

)
≥ 0,

and

E
Mj∑
k=1

(LXSk+1
− LXUk)1{Uk<τ+

ε } ≤ E
Mj∑
k=1

c10ε| log ε|(LXUk − L
X
Sk

)1{Sk<τ+
ε }.

We let j →∞ and obtain by the monotone convergence

E
M∑
k=1

(LXSk+1
− LXUk)1{Uk<τ+

ε } ≤ E
M∑
k=1

c10ε| log ε|(LXUk − L
X
Sk

)1{Sk<τ+
ε }

≤ c11tε| log ε|.

Hence,

E
∫
T c∩[U1,σXt ∧τ+(ε)]

dLXs ≤ E
M∑
k=1

(LXSk+1
− LXUk)1{Uk<τ+

ε } ≤ c11tε| log ε|.

This and (4.19) imply the lemma. �

Recall that es denotes an excursion of X from ∂D starting at time s,
α(es) = α(es(0), es(ζ−)), and Et is the family of excursions es with s ≤ t. See
the beginning of Section 3 for the definition of ρt.

Lemma 4.9. Let E∗(t) be the restriction of Et to those excursions eu that
satisfy the condition sups∈[u,u+ζ(eu)) d(Xs, Ys) ≤ εβ0 . For any β0 ∈ (0, 1)
there exist β1 ∈ (3/2, 2), ε0, β2 > 0 and c1 <∞ such that if X0 ∈ ∂D, ε < ε0,
d(X0, Y0) ≤ ε and d(Y0, ∂D) ≤ εβ1 then,

E

∣∣∣∣∣∣log ρσX1 −
∑

es∈E∗(σX1 )

| log cosα(es)|

∣∣∣∣∣∣ ≤ c1εβ2 .

Proof. Recall the “rich” version of the exit system introduced before Lemma
4.3, and the accompanying notation, i.e., stopping times Sek and Uek . Let k1

be the smallest (random) integer such that Sk1 ≥ σX1 . We will show that the
triangle inequality yields
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∣∣∣∣∣∣log ρσX1 −
∑

es∈E∗(σX1 )

| log cosα(es)|

∣∣∣∣∣∣
(4.20)

≤
∑

es∈E∗(σX1 ),s∈T

1{Ue1≥ζ(es)}| log cosα(es)|

+
∑

es∈E∗(σX1 ),s∈T

1{Ue1≤ζ(es)}
∣∣log ρUe1 − log ρSe2 − | log cosα(es)|

∣∣
+

∑
es∈E∗(σX1 )

∑
k≥2

1{Uek≤ζ(es)}
∣∣∣log ρUek − log ρSek+1

∣∣∣
+

∑
es∈E∗(σX1 ),s/∈T

| log cosα(es)|

+ | log ρS1 − log ρ0|+ | log ρSk1
− log ρσX1 |.

We will argue that the right hand side properly accounts for all the terms on
the left hand side of the last formula. All the terms of the sum∑
es∈E∗(σX1 ) | log cosα(es)|, appearing on the left hand side, are accounted for

on the first, second and fourth lines on the right hand side. The quantity
log ρσX1 can be represented as the sum of log ρUk − log ρSk+1 , for all k such
that 0 ≤ Uk ≤ Sk+1 ≤ σX1 , except that there are two extra terms corre-
sponding to subintervals at the very beginning and at the end of [0, σX1 ]. The
two extra subintervals are accounted for on the last line of (4.20). The in-
tervals [Uk, Sk+1] ⊂ [0, σX1 ] are matched with excursions es in the following
way. Consider a Uk and find an excursion es = {es(t), t ∈ [s, s+ ζ(es))} such
that Uk ∈ [s, s + ζ(es)]. Then Uk is one of the times Uek for this excursion.
Note that if Ue1 > ζ(es) for an excursion es then there are no k such that
Uk ∈ [s, s + ζ(es)], so we restrict the sums on the second and third lines ap-
propriately. We split the sums according to whether k = 1 or k ≥ 2, and
whether s ∈ T or not. The sums on the second and third lines do not contain
terms corresponding to Ue1 with s /∈ T . This is because if s /∈ T then [s, Se2 ]
is a subinterval of [Uk, Sk+1] with Sk+1 = Se2 . Then Uk = Ue

∗

j for some j and
some excursion e∗u with u < s but note that we cannot have j = 1 and u /∈ T .
Hence, there is already a term accounting for the interval [Uk, Sk+1].

The following estimate is based on the same ideas as the proof of Lemma
4.4 (i). If d(x1, y1) ≤ ε then

H(x1,y1,x2,y2)(1{Ue1≥ζ(es)}| log cosα(x1, Xζ−)|) ≤
∫ ε

0

c2r
−2| log cos(c3r)|dr

≤
∫ ε

0

c2r
−2c4(c3r)2dr = c5ε.
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Hence, by the exit system formula (4.9),

(4.21) E
∑

es∈E∗(σX1 ),s∈T

1{Ue1≥ζ(es)}| log cosα(es)| ≤ c5ε.

We have H(x1,y1,x2,y2)| log cosα(x1, Xζ−)| ≤ c6 for all (x1, y1, x2, y2) by
Lemma 4.4 (i) so, by the exit system formula (4.9) and Lemma 4.8,

E
∑

es∈E∗(σX1 ),s/∈T

| log cosα(es)| ≤ c6E
∫
T c∩[0,σX1 ∧τ+(εβ0 )]

dLXs(4.22)

≤ c7εβ0 | log ε|.

We have by Lemma 4.5 (ii), for some β3 > 1,

H(x1,y1,x2,y2)

( ∣∣log ρUe1 − log ρSe2 − | log cosα(x1, Xζ−)|
∣∣

× 1{Se2≤τ+(εβ0 )} | Ue1 ≤ ζ
)
≤ c7d(x1, y1)β3 ,

so, by the strong Markov property applied at Ue1 ,

H(x1,y1,x2,y2)

( ∣∣log ρUe1 − log ρSe2 − | log cosα(x1, Xζ−)|
∣∣

× 1{Se2≤τ+(εβ0 )}1{Ue1≤ζ}

)
≤ c7d(x1, y1)β3H(x1,y1,x2,y2) (Ue1 ≤ ζ) .

This and the exit system formula (4.9) yield,

E
∑

es∈E∗(σX1 ),s∈T

1{Ue1≤ζ(es)}
∣∣log ρUe1 − log ρSe2 − | log cosα(es)|

∣∣1{Se2≤τ+(εβ0 )}

(4.23)

≤ E
∑

es∈E∗(σX1 ),s∈T

c7d(Xs, Ys)β31{Ue1≤ζ(es)}.

We will now estimate the right hand side of (4.23). Let

Mj =
(
εβ3−1(LXUj − L

X
Sj )− c8d(XUj , YUj )

β3

)
1{Sj≤τ+(εβ0 )}.

It is not hard to check that E(LXUj − L
X
Sj
| FSj ) ≥ c9d(XSj , YSj ) and also

d(XUj , YUj ) ≤ c10d(XSj , YSj ). Hence for an appropriate c8 > 0, we have
EMj > 0 and the process Nk =

∑
j≤kMj is a submartingale. Let K = inf{k :∑

j≤k(LXUj−L
X
Sj

) ≥ 1}. It is easy to check that LXUj−L
X
Sj

is stochastically ma-
jorized by an exponential random variable with mean c11d(XSj , YSj ) ≤ c11ε

β0 .
By the strong Markov theorem applied at time σX1 , we have E

∑
j≤K(LXUj −
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LXSj ) ≤ 1 + c11ε
β0 . By the optional stopping theorem we have ENK∧n ≥ 0 for

any fixed n, so

c8E
∑

j≤K∧n

d(XUj , YUj )
β31{Sj≤τ+(εβ0 )}

≤ εβ3−1E
∑

j≤K∧n

(LXUj − L
X
Sj )1{Sj≤τ+(εβ0 )}

≤ εβ3−1(1 + c11ε
β0).

Letting n→∞, we obtain

(4.24) E
∑
j≤K

d(XUj , YUj )
β31{Sj≤τ+(εβ0 )} ≤ c12ε

β3−1.

Note that

E
∑

es∈E∗(σX1 ),s∈T

c7d(Xs, Ys)β31{Ue1≤ζ(es)}(4.25)

≤ E
∑
j≤K

d(XUj , YUj )
β31{Sj≤τ+(εβ0 )},

so this, (4.23) and (4.24) imply that

E
∑

es∈E∗(σX1 ),s∈T

1{Ue1≤ζ(es)}
∣∣log ρUe1 − log ρSe2 − | log cosα(es)|

∣∣1{Se2≤τ+(εβ0 )}

≤ c13ε
β3−1.

By Lemma 4.3 (ii) and the strong Markov property applied at Ue1 , if
d(x1, y1) ≤ εβ0 and k ≥ 2 then

H(x1,y1,x2,y2)
(
| log ρUek − log ρSek+1

|1{Uek≤τ+(εβ0/2)∧ζ}1{Ue1≤ζ}
)
≤ c14ε

β0(k−1)/2,

so the exit system formula (4.9) implies

(4.26) E
∑

es∈E∗(σX1 )

∑
k≥2

1{Ue1≤ζ(es)}
∣∣∣log ρUek − log ρSek+1

∣∣∣
≤
∑
k≥2

c14ε
β0(k−1)/2 ≤ c15ε

β4 ,

for some β4 > 0.
By Lemma 3.9 (i),

(4.27) E| log ρS1 − log ρ0| ≤ c16ε.

By Lemma 4.6, for some β5 > 0,

(4.28) P(d(YσX1 , ∂D) ≥ εβ1) ≤ εβ2 .
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By Lemma 3.9 (i),

(4.29) E
(
| log ρSk1

− log ρσX1 |1{d(Y
σX1

,∂D)≤εβ1}

)
≤ c17ε

β0 .

The lemma follows from (4.20), (4.21), (4.22), (4.25), (4.26), (4.27), (4.28)
and (4.29). �

Proof of Theorem 1.2. The proof will consist of three steps. First we are
going to define some events. Then we will estimate their probabilities and
choose the values of the parameters so that the probabilities of the events
defined in Step 1 are large. Finally, we will prove that if all of the events
defined in Step 1 hold then d(Xt, Yt) has the asymptotic behavior asserted in
the theorem.

Step 1. Suppose that Λ(D) > 0 and fix arbitrarily small δ, p > 0. Assume
that δ < Λ(D)/8.

We will define a number of events and stopping times, depending on param-
eters ε, k0, c1, . . . , c6, whose values will be specified later on. We will assume
that all these parameters are reals in (0,∞), except that k0 > 0 is a (large)
integer. The constant ε will represent the initial distance between the two
Brownian particles, i.e., ε = d(X0, Y0). Let

A1 =
{

1− δ ≤ (s/σX(s))(2|D|/|∂D|) ≤ 1 + δ, ∀s ≥ k0

}
,

A2 =
{

sup
t≥k0

(
LYσX(t) − 2t

)
≤ 0
}
∩

{
sup

t≤σX(k0)

d(Xt, Yt) ≤ c1

}
,

A3 =

{
sup

t≥σX(k0)

∣∣∣∣1t
∫ t

0

ν(Xs)dLXs −
1

2|D|

∫
∂D

ν(y)dy
∣∣∣∣ < δ

}
,

Ã3 =

{
sup

t≥σX(k0)

∣∣∣∣1t
∫ t

0

ν(Ys)dLYs −
1

2|D|

∫
∂D

ν(y)dy
∣∣∣∣ < δ

}
,

A4 =

{
sup

u≥σX(k0)

∣∣∣∣∣ 1u ∑
es∈Eu

| log cosα(es)|

− 1
2|D|

∫
∂D

∫
∂D

| log cosα(z, y)|ωz(dy)dz
∣∣∣∣ < c2δ

}
,

A5 =


∣∣∣∣∣∣log ρσX(k0) −

∑
es∈EσX (k0)

| log cosα(es)|

∣∣∣∣∣∣ ≤ σX(k0)δ

 ,

A6 =

{∣∣∣∣∣
∫
T c∩[0,σX(k0)]

ν(Xs)dLXs

∣∣∣∣∣ ≤ σX(k0)δ

}
,
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Ã6 =

{∣∣∣∣∣
∫
T c∩[0,σX(k0)]

ν(Ys)dLYs

∣∣∣∣∣ ≤ σX(k0)δ

}
.

For each event Aj on the above list, let A′j denote the event defined in the
same way except that k0 is replaced by k0 − 1. The same remark applies to
Ãj and Ã′j .

For integer k ≥ 0, let

Ak7 =
{
LYσX(k0+k+1) − L

Y
σX(k0+k) ≤ (c3 log(k + 2))2

}
,

Tk = σX(k0 + k + 1)

∧ τ+
(
ε exp(−c2(k0 + k)(Λ(D)− 7δ) + c4(1 + (c3 log(k + 2))2))

)
,

T ∗k = inf{t > σX(k0 + k + 1) : LYt − LYσX(k0+k) ≥ (c3 log(k + 2))2}

∧ τ+
(
ε exp(−c2(k0 + k)(Λ(D)− 7δ) + c4(1 + (c3 log(k + 2))2))

)
,

Ak8 =

{
1{d(XσX (k0+k),YσX (k0+k))≤ε exp(−c2(k0+k)(Λ(D)−7δ))}

×

∣∣∣∣∣
∫
T c∩[σX(k0+k),Tk]

ν(Xs)dLXs

∣∣∣∣∣ ≤ c2δ
}
,

Ãk8 =

{
1{d(XσX (k0+k),YσX (k0+k))≤ε exp(−c2(k0+k)(Λ(D)−7δ))}

×

∣∣∣∣∣
∫
T c∩[σX(k0+k),T∗k ]

ν(Ys)dLYs

∣∣∣∣∣ ≤ c2δ
}
,

Ak9 = {d(XσX(k0+k), YσX(k0+k)) > ε exp(−c2(k0 + k)(Λ(D)− 7δ))}
∪ {d(YσX(k0+k+1), ∂D) ≤ εc5 exp(−c5c2(k0 + k)(Λ(D)− 7δ))}.

Let Ek,ε(s, t) be the subset of Et \ Es consisting of these excursions eu that
satisfy

sup
v∈[u,u+ζ(eu))

d(Xv, Yv) ≤ εc6 exp(−c6c2(k0 + k)(Λ(D)− 7δ)),

and let

Ak10 =

{ ∏
0≤j≤k

1{d(XσX (k0+j),YσX (k0+j))≤ε exp(−c2(k0+j)(Λ(D)−7δ))}

×

∣∣∣∣∣∣log
ρσX(k0+k+1)

ρσX(k0+k)

−
∑

es∈Ek,ε(σX(k0+k),σX(k0+k+1))

| log cosα(es)|

∣∣∣∣∣∣ ≤ c2δ
}
.
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Step 2. In this step, we will choose the parameters so that all events defined
in the previous step have large probabilities. All the bounds on probabilities
will hold uniformly for all starting points (X0, Y0) ∈ D2

with d(X0, Y0) = ε.
The starting points will not be reflected in the notation. We can assume that
ε > 0 is arbitrarily small in view of Lemma 3.1.

First we use Lemma 4.2 (ii) to choose k0 so large that P(A1) > 1− p. Let
c2 ∈ (0, 1) be such that if A1 holds then for all k ≥ 0,

(4.30) c2(k0 + k) ≤ σX(k0 + k).

We choose c1 to be the constant ε0 of Lemma 3.6, assuming that the
constant c1 in that lemma takes the value c2δ/3.

Lemma 4.2 is stated for the process Xt but it applies equally to Yt. It is an
easy consequence of part (ii) of that lemma applied to both Xt and Yt that
if we enlarge k0, if necessary, then P

(
supt≥k0

(LYσX(t) − 2t) ≤ 0
)
> 1 − p. It

follows from Lemma 3.8 that if LYσX(k0) ≤ 2k0 and ε is sufficiently small then
supt≤σX(k0) d(Xt, Yt) ≤ c1. Hence, for sufficiently small ε, P(A2) > 1− p.

Using Lemma 4.2 (i) we can find t1 so large that

(4.31) P
(

sup
t≥t1

∣∣∣∣1t
∫ t

0

ν(Xs)dLXs −
1

2|D|

∫
∂D

ν(y)dy
∣∣∣∣ < δ

)
> 1− p/2.

By part (ii) of the same lemma, we can enlarge k0, if necessary, so that
P(σX(k0) > t1) > 1−p/2. Hence, for this value of k0 we have P(A3) > 1−p.
Since (4.31) holds with X replaced by Y , our argument shows that P(Ã3) >
1− p for the same value of k0.

Enlarge k0, if necessary, so that P(σX(k0) > t0) > 1− p/2, where t0 is the
constant in the statement of Lemma 4.7 (ii), assuming that in that lemma p
is replaced with p/2 and δ is replaced with c2δ. Then it is easy to check, using
Lemma 4.7 (ii), that P(A4) > 1− p holds with this choice of k0.

We will next show that with an appropriate choice of the parameters,
P(A5) > 1 − p. Suppose that β0 > 0 and β1 ∈ (3/2, 2) so that we can
apply Lemma 4.9 with these parameters. Recall the notation E∗(t) from that
lemma. Let

Fk = {d(XσXk
, YσXk ) ≤ ε1} ∩ {d(YσXk , ∂D) ≤ εβ1

1 },

G∗k =
{∣∣∣ log(ρσXk+1

/ρσXk )

−
∑

es∈E∗(σXk+1)\E∗(σXk )

| log cosα(es)|
∣∣∣ ≤ σX(k0)δ/(2k0)

}
,
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Gk =
{∣∣∣ log(ρσXk+1

/ρσXk )

−
∑

es∈E(σXk+1)\E(σXk )

| log cosα(es)|
∣∣∣ ≤ σX(k0)δ/(2k0)

}
.

Choose ε1 > 0 so small that for k = 0, 1, . . . , k0− 1, using Lemma 4.9 and the
strong Markov property at σXk , P(G∗k | Fk) ≥ 1− p/(4k0). This implies that
P(G∗k) ≥ 1− p/(4k0)−P(F ck ).

By Lemma 4.6, we can find ε2 > 0 so small that for k = 1, . . . , k0 − 1, the
conditional probability of {d(YσXk , ∂D) ≤ εβ1

1 } given {d(XσXk−1
, YσXk−1

) ≤ ε2}
is greater than 1 − p/(8k0). By Lemmas 3.8 and 4.1 (ii), we can make ε so
small that d(XσXk−1

, YσXk−1
) ≤ ε1 ∧ ε2 for k = 1, . . . , k0 − 1 with probability

greater than 1− p/(8k0). With this choice of ε we have P(G∗k) ≥ 1− p/(2k0)
for k = 0, . . . , k0 − 1, so P(

⋃
0≤k≤k0−1G

∗
k) ≥ 1− p/2.

It follows from Lemmas 3.8 and 4.1 (ii) that if ε is sufficiently small then
P(τ+(kβ1

0 ) ≥ k0) ≥ 1−p/2. If τ+(kβ1
0 ) ≥ k0 then E∗(k0) = E(k0), so we obtain

P(
⋃

0≤k≤k0−1Gk) ≥ 1 − p. It is easy to check that
⋃

0≤k≤k0−1Gk ⊂ A5, so
with our choice of parameters ε and k0, P(A5) > 1− p.

Recall that ν∗ = supx∈∂D |ν(x)| < ∞. Lemma 4.8 implies that for some
ε1 > 0, C1 <∞, and ε ≤ ε0 ≤ ε1,

E
∫
T c∩[0,σX(k0)∧τ+(ε0)]

|ν(Xs)|dLXs ≤ ν∗C1k0ε0| log ε0|.

It follows that,

(4.32) P

(∫
T c∩[0,σX(k0)∧τ+(ε0)]

|ν(Xs)|dLXs ≥ c2k0δ

)
≤ ν∗C1k0ε0| log ε0|/(c2k0δ).

According to (4.30), if A1 holds then c2k0δ ≤ σX(k0)δ. Suppose that ε0

is so small that we have ν∗C1k0ε0| log ε0|/(c2k0δ) < p/2. We have shown
that P(supt≤σX(k0) d(Xt, Yt) ≤ c1) ≥ P(A2) ≥ 1 − p if ε is small. The
same argument applied with ε0 in place of c1 shows that we can choose ε
so small that P(τ+(ε0) > σX(k0)) > 1 − p/2. This and (4.32) imply that
P(A1 ∩A6) > 1− 2p.

We make k0 larger, if necessary, so that by Lemma 4.2 (ii) we have
P(σY (2k0) ≤ σX(k0)) ≤ p/6. By the same lemma, we can choose C2 so
that P(C2k0δ ≤ σX(k0)δ) ≥ 1− p/6. Then we can make ε so small that the
same argument that leads to (4.32) gives

P

(∫
T c∩[0,σY (2k0)∧τ+(ε0)]

|ν(Ys)|dLYs ≥ C2k0δ

)
≤ p/6.
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Recall that P(τ+(ε0) > σX(k0)) > 1 − p/2. Combining all these estimates,
we obtain P(A1 ∩A6 ∩ Ã6) > 1− 3p.

Recall the definition of events A′j and Ã′j . By enlarging k0, if necessary,
and making ε smaller, we obtain the same estimates for events A′j and Ã′j as
for Aj and Ãj , for example, P(A′1 ∩A′6 ∩ Ã′6) > 1− 3p.

By Lemma 4.1 (ii), for some C3, C4 ∈ (0,∞),

P(Ak7) ≤ C3 exp(−C4(c3 log(k + 2))2).

We choose c3 so large that
∑∞
k=0 P((Ak7)c) ≤ p.

Let c4 be the constant called c1 in Lemma 3.8.
We make ε smaller, if necessary, so that

γ
df= ε exp(−c2(k0 + k)(Λ(D)− 7δ) + c4(1 + (c3 log(k + 2))2))

is smaller than the constant ε0 in Lemma 4.8, for k ≥ 0. Let C5 be the
constant c1 of Lemma 4.8. Using the strong Markov property at σX(k0 + k),
and applying Lemma 4.8, we see that for k ≥ 0,

P((Ak8)c) ≤ 1
c2δ

E

∣∣∣∣∣
∫
T c∩[σX(k0+k),Tk]

ν(Xs)dLXs

∣∣∣∣∣
≤ 1
c2δ

ν∗E
∫
T c∩[σX(k0+k),Tk]

dLXs

≤ 1
c2δ

ν∗C5γ| log γ|.

We make ε smaller, if necessary, so that
∑∞
k=0 P((Ak8)c) ≤ p.

We apply Lemma 4.8 to Yt in place of Xt to see that for k ≥ 0,

P((Ãk8)c) ≤ 1
c2δ

E

∣∣∣∣∣
∫
T c∩[σX(k0+k),T∗k ]

ν(Ys)dLYs

∣∣∣∣∣
≤ 1
c2δ

ν∗E

∣∣∣∣∣
∫
T c∩[σX(k0+k),T∗k ]

dLYs

∣∣∣∣∣
≤ 1
c2δ

ν∗C5(c3 log(k + 2))2γ| log γ|.

We make ε smaller, if necessary, so that
∑∞
k=0 P((Ãk8)c) ≤ p.

We choose c5 ∈ (3/2, 2) and C6 such that, by Lemma 4.6,

P((Ak9)c) ≤ εC6 exp(−C6c2(k0 + k)(Λ(D)− 7δ)).

By making ε smaller, if necessary, we obtain
∑∞
k=−1 P((Ak9)c) ≤ p/2. Note

that the summation index starts from k = −1, not k = 0 (obviously, we can
assume that k0 > 1).
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Choose a c6 ∈ (0, 1). By Lemma 4.9, for some C7, C8, and k ≥ 0,

P((Ak10)c | Ak−1
9 ) ≤ 1

c2δ
C7ε

C8 exp(−C8c2(k0 + k)(Λ(D)− 7δ)).

We make ε smaller, if necessary, so that
∑∞
k=0 P((Ak9)c ∪ (Ak10)c) ≤ p.

We decrease the value of ε once again so that the argument of τ+ in the
definition of Tk is less than the constant ε0 in the statement of Lemma 3.6 for
k ≥ k0, assuming that the constant c1 in Lemma 3.6 takes the value c2δ/3.

By our choice of the parameters we arrive at the following bound,

P
(
A1 ∩A2 ∩A3 ∩ Ã3 ∩A4 ∩A5 ∩A6 ∩ Ã6(4.33)

∩A′1 ∩A′2 ∩A′3 ∩ Ã′3 ∩A′4 ∩A′5 ∩A′6 ∩ Ã′6

∩
∞⋂
k=0

(Ak7 ∩Ak8 ∩ Ãk8 ∩Ak9 ∩Ak10)
)
> 1− 21p.

Step 3. We will assume that all parameters have the values chosen in
the previous step and that all events that appear in (4.33) hold. Given this
assumption, we will prove that (log ρt)/t ∈ [−Λ(D)− 8δ,−Λ(D) + 8δ] for all
t ≥ σX(k0).

Recall that d(X0, Y0) = ε > 0. First we will deal with the case t = σX(k0).
Since A3, Ã3, A6 and Ã6 hold,

(4.34)

∣∣∣∣∣
∫
T ∩[0,σX(k0)]

ν(Xs)dLXs − σX(k0)
1

2|D|

∫
∂D

ν(y)dy

∣∣∣∣∣ ≤ 2σX(k0)δ,

and

(4.35)

∣∣∣∣∣
∫
T ∩[0,σX(k0)]

ν(Ys)dLYs − σX(k0)
1

2|D|

∫
∂D

ν(y)dy

∣∣∣∣∣ ≤ 2σX(k0)δ.

Since A1 and A2 hold, we can use Lemma 3.6 and (4.30) to conclude that∣∣∣∣∣log ρ̃σX(k0) − (1/2)
∫
T ∩[0,σX(k0)]

(ν(Xs)dLXs + ν(Ys)dLYs )

∣∣∣∣∣
≤ (c2δ/3)(k0 + LYσX(k0

)

≤ σX(k0)δ.

This and (4.34)–(4.35) yield,

(4.36)
∣∣∣∣log ρ̃σX(k0) − σX(k0)

1
2|D|

∫
∂D

ν(y)dy
∣∣∣∣ ≤ 5σX(k0)δ.

Since A4 and A5 are assumed to hold,∣∣∣∣log ρσX(k0) − σX(k0)
1

2|D|

∫
∂D

∫
∂D

| log cosα(z, y)|ωz(dy)dz
∣∣∣∣ ≤ 2σX(k0)δ.
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This and (4.36) imply∣∣∣ log ρσX(k0) − σX(k0)
1

2|D|

∫
∂D

ν(y)dy

− σX(k0)
1

2|D|

∫
∂D

∫
∂D

| log cosα(z, y)|ωz(dy)dz
∣∣∣

≤ 7σX(k0)δ.

Hence we have log ρσX(k0)/σ
X(k0) ∈ [−Λ(D)− 7δ,−Λ(D) + 7δ]. Using events

A′j and Ã′j in place of Aj and Ãj , we can also prove that log ρσX(k0−1)/σ
X(k0−

1) ∈ [−Λ(D)− 7δ,−Λ(D) + 7δ].
Suppose that

log ρσX(k0+j)/σ
X(k0 + j) ∈ [−Λ(D)− 7δ,−Λ(D) + 7δ]

for some k ≥ 0 and all j ≤ k. We will show that the same holds for j = k+ 1.
The event Ak7 holds so

(4.37) LXσX(k0+k+1) − L
X
σX(k0+k) + LYσX(k0+k+1) − L

Y
σX(k0+k)

≤ 1 + (c3 log(k + 2))2.

By the induction assumption,

(4.38) d(XσX(k0+k), YσX(k0+k)) ≤ ε exp(−σX(k0 + k)(Λ(D)− 7δ)).

This, (4.37) and Lemma 3.8 imply that

sup
t∈[σX(k0+k),σX(k0+k+1)]

d(Xt, Yt)

≤ ε exp(−σX(k0 + k)(Λ(D)− 7δ) + c4(1 + (c3 log(k + 2))2).

This and the assumption that Ak7 holds show that Tk = σX(k0 + k+ 1) ≤ T ∗k .
By (4.38) and (4.30),

d(XσX(k0+k), YσX(k0+k)) ≤ ε exp(−c2(k0 + k)(Λ(D)− 7δ)),

so the indicator functions in the definitions of events Ak8 and Ãk8 take values
1. Since these events are assumed to hold, we obtain∣∣∣∣∣

∫
T c∩[σX(k0+k),σX(k0+k+1)]

ν(Xs)dLXs

∣∣∣∣∣ ≤ c2δ,
and ∣∣∣∣∣

∫
T c∩[σX(k0+k),σX(k0+k+1)]

ν(Ys)dLYs

∣∣∣∣∣ ≤ c2δ.
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By the induction assumption, these estimates hold for all n = 0, 1, . . . , k in
place of k, so ∣∣∣∣∣

∫
T c∩[0,σX(k0+k+1)]

ν(Xs)dLXs

∣∣∣∣∣ ≤ c2(k + 1)δ,

and ∣∣∣∣∣
∫
T c∩[0,σX(k0+k+1)]

ν(Ys)dLYs

∣∣∣∣∣ ≤ c2(k + 1)δ.

This, (4.30), and the inequalities in A3 and Ã3 imply that∣∣∣∣∣
∫
T ∩[0,σX(k0+k+1)]

ν(Xs)dLXs − σX(k0 + k + 1)
1

2|D|

∫
∂D

ν(y)dy

∣∣∣∣∣(4.39)

≤ 2σX(k0 + k + 1)δ,

and ∣∣∣∣∣
∫
T ∩[0,σX(k0+k+1)]

ν(Ys)dLYs − σX(k0 + k + 1)
1

2|D|

∫
∂D

ν(y)dy

∣∣∣∣∣(4.40)

≤ 2σX(k0 + k + 1)δ.

Since Tk = σX(k0 + k + 1) ≤ T ∗k and A2 holds, Lemma 3.6 and (4.39)–(4.40)
imply that, ∣∣∣∣log ρ̃σX(k0+k+1) − σX(k0 + k + 1)

1
2|D|

∫
∂D

ν(y)dy
∣∣∣∣(4.41)

≤ (c2δ/3)(k0 + LYσX(k0
) + 4σX(k0 + k + 1)δ

≤ 5σX(k0 + k + 1)δ.

In view of the assumption that A4, A5 and Aj10 hold for all j = 0, . . . , k,
and using (4.30), we have∣∣∣∣log ρσX(k0+k+1) − σX(k0 + k + 1)

1
2|D|

∫
∂D

∫
∂D

| log cosα(z, y)|ωz(dy)dz
∣∣∣∣

≤ 2σX(k0 + k + 1)δ.

This combined with (4.41) shows that∣∣∣∣∣ logρσX(k0+k+1) − σX(k0 + k + 1)
1

2|D|

∫
∂D

ν(y)dy

− σX(k0 + k + 1)
1

2|D|

∫
∂D

∫
∂D

| log cosα(z, y)|ωz(dy)dz
∣∣∣∣

≤ 7σX(k0 + k + 1)δ.
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In other words, log ρσX(k0+k+1)/σ
X(k0 + k+ 1) ∈ [−Λ(D)− 7δ,−Λ(D) + 7δ].

This completes the induction step.
We have proved that if the events in (4.33) hold then

log ρσX(k0+k)/σ
X(k0 + k) ∈ [−Λ(D)− 7δ,−Λ(D) + 7δ]

for all integer k ≥ 0. We will extend this claim to all real t greater than some
t1 < ∞. By Lemma 4.2 (ii), limk→∞ σX(k0 + k + 1)/σX(k0 + k) = 1, a.s.
Lemma 3.8 and (4.37) imply that for t ∈ [σX(k0 +k), σX(k0 +k+ 1)] we have

log ρt − log ρσX(k0+k) ≤ C9(1 + (c3 log(k + 2))2),

log ρσX(k0+k+1) − log ρt ≤ C9(1 + (c3 log(k + 2))2).

These observations easily imply that for some t1 < ∞ and all real t ≥ t1 we
have (log ρt)/t ∈ [−Λ(D)−8δ,−Λ(D)+8δ]. Recall from Step 2 that this holds
with probability greater than 1− 21p. Since p and δ are arbitrarily small, the
proof is complete. �
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[FOT] M. Fukushima, Y. Ōshima, and M. Takeda, Dirichlet forms and symmetric Markov
processes, de Gruyter Studies in Mathematics, vol. 19, Walter de Gruyter & Co.,
Berlin, 1994. MR 1303354 (96f:60126)

[H] E. P. Hsu, Multiplicative functional for the heat equation on manifolds with bound-

ary, Michigan Math. J. 50 (2002), 351–367. MR 1914069 (2003f:58067)
[KS] I. Karatzas and S. E. Shreve, Brownian motion and stochastic calculus, Graduate

Texts in Mathematics, vol. 113, Springer-Verlag, New York, 1991. MR 1121940
(92h:60127)



268 KRZYSZTOF BURDZY, ZHEN-QING CHEN, AND PETER JONES

[LS] P.-L. Lions and A.-S. Sznitman, Stochastic differential equations with reflecting
boundary conditions, Comm. Pure Appl. Math. 37 (1984), 511–537. MR 745330

(85m:60105)
[M] B. Maisonneuve, Exit systems, Ann. Probability 3 (1975), 399–411. MR 0400417

(53 #4251)

[T] M. Tsuji, Potential theory in modern function theory, Maruzen Co. Ltd., Tokyo,
1959. MR 0114894 (22 #5712)

[Z] Z. X. Zhao, Uniform boundedness of conditional gauge and Schrödinger equations,
Comm. Math. Phys. 93 (1984), 19–31. MR 737462 (85i:35041)

K. Burdzy, Department of Mathematics, Box 354350, University of Washington,

Seattle, WA 98195-4350, USA

E-mail address: burdzy@math.washington.edu

Z.-Q. Chen, Department of Mathematics, Box 354350, University of Washing-

ton, Seattle, WA 98195-4350, USA

E-mail address: zchen@math.washington.edu

P. Jones, Department of Mathematics, Yale University, PO Box 208283, New

Haven, CT 06520-8283, USA

E-mail address: jones@math.yale.edu


