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SYNCHRONOUS COUPLINGS OF REFLECTED BROWNIAN
MOTIONS IN SMOOTH DOMAINS

KRZYSZTOF BURDZY, ZHEN-QING CHEN, AND PETER JONES

Dedicated to the memory of J.L. Doob

ABSTRACT. For every bounded planar domain D with a smooth bound-
ary, we define a “Lyapunov exponent” A(D) using a fairly explicit for-
mula. We consider two reflected Brownian motions in D, driven by the
same Brownian motion (i.e., a “synchronous coupling”). If A(D) > 0
then the distance between the two Brownian particles goes to 0 exponen-
tially fast with rate A(D)/(2|D|) as time goes to infinity. The exponent
A(D) is strictly positive if the domain has at most one hole. It is an
open problem whether there exists a domain with A(D) < 0.

1. Introduction and main results

Suppose D C R? is an open connected bounded set with C*-smooth bound-
ary, not necessarily simply connected. Let n(z) denote the unit inward normal
vector at € 9D. Let B be standard planar Brownian motion and consider
the following Skorokhod equations,

t
(1.1) Xt=x0+Bt+/ n(X,)dLX for t > 0,
0

¢
(1.2) Y, =yo + B; +/ n(Y,)dLY for ¢ > 0.
0

Here LX is the local time of X on OD. In other words, LX is a non-
decreasing continuous process which does not increase when X is in D, i.e.,
JoS1p(Xy)dLY¥ = 0, a.s. Equation (1.1) has a unique pathwise solution
(X, L¥) such that X; € D for all t > 0 (see [LS]). The reflected Brownian
motion X is a strong Markov process. The same remarks apply to (1.2), so
(X,Y) is also strong Markov. We will call (X,Y) a “synchronous coupling.”
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Note that on any interval (s, ) such that X,, € D and Y,, € D for all u € (s,1),
we have X, — Y, = X, — Y} for all u € (s,1).

Before we state our main results, we will introduce some notation and
make some technical assumptions on D. We will assume that for every point
x € 0D, there exists a neighborhood U of « and an orthonormal system C'S,.
such that n(z) = (0,1) and = = (0,0) in CS,, and 0D NU is a part of the
graph of a function yo = 1, (y1) satisfying 1. (y1) = (1/2)v(z)y?+O(y3). This
defines the curvature v(x) for 9D at x. We will assume that there is N1 < oo
such that for every unit vector m, there are at most N points x € 9D with
n(r) = m. Recall that 9D is assumed to be C*-smooth. We will assume that
there is only a finite number of z € 9D with v(z) = 0 and that for every such
x, we have ¥, (y1) = c.yi + O(y}) with ¢, # 0. The distance between x and
y will be denoted d(z,y).

THEOREM 1.1. If D satisfies the above assumptions and it has at most
one hole th_en CKXt,Y}) — 0 as t — o0, a.s., for every pair of starting points
(.’lﬁo,y()) €D xD.

The above theorem complements the results in [BC] where it has been
proved that the distance between X; and Y; converges to 0 as ¢ — oo for
two classes of domains: (i) polygonal domains, i.e., domains whose bound-
ary consists of a finite number of closed polygons, and (ii) “lip domains”,
i.e., bounded Lipschitz domains which lie between graphs of two Lipschitz
functions that have Lipschitz constants strictly less than 1. The number of
holes plays no role in the case of polygonal domains but it is an open problem
whether it does in the case of smooth domains (see Section 2).

Earlier research of Cranston and Le Jan ([CLJ1], [CLJ2]) on synchronous
couplings of reflected Brownian motions was focused on convex domains. In
that case, it is clear that ¢t — d(X¢,Y};) is non-increasing. Cranston and Le
Jan proved that for a large class of convex domains, d(X;,Y;) > 0 for all
t > 0, as., if d(Xo,Yy) > 0. The present paper, especially Theorem 1.2
below, answers a problem posed at the end of [CLJ1] and improves on the
estimate given in the Appendix of [CLJ2].

Next we will present our main technical result on the “Lyapunov exponent,”
which is a crucial step in the proof of Theorem 1.1. We need some more
notation. Let 0¥ = inf{s > 0: LX > t}. For every bounded planar domain
D we have lim; ., L;¥ = o0 so 0;* < oo for all t+ > 0, a.s. The arc length
measure on dD will be denoted “dz”, e.g., we will write faD f(z)dz to denote
the integral of f with respect to the arc length. For any x,y € 9D, we let
a(z,y) be the angle formed by the tangent lines to D at z and y, with the
convention that a(z,y) € [0,7/2]. For every point x € 9D, let w,(dy) be
the “harmonic measure” on dD with the base point z, defined as follows.
Let K(x,y), y € D, be the Martin kernel in D with the pole at z, i.e.,
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the only (up to a multiplicative constant) positive harmonic function in D

which vanishes everywhere on the boundary of D except for a pole at =x.

Then we let w,(dy) = a, %@?)dy where the constant a, is chosen so that

lim,_,, 7d(z,y)?w,(dy)/dy = 1. Let |D| denote the area of D.

THEOREM 1.2. Let
(1.3) A(D) :/ V(.’E)dl’+/ / | log cos oz, y)|wy (dy)dx.
oD oD JoD

If A(D) > 0, then for any xo,yo € D, a.s.,

L logd(X,,Y) _A(D)

14 = — .

By the Gauss-Bonnet Theorem, the first integral in (1.3), that is,
Jop v(x)dz, is equal to 2mx(D), where x(D) is the Euler characteristic of
D. In our case, x(D) is equal to 1 minus the number of holes in D. We
are not aware of a simple representation of the second (double) integral in
(1.3). The integral [, v(z)dz, which appeared in [CLJ2], emerges in our
arguments as the limit of (1/t) fg V(Xs)de when ¢ — oo. See [H] for some
results involving f(f v(Xs)dLX.

It is elementary to check using the definition (1.3) that A(D) is invariant
under scaling, i.e., for any a > 0, A(D) = A(aD), where aD = {zr €e R? : z =
ay for some y € D}.

We will now explain the intuitive content of Theorem 1.2. The disc with
center x and radius r will be denoted B(x,r). Suppose that at some time ¢,
d(X;,Y;) is very small so that when one of the processes is on the bound-
ary of the domain then 9D looks like a very flat parabola inside the disc
B(X:,2d(X,,Y:)). Suppose further that the line segment X, Y; is “almost”
parallel to dD. Then the local time components in (1.1) and (1.2) will be al-
most identical over a short time period [t, ¢+ At], except for a small difference
between the reflection vectors due to the curvature of D. This small differ-
ence translates into the first integral in (1.3). From time to time, X makes
large excursions from dD, whose endpoints are at a distance comparable to
the diameter of D. At the end of any such excursion, one and only one of
the processes X or Y gets a substantial local time push, until again X;,Y; is
almost parallel to dD. This results in the reduction of d(X;,Y;) by a factor
very close to cosa(z,y), where x and y are the endpoints of the excursion.
The double integral on the right hand side of (1.3) represents the change in
d(X;,Y;) due to large excursions. We find it surprising and intriguing that the
magnitudes of the two phenomena affecting the distance d(X¢,Y}:), described
above, are comparable and give rise to two “independent” terms on the right
hand side of (1.3).
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We will briefly sketch the idea behind the proof of Theorem 1.2. First, we
prove that the distance between the particles will be small at least from time
to time, so that we can apply methods appropriate for processes reflecting on
very flat parabolas. The main part of the proof deals with the two phenom-
ena described in the previous paragraph. When the line segment X;,Y; is
“almost parallel” to 0D and one or both processes reflect on 9D, the change
of d(X¢,Y;) is “almost” deterministic in nature and so are our methods. The
change in d(X¢,Y:) due to “large” excursions of X; in D is much harder to
analyze and that part of the proof is very complicated. We list here several
of the challenges. First, it is conceivable that even a single excursion may
result in a reduction of d(X;,Y;) to 0, if the endpoints of the excursion are
at x,y € 0D with cosa(z,y) = 0. Proving that this is not the case takes
considerable effort. Second, we use excursion theory and ergodicity of X; to
prove that log d(X;,Y;) obeys a strong law of large numbers, in the sense of
(1.4). The problem here is that although X; is recurrent and ergodic, the
vector process (X¢,Y;) is neither, and so we have to analyze the behavior of
Y; by proving that it is “close” to that of X;. Finally, one has to find up-
per bounds for probabilities of various “unusual” events which clearly cannot
happen, from the intuitive point of view, but which have to be accounted for
in a rigorous argument.

The rest of the paper is organized as follows. Section 2 is devoted to the
discussion of some open problems and examples, mostly related to Theorem
1.1. Tt also contains a (very short) proof of Theorem 1.1. The proof of
Theorem 1.2, consisting of many lemmas, is given in Sections 3 and 4. Most
arguments in Section 3 are deterministic or analytic in nature. Section 4
contains arguments based on the excursion theory.

We are grateful to Greg Lawler, Nick Makarov, Don Marshall and Balint
Virdg for very useful discussions and advice.

2. Examples and open problems

The paper was inspired by the following problem which still remains open.

PROBLEM 2.1.
(i) Does there ezist a bounded planar domain such that with positive prob-
ability,
limsup d (X3, Y;) > 07

t—o0

(ii) Does there exist a bounded domain D with A(D) < 07
The two problems are related to each other via the following conjecture.

CONJECTURE 2.2. If A(D) < 0 then with probability one,
limsupd (X4, Y:) > 0.

t—o0
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We believe that the above conjecture can be proved using the same methods
as in the proof of Theorem 1.2. Since we do not know whether any domains
with A(D) < 0 exist, we have little incentive to work out the details of the
proof for Conjecture 2.2.

A technical problem arises in relation to Problem 2.1 (i)—it is not obvious
how to define a “synchronous coupling” of reflected Brownian motions in an
arbitrary domain. It is desirable from both the technical and the intuitive
point of view to have the strong Markov property for the process (X¢,Y3).
See [BC] for a discussion of these points. So far, the existence of synchronous
couplings of reflected Brownian motions with the strong Markov property can
be proved only in those domains where the stochastic Skorokhod equations
(1.1)~(1.2) have a unique strong solution. A recent paper ([BBC]) shows
that this is the case when D is a planar Lipschitz domain with the Lipschitz
constant less than 1.

We will next present some speculative directions of research related to Prob-
lem 2.1 (ii). We start by explaining how Theorem 1.1 follows from Theorem
1.2.

Proof of Theorem 1.1. If D has at most one hole then the first integral on
the right hand side of (1.3) is equal to 27 or 0, by the Gauss-Bonnet Theorem.
The integrand in the double integral in (1.3) is non-negative and it is easy
to see that it is strictly positive on a non-negligible set. Hence, A(D) > 0
and, consequently, (1.4) holds, according to Theorem 1.2. Thus, Theorem 1.1
follows from Theorem 1.2. O

The above proof suggests the following strategy for finding a domain with
A(D) < 0. One should find a domain where the first integral on the right hand
side of (1.3) is significantly less than zero. This is because the contribution
from the second term is always non-negative. In other words, one has to
consider domains with many holes because, as we have already mentioned in
Section 1, the first term is equal to 1 minus the number of holes, multiplied
by 2w. The obvious problem with this strategy is that punching holes in a
domain may increase the double integral on the right hand side of (1.3), and
this may offset the effect of holes on the first integral.

Here is a possible avenue of research based on the above idea. Suppose
that D has a large number of small holes. Here “small” means that the holes
have diameters very small in comparison with the diameter of the domain.
Let us assume that distances between different holes, and distances between
holes and the outside boundary of D are large in comparison with diameters of
holes. Then it is not hard to see that the right hand side of (1.3) is very close
to the sum of analogous formulas for each connected component of 0D. In
other words, there is little interaction between different connected components
of D, if the holes are small and far apart. If we can find a hole with the
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shape which yields A(D) < 0 for a single hole, then A(D) < 0 for a domain
D with a large number of small holes of this shape.

Simple heuristic estimates show that if 9D has “approximate” corners,
like a polygonal domain (the corners have to be “approximate” because the
domain has to be smooth), then the double integral on the right hand side
of (1.3) is very large. Domains, or rather holes, with this property will not
help us in our search for a domain D with A(D) < 0. The ultimate domain
without corners is a disc. At the moment we are concerned with “holes” so
we will find A(D) for D which is the exterior of a disc.

Recall that a disc with center x and radius r is denoted B(x,r).

PropPOSITION 2.3. If D = B((0,0),1)¢ then A(D) =

Proof. Recall that the first integral in (1.3) is equal to —27. We will pa-
rametrize D using 6 € [0,27) and writing x = €? for x € 9D. The formula
for the harmonic measure in D is well known and easy to derive using stan-
dard complex analytic methods (conformal mappings). This easily leads to
the following formula for the “harmonic measure” w,,

wy(dy) _ 1

dy drsin® (52’

where z = € and y = ¢, Thus the double integral in (1.3) is equal to

27 p2m / 2m
[ [ o0 0y o [ e,
47 sin ) o 4msin (9/2)

[ losleosto,
0

sin?(0/2)
We have
™/2 | log | cos(0)]| L ™/2 Jog cos(6)
/0 sin?(0/2) a0 = /0 sin?(0/2) a6
= [2(0 + cot(0/2) log cos § — log(cos(0/2) — sin(0/2))
+ log(cos(6/2) + sin(6/2))] 0:2/2
=m+ 2log 2,

and
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/ “O.g LCOS(G)HdO _ _/ IOg_(_QCOS(G))dO
x/2  sin“(6/2) x/2  sin“(0/2)
{2(9 + cot(6/2) log(— cos @) — log(sin(0/2) — cos(6/2))

O=m
+ log(cos(6/2) + sin(6 /2))]
0=m/2
=7 —2log?2,
S0
2m 2m 1 ! ™11
[ [Tl gy [ e
4rsin®(552) o sin“(0/2)
and A(D) = 0. O

We have proved that A(D) = 0 for the exterior of a disc by a brute force
calculation. It is a natural question whether the same result follows from some
elegant symmetry argument—we have not found one so far.

Since A(D) = 0 for the exterior of the disc, discs are not helpful as holes
in the (hypothetical) construction of a domain D with A(D) < 0. Our next
observation is that the exterior of a line segment would be a great candidate
for a useful hole. This is because for any points  and y on a line segment,
we have a(z,y) = 0 and, therefore, the double integral on the right hand
side of (1.3) vanishes for the exterior of a line segment. Hence, A(D) < 0 for
the exterior of a line segment. Unfortunately, we cannot use line segments as
holes because their boundaries are not smooth. Instead, we can try a domain
“close” to a line segment but with a smooth boundary. A natural candidate is
a very elongated ellipse. Our preliminary numerical calculations showed that
A(D) = 0 for the exterior of any ellipse. We are grateful to Bélint Virdg for
the following rigorous proof of this result.

PROPOSITION 2.4. If D is the exterior of an ellipse then A(D) = 0.

Proof. We will use complex analysis and complex notation in this proof.
Recall that A(D) is invariant under scaling. Hence, we can consider any
ellipse with the given eccentricity. In other words, it is enough to prove that
the proposition holds for any ellipse D that can be represented as D = g(U),
where U = B(0,1), g(2) = z + a/z, and a is any real number in (0, 1).

We start by proving the following claim. Suppose that f is an analytic
function in U, f(1) is purely imaginary, and f’(1) is real. Then

(2.1) [ el =)

vl —af
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Since Rf(y) is harmonic in U and continuous on U,

2
R = 5 [ R0,

21 Jou ly

for y € U. We have assumed that f(1) is imaginary and f’(1) is real, so, by
dominated convergence,

) RO - REO)

r—0,r>0 T
1 1—[1—r?
Tﬂén;“l>0 27 /BU f(x)r|lfrf:£|2| o
T 1—z2 "
U

We have shown that (2.1) holds.

The first integral in (1.3) is equal to —27. It will suffice to show that the
second (double) integral is equal to 2. The second integral in (1.3) is equal
to

. \
/ / logﬂ% \9 (r yg (y)) \de||dy|
au Jou —y[? .

Note that ¢'(z) =1 —a/z? and for 2 € OU, z = 1/z. Let 8 = 1/(2¢'(y)y) for

some y € OU. If we write h(z) = R (zg Ewg) then for x € U, we have

h(z) = R(28¢' (z)x) = By (x)x + By’ (x)Z
— B(1— a/s)z + B(1 - az®)(1/2).
We have

oo (222). WOy, M = (55)
g
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Recall that |y| = 1. Substituting = y/v, we see that the last integral is
equal to

1 Riog (h(y/v)- ) op 1 Rlog (ny/o)- 55)
;/EW |z —y[? m|dv| N ;/SU 11— o2 |dv.
‘We have
o) - S @) _ (B a/ (/o)) w/v) + B = aly/)*)(1//0)g' ()
g9'(y/v) } 1= a/(y/v)?
- g/(y)% v (B — ayﬁz)JrayUQ(ﬁ —ap)
Let

v3(B — aB) + y*(8 — ap)

y2 — av?

b

— V) - g/(y) _
o) = (/o) 28) — gy

and note that, since |v| =1,

l/ gfebg(h(y/v)'g?<zf7)v>)|dv|_l/ §Rlogk<v)|0l1)|
T Jou 11— |2 S Jou 110 .

Next we will verify that (2.1) can be applied to f(x) = log k(z). We have
for y € U,

3= 1 - 1 B y
C2(yy 20 —a/yP)y 2y —a)
G- ¥ _ Vy — _ y
20 —a)  2((1/y)2—a) 2(1—ay?)’
B8 y-a
B 1 —ay?’
B—ap _ 2(y§—a) - a2(1}ay2) _ 1+ a® — 2ay?
B - aﬂ 2(1}ay2) - a2(y2yfg,) y2 — 2a + a2y27
o v (B—af)+yR(B—aB) 1 0*(B—ap)+y*(B —apf)
k'(’U) =g (y)y y2 — av2 - ﬁ y2 — cw2 )

k(1) = 1 (B-ap)+y*(B-af) _ (B/B—a)+y*(1—aB/p)

2 yP—a 2(y* —a)
a0 oefg)
- 2(y2 — a) =1,
log k(1) = 0,
B— 2 _ 4992 273 2a 7
K (v) = gl(y)va(ﬂ af)(y* — av?) + 2av[v (25 af) +y*(3 aﬁ)]’

(y? — av?)
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20(8 — apB)(y? — av?) + 2av[v?(B — apB) + y*(B — ap)]
(y? — av?)[v?(B — af) + y*(8 — af)]

o / o _ Q(B—aﬂ)(y2 7a)+2a[(3*a/6)+y2(6*a5”
(log kY (1) = K{L)/K{1) % —){(F—aB) + y2(3—aB)
25-a8) . 2
G—aB)+25—aB) P —0)
2 . 2a
g) (¥2 —a)
2

K (0)/k(v) =

)

1492

2a
y* —a)

(5
2(y? — 2a + a®y?) 2a
2y? — 2a + 2a2y? — 2ay* + (y2 —a)
(1—a?)y?
(y* —a)(1 —ay?)

=(1 faQ)

1
(1—a/y*)(1 - ay?)

1
—(1-a®)——_ cR.
( a)ll—ayQIQE

Since Rlog k(1) = 0 and (log k)'(1) is real, we can apply (2.1) to obtain

o ER e = o)

v [1—vf?

I

logﬂ?
\g (w)\ yg (y)
(2.2) / / 5 )Idxlldyl
ou Joau Z/|

iRlogk:
-/ / RI08EW) 41y
oUu T Jou

/ _ (1 — a2)y2
- [ oyl = - [ it ay

, (1-a?y* 1
Z/8U (y? —a)(1 — ay?) ydy'

The function % has two poles inside U, at y = ++/a, and the
residue is equal to 1/2 at each of these points. Hence, by the residue theorem,
the right hand side of (2.2) is equal to 27. This completes the proof of the

proposition. O
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The last result raises some questions, but before we state them as a for-
mal conjecture, we rush to add that it is very easy to see that A(D) > 0
for exteriors of some convex smooth domains, for example, those that have
“approximate” corners.

CONJECTURE 2.5.

(i) If D is the exterior of a simply connected domain then A(D) > 0.
(ii) If D is the exterior of a simply connected domain and A(D) = 0 then
D¢ is a disc or an ellipse.

Another problem, hard to state as a formal conjecture, is to find an (easy)
way to derive A(D) for the exterior of an ellipse from the value of this constant
for the exterior of a disc. We point out an obvious fact that A(D) is not
invariant under conformal mappings. It is not hard to see that A(D) is not
invariant under the transformation (z1,x2) — (cz1, z2).

PROBLEM 2.6. Let D be the exterior of a disc. Is it true that d(X;,Y;) —
0ast— o0, a.s.?

The last problem might be hard because it deals with the “critical” case,
i.e., the case when A(D) = 0. On the other hand, the symmetries of the disc
might be the basis of a reasonably easy proof, specific to this domain.

3. Analysis of Skorokhod transforms

Notation. The following notation will be used throughout the paper.

All constants ¢y, ¢, ... will take values in (0, 00) unless stated otherwise.
We will write a Vb = max(a,b) and a Ab = min(a,b). Recall that the distance
between x,y € R? is denoted as d(x,y); the same symbol will be used to
denote the distance between a point and a set, etc. Our arguments will
involve elements of R or R?, and one- or two-dimensional vectors. We will
use | - | to denote the usual Euclidean norm in all such cases. For x,y € R2,
the meaning of |x — y| is the same as that of d(x,y) but we will nevertheless
find it convenient to use both pieces of notation. The disc with center x and
radius r will be denoted B(xz,r). Recall the definition of curvature v(z) at a
point & € 0D, from the Introduction and let v* = sup,csp |V(z)|. The unit
inward normal vector at € 9D will be denoted as n(z). We will indicate
coordinates of points and components of vectors by writing X; = (X}, X?),
Y, = (Y}, Y?), B, = (B}, B?), and n(z) = (n1(x),nz(x)), but this notation
may refer to a coordinate system specific to a proof and different from the
usual one. The angle between vectors p and r will be denoted Z(p, r), with the
convention that it takes values in [0, 7]. Recall that a(x,y) = Z(n(z),n(y)) A
(m — Z(n(z),n(y))), for x,y € OD.

The area of D and the length of its boundary will be denoted |D| and |0D],
resp.
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The distribution of the solution {(X3,Y;),t > 0} to (1.1)—(1.2) will be
denoted P*¥ and the distribution of {Xy,t > 0} will be denoted P*. We will
suppress the superscripts when no confusion may arise. We will denote the
usual Markov shift operator by 6;.

In the first of our lemmas, we will prove that for an arbitrarily small g > 0,
for any two points xq, yo € D, two synchronously coupled reflecting Brownian
motions X and Y starting from zg and yo respectively will come within e-
distance from each other in finite time a.s. This claim is very similar to Lemma
3.3 of [BC] but sufficiently different to make it impossible for us to use that
lemma in the present paper. Regrettably, we could not find a shorter proof of
this seemingly quite intuitive result.

We will write 7.7 = 77 (e) = inf{t > 0:d(X;,Y;) > e} and 77 =77 (¢) =
inf{¢t > 0:d(X,,Y;) <e}.

We remark that the following lemma holds for smooth domains in any
dimension.

LEMMA 3.1.  Consider any €9 > 0, any xo,y0 € D, and assume that
(X0,Y0) = (zo,90)- Then 77 (g9) < 00 a.s.

Proof. The proof will consist of several steps. In the first two steps, we will
prove some properties of the deterministic Skorokhod mapping.

Step 1. Let v = (y1,74%) : [0,00) — R? be a continuous function with
7(0) € D and finite variation on each bounded interval of [0,00). Let |v]s.
denote the total variation of 4 on [s,?]. We will use analogous notation for
other functions. By the results of [LS], there exists a unique pair of continuous
functions 3 : [0,00) — D and 7 : [0,00) — R? with the following properties:

() [7]s < [7]s, for every0<3<t

(i) fo 1(g.epydls = 0, where 6L o
(iii) n fo n(B3s)dl, for every t > 0, and
(iv) By =y +m, for all t > 0.

We W111 call (8,7n) the Skorokhod transform of ; sometimes we will call 3
the Skorokhod transform and denote 3 by S(7).
We will show that
(L.a) |B]st < |v)sst forallt>s >0, and
(1.b) for ¢y € (0,1), c2,c3 € (0,00), there exists ¢4 > 0 such that if 3} —
Ao < (L=e1)(Ve, =%)s %, =76 > c2, and [v]o,r, < c3 then []o,, —
[Blot > ca.
According to (8’) of [LS],
(3.1) dly = =1op(Be)(n(Br), dye)

and so
(3.2) dpy = dye +n(By)dly = dyy — 1op(Be)n(B) (n(Be), dye)-
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This proves that |3]s: < [7]s,: for any 0 < s < ¢, i.e., this proves (1.a).

Let 6; denote the angle between n(5;) and dy; whenever 3; € 9D and dy,
is defined. Otherwise, define 6; = 7/2. Note that ¢; is non-decreasing, by
its definition in (ii), so (3.1) implies that 6; € [T, 7]. Recall that n(z) =
(ni(z),nz(z)). By (3.2),

t1 t1
/ | cos Os|dys| > / n; (Bs) cos Osdrys
0 0
= (1, =) — (B, = Bo)
> c1(v, — ) = cics.

Since fotl |dvs| = [V]o.t, < 3, for 6 := min{1, ¢;c2/(2¢3)} we have from the
above

ty
(3.3) / | cos 93|1{95€[%+57 ﬂ]}|d’}/s‘ > c1c9 —c38ind > creo/2.
0

On the other hand, |df;| = |d7| sin§; and so
ty
oss = Blos = [ (=sing)idr
0

I A
5/ cos” O |drys|
0

1M )
5/0 1{65€[§+6,7r]} COS 95\d75|

sing &
5 /0 Lio.e(z+5,m)y| cos Os| |ds|

c1co8ind
— =4,
4

Y

Y

v

This proves (1.b).

Step 2. Since D is bounded and has a smooth boundary, there is a constant
c1 < oo such that any two points z,y € D can be connected by a C™ curve
inside D of length t; = t;(z,y) < ¢;. Consider any x,y € D, and fix some
C* curve v : [0,¢1] — D with the natural (length) parametrization, and such
that ¢1 < c1, 70 =2 and ¢, = v.

In this step, we will extend the definition of v from [0,¢1] to [0,00). We
will show that for any D and e > 0, there exists a constant co € [c1,00) such
that any curve 7 defined initially on [0, ¢1] may be extended to [0, 00) in such
a way that for some t < ¢,

(3.4) e =Sy +y—apl<e
Recall that S(7y) is the Skorokhod transform of 7 (see Step 1).
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Let {8;,0 <t < t;} be the Skorokhod transform of {v; + v, — 70,0 <
t < t1}, defined as in Step 1. We will inductively define +; for all ¢ > 0.
Let v+ = Bi—t, for t € [t1,2t1], and let {B;,t € [t1,2t1]} be the Skorokhod
transform of {; + v2t, — yt,,t € [t1,2t1]}. We continue by induction, i.e., we
let v = Bi—kt, fort € [kt1, (k+1)t1],, k > 2, and we let {5y, t € [kt1, (k+1)t1]}
be the Skorokhod transform of {~; +~(k41y¢, — Vre, st € [kt1, (k4 1)t1]}. Note
that both v, and 3 stay in D for all ¢t > 0. Clearly

(3.5) B=8S(v+y—ux) and v¢ = Bi—¢, for every t > t.

By (1.a) in Step 1 and (3.5), we have |v]|s; <t—sforall 0 <s <t < oco.

If |70 — Bo| < € then we are done. Otherwise, at least one of the following
inequalities holds, |v¢ — 85| > /2 or |7¢ — B3| > /2. We will assume without
loss of generality that it is the first of the two inequalities that holds and
we will make another harmless assumption that in fact v4 — 83 < —¢/2, or,
equivalently, v/, —7$ > £/2. Let ¢z be the diameter of D. Fix some ¢4 € (0,1)

and integer j > 1 such that Ziﬂ " le/2 > 2¢3. If we had

(3.6) Tty = Wreytr = AV eyt — Vhooyy)  for every 2 <k < j,

then we would obtain
J j
1 1 1 1 k—1
Yitr — N0 = § ity — Vik-1)t; = g ey te/2 > 2cs,
k=1 k=1

and that would contradict the definition of c3 as the diameter of D. So there
must be some kg < j such that

(3.7) ’yliotl - ’Y(lko—l)tl < C4(’Y(lko—1)t1 - ’Y(lko—z)tl)~
Let kg be the smallest integer with this property. Then
’Ylitl - ’7(1k—1)t1 > 04(7(1k_1)t1 - ’7(1k_2)t1)

for all k£ < kg and so 7(1k071)t1 — 7(1k072)t1 > 015/2. The following is equivalent
to (3.7),

’ngo*l)tl o ﬁ(lkO*Q)tl < 04(’7(1%*1)151 _’y(lkO*?)tl)'
By (1.b) of Step 1, for some c5 > 0,
(3.8) Y] (ko—2)t1,(ko—1)t1 — LB (ko—2)t1,(ko—1)t1 = C5-
If [v](k—1)t, k2, < € for some k < j + 1 then
Yk—1)t2 = Ble—1)ta | = [Yk=1)t2 = Yot | < [V =1y t1,kt2 < €,

and we can take co = jt1, i.e., there exists t < jt; with |y — 8¢ < e.
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If [v](k—1)t,,kt, > € for all k < j + 1, then by Step 1 and (3.8),
J
I_’YJO;jtl - I_ﬁJO;jtl = ZLVJ (k—1)tq1,kt1 — I_ﬁj(k'fl)tl,ktl
k=1
> Y (ko—2)t2,(ko—1)t2 = LB (ko—2)t1,(ko—1)t2 = C5-

Thus we have shown that either there exists 0 <t < jt; with |y, — B¢ < e
or [V]e,G+1yn = LBloje, < [V]ojt — ¢s. The same argument shows that
either there exists t € [kt1, (k + j)t1] with |y — 8¢] < e or

(3.9) V] e Dyer,(kr145)6 = LBl kts ey < 1V kta, (kdyen — Cs-
Recall that |v]os =t1 < c1, and

Y ktr, k)t = LB (e=1)trkty < [V (k=1)t1 0t
for all k. Hence, |v]o,jt, < jc1, and if (3.9) holds for all k& < m, then

0 < [vmt,(mtiyen < Je1 — mes.

This can be true only if m < jei/cs5. Hence, for some k < jep/es + 1 and
some t € [0, (k + j)t1] we have |y — B¢ < e.

Step 3. First, we will present a version of the “support theorem” stronger
than that given in Theorem I (6.6) in [Ba]. Recall that one calls a continuous
non-decreasing function ¢ : [0,00) — [0,00) with ¥(0) = 0 a modulus of
continuity for a function v : [0,¢;] — R? if for all s,¢ € [0,#1] we have
17 — Vsl < (]t —s|). Let Ky, denote the family of all functions v : [0,¢1] —
R? with modulus of continuity . Let P denote the Wiener measure on
C[0,t1)?, i.e., the distribution of the planar Brownian motion. It follows
easily from the existence of “Lévy’s modulus of continuity” (see Theorem
2.9.25 in [KS]), that for every ¢; € (0,00) and py < 1 there exists 1) such that
P(Kyp,,) > po. This fact can be used to modify the proof of Proposition I
(6.5) of [Ba] to show that there exists ¢ such that for any € > 0 one can find
p1 > 0 with
(3.10) P{veyy, : 0sup el <e}) > pr.

<t<t,
Let ¥ (t) = ¥(t) + At and for ¢ : [0,¢;] — R?, let
Kyiroe =17 €Ly o sup [y — | <e}.
0<t<t;

If v € Ky, and ¢ is Lipschitz with constant A then y+¢ € Ky, +,. The proof
of Theorem I (6.6) in [Ba] can be easily modified to yield the following version
of the support theorem. Suppose that €,p1 > 0 and ¢ satisfy (3.10). Then
for every A\, t; < oo and &’ > 0 one can find ps > 0 such that for any function
¢ : [0,t1] — R? which is Lipschitz with constant A and satisfies ¢(0) = 0, we
have P(KCy, +;.6,e) > p2. The important aspect of the last assertion is that
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p2 does not depend on ¢. Fix a function 1 satisfying this statement for the
rest of the proof.

Recall that S(v) denotes the Skorokhod transform of v (see Step 1) and
let €9 be as in the statement of the lemma. Let ¢; be the constant defined
in Step 2 and ¢o > ¢; be the constant in Step 2 relative to £q9/5 in place
of . By Theorem 1.1 in [LS], the Skorokhod mapping S : C([0, 2], R?) —
C([0, 2], R?) is Holder continuous on compact sets. Let K = {y € Kyy,., :
70 € D}. The set K is compact so one can find e; € (0,£¢/5) such that if
7,7 € K and |5 — 1| < &1 for 0 < ¢ < ¢, then |S(7): — S(7)¢| < €0/5 for
0 S t S Co.

Recall from Step 2 that for every pair of points z,y € D there is a curve
v =7%Y :[0,00) — D such that v = x, 7, =y for some 0 < t; < ¢, and
|7]se < t—s, for all s and ¢ in [0,1]. By Step 2, we can extend ~y to be
a curve in D satisfying (3.4) and (3.5). Note that « is a Lipschitz curve on
[0, 00) with Lipschitz constant 1.

Recall that reflected Brownian motions X; and Y; are defined in (1.1)-
(1.2) relative to a Brownian motion B; and assume that Xy = z and Yy = y.
Find py > 0 such that P(Ky, ¢,.6.6,) > p2 for every Lipschitz function ¢ with
Lipschitz constant 1 satisfying ¢(0) = 0. It follows that

(3.11) P({Bi+ 2,0 <t<ca} € Kyyepyrves) = P2
Consider w such that B.(w) + @ € Ky, ¢y yev,e, C Kypyoeo. Then
|S(B. 4+ x): — S(v"¥)¢| < e0/5 for every 0 <t < ¢s.

Clearly B. +y € Ky, ,c,. Since |By+y— (17" +y— )| < ey for t € [0, ca], we
have
[S(B-+y): —S(HY*Y+y—a)e <eo/b  for 0 <t <.

Note that by Step 2 and our choice of ¢y, there is some ty € [0, o] such
that [y;Y — S(v*Y +y — x)s,| < 0/5, for some tg € [0,cp]. Note also that
since v[0,00) C D, by the uniqueness of the Skorokhod problem, S(v) = 7.
Combining these observations, we conclude that

|Xt0 - Y;ﬁo‘ = |S(B + x)to - S(B + y)t0|
= |S(B + x)to - 'Yt0| + hto - S(’}/ Ty x)t0|
T8y +y — )i — S(B. 4 y)t|

<eo/5+¢e0/5+¢e0/5 < €o.
It follows from (3.11) that there exists p, > 0 such that for any x,y € D,
Xo = x, Yy =y, the probability that there exists tg < ¢g with d(X3,, Yz,) < £o
is greater than p,. By the Markov property applied at times jco, 7 = 1,2, ...,
the probability that there is no ¢ty < ke with d(Xy,,Y:,) < €o is bounded

above by (1 —ps)*. This implies easily that with probability one, there exists
t < oo with d(X4,Y:) < eo. O
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LEMMA 3.2. Let 6(z) denote the Euclidean distance between x and 0D.
Define Tp = inf{t > 0: X; ¢ D} and 1g(zry = inf{t > 0: Xy ¢ B(z,r)}.
Then there exists ¢y < co such that for Xg =xg € D,

(3.12) P(78(z0,r) < ™) < 16(x0) /7 forr > 6(xo).

Proof. We are going to prove that (3.12) holds for any bounded C1:1-
smooth domain in R"™, for any n > 2.

Since D is a bounded C!'''-smooth domain, the “uniform” boundary Har-
nack principle holds for D (see [A]), that is, there exist o > 0 and ¢ > 0 such
that for z € 9D, r € (0, r¢] and any non-negative harmonic functions u and v
in D N B(z,2r) that vanish continuously on 0D N B(z, 2r), we have

—§0M for any z,y € DN B(z,T).

v(y

Let {Kp(x,z); v € D, z € 0D} denote the Poisson kernel of the Brownian
motion W killed upon leaving D; that is,

~—

B [pWop)l = | Kp(r,2)6(2)o(d2)
oD
for every continuous function ¢ on 0D, where o denotes the surface area
measure. Since D is bounded C'!-smooth, it is known (see [Z]) that there
are constants ¢z > ¢o > 0 such that

co0(x) < Kp(z,2) < c30(x)
|z — 2" jz — 2|

(3.13)

for every x € D and z € dD.

Note that © — Kp(z, z) is a harmonic function in D and vanishes continuously
on 9D\ {z}.

The lemma clearly holds when 6(zg) > 7¢/8. This is because, since D is
bounded, there is R > 0 such that for every o € D, D C B(zg, R) and so
(3.12) holds trivially for » > R. Thus in the case of §(x¢) > ro/8, (3.12) holds
for every r > 0 by choosing c¢; sufficiently large.

We now assume 6(xo) < ro/8. Without loss of generality, we may and do
assume that r > 8§(xo) and B(zg,2r)° N D # (). We can further assume that
r < rg since D is bounded.

Define h(z) = P.(T8(z0,) < 7p). Clearly, h is a harmonic function in
DnB(xg,r) and vanishes continuously on 0D NB(xg, ). Let yo € D be such
that d(zg) = dist(zo,y0). By the triangle inequality, B(yo,r/2) C B(xzo,r).
Now take z € D\ B(xzg, 2r). Since zg € B(yo,r/4), we have by the boundary
Harnack inequality,

h(zo) h(z)
Kp(zo,2) - CKD(a:, 2)

for every x € B(yo,r/4).
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Let = xo + g (2o — yo). Note that h(z) <1,

|z — xo| < |2 — x| < 2|2 — x|,

N = —

and 6(x) > r/8. These facts and (3.13) imply that h(xzg) < ¢16(xg)/r. This
proves the lemma. O

We fix parameters aj,as > 0 for the rest of the paper. We will impose
bounds on their values later on. Let Sy = Uy = 0 and for k > 1 define

Sy =inf{t > Up_1 : d(X;,0D) v d(Y;,0D) < axd(Xy,Y:)?},
U, = inf{t > S : d(XhXSk) vV d(}/t,Ysk) > ald(XSMYSk)}-

We will assume that a; < 1/4. Then it is easy to see that P(Uy < oo |
Sk < 00) =1, for every k. Finiteness of S’s is less obvious. The next lemma
contains a result that is significantly stronger than the finiteness of Sj’s. This
stronger result is needed in later arguments.

LEMMA 3.3. There exist ¢1,ca,c3,¢4 € (0,00) and 9,70, po > 0 with the
following properties. Assume that Xy € 0D, d(Xo,Ys) = ¢, d(Yo,0D) = r
and let

Tl = inf{t > 0: d(Xt,Xo) V d(}/t,Yo) > Cl’l“}.
(i) Ife <eg and r < 1o then P(S; < T1,L§1 — L < ear) > po.

(ii) If e < eg and r < cze then E(L§A7+(EO) — L) < eyr.

Proof. (i) Recall the notation from the beginning of this section. Let C'S;
be the orthonormal coordinate system such that Xo = 0 and n(Xj) lies on the
second axis. Assume that ro < g9 < 1/(200v*). Let ¢5 € (0,1/6) be a small
constant whose value will be chosen later. The following definitions refer to
the coordinates in C'Sy,

Ty =inf{t > 0:Y? > 2r},
T3 =inf{t > 0: |V} = Y| > 57},
T, =inf{t >0:Y; € 0D},
Ay ={Ty < T NT3},
Ts = inf{t > 0: | X} — X}| > 2cs7}.
First we will assume that r < /2. We will show that T5 > To A T5 ATy
if A; holds. We will argue by contradiction. Assume that A; holds and

Ts <To ANT3NTy. Then Btl —Bé = Y;l —Ybl fort e [O,T{)] SO |Bt1 —B(H <csr
for the same range of t’'s. We have

Ts
X}, — X¢ =B}, — B} +/ n; (X;)dL;,
0
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S0 ‘fOTE’ n;(X;)dL;¥| > csr. We assume that g9 > 0 is so small that for r < &g

and x € B(0,2¢57), we have na(x) > |ng(x)|/(2v* - 2¢57). Tt follows that

Ts
/ no(X,)dLE > csr/(2v% - 2¢51) = 1/(407).
0
Note that B} — B3 = Y2 — Y for t € [0, Ty]. Since d(Xo, Yy) = €, we have

d(Xo,Y:) <e+/(2r)2+ (csr)2 <e+3r <3¢ fort <To ANT3 ATy
Therefore for t < Ty AT3 ATy, |Y2| < 3e. Since Ty < Ty A T3 A Ty, it follows
that
|Bf = BZ| = |V = Y2 < |[V2| + |V <6 fors,t e[0T
Thus

Ts
X%s - Xg > 7‘3%5 - B§| +[) nQ(Xt)dL%X
> —6e 4+ 1/(4v") > =620 + 1/(4v") > 44e,

and X%s > 44gg + X2 = 44eg. Let Tg = sup{t < Ts : X; € OD}. Then
B —Bj = X} — X3 > 44gg—r > 43¢0, a contradiction with the fact that
|B? — B2| < 6¢ < 6¢g for s,t € [0,Ts]. This proves that Ts > Ty A Ty A Ty if
A7 holds.

We will show that if A; holds then S; < T4. Assume that A; holds and
let T7; = sup{t < Ty : X; € 9D}. Note that neither X; nor Y; visit 9D on the
interval (T7,Ty). Hence, X1, — Y. = X7, — Y7,. If €9 and rg are sufficiently
small then |X} — Y{!| > £/2 because r < /2 and d(Yp,dD) = r. We have
assumed that A; holds so |qu4 — Y| < esr. We have proved that Ts > Ty on
Ay, s0 | X7, — X§| < 2¢s5r. Recall that ¢5 < 1/6 and r < e/2. Tt follows that

d(XTW YT7) = d(XT47 YT4> > ‘X’11"4 - Y71’4|
> |X§ - Y| - |Yg, — Yo — | X7, — X§| > /2 —3csr > /4.

On the other hand, assuming ¢y > 0 is small,

d(Xr,,Yr,) <d(Xr,, Xo) +d(Xo, Yo) +d(Yo, Y7,)

<2[Xp — Xg|+e+d(Yo,Yr) <2257+ 24 3r < 3e.
We have
Y7, — Y| =Yg, = Yo |+ Yy — Y7 | <csr+ cs5r = 2c57.

Since Yr, € 0D, X1, € D, Xp, — Y, = Xp, — Y7, d(X1,, Y1,) < 3¢, and
Y7, — Y4 | < 2¢57, we have Z(n(Yr,),n(Xr,)) < 2v% - 2(3¢ + 2¢57) < 16v%¢.
This and easy geometry show that d(Yr,,0D) < 2 2¢sr - 16v% e = 64csrv*e.
Hence,

d(Yr,,0D) < 64csrvie

d(XT7,YT7) - 6/4

= 256¢5rv™ < 128¢5v%e < 32¢5v°d(X 1y, Y1, ).
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We choose ¢5 > 0 so small that 32c5v* < as. It follows that d(Yr,,0D) <
asd(X7,,Yr,)%. We obviously have d(Xr,,0D) < asd(Xr,,Yr,)? because
Xr, € 0D. This shows that S; <77 and completes the proof that if A; holds
then Sl S T4.

Assume that A; holds and suppose that f0T4 ny(X;)dL¥ > 20r. We will
show that this leads to a contradiction. Recall that |Bf — B2?| < 8r for
s,t € [0, Ty]. We obtain

Ty
X3, = X7 — X¢ > —|B, — B +/O ny(X,)dLE > —8r + 20r = 12r.

Recall that T = sup{t < Ty : X; € dD}. We have B}, — B}, = X7, — X7 >
12r—r = 11r, a contradiction with the fact that | B —B2| < 8r for s,t € [0, T}4].
Hence, if A; holds then fOT4 ny(X¢)dL¥ < 20r. Note that ny(z) > 1/2 for all
x € D N B(0,6r), assuming that €9 > 0 is small and r < rg < g9. We have
shown that if A; holds then T5 > T}, so na(X;) > 1/2 for t € [0, T4] such that
Xy € 0D. This implies that,

(/2 - 1§) < /) - 1) < [ " (X)L < 20r
0

We have shown that {S; < T, Lfg(l — Lg( <40r} C A;. Tt is easy to see that
P(A;) > p; for some p; > 0 which depends only on ¢5. This completes the
proof of part (i) in the case r < &/2, with ¢; = 2 and ¢y = 40.

Next consider the case when r > ¢/2. Let

Tg = 1nf{t >0: d(}/hXO) > 25},

Ty =inf{t >0: X; € 0D,d(Y;,0D) < d(X;,Y:)/2},

Tio = inf{t > 0: L — LF > 20¢},

Ag ={Ty < T3},

Az ={Ty < Tz NTo}.
We will show that As C Az. Assume that Ay holds. First, we will prove
that L%i — L < 20e. Suppose otherwise, i.e., Lﬁ — L > 20e. Recall that
we are using the coordinate system CS; with the origin at Xy € 0D. Let
Ty, = inf{t > 0: |X} — X}| > 5e}. We will show that T1; > Ty. We will
argue by contradiction. Assume that Ty; < Ty. We have assumed that As
holds, so Ty1 < Ts. Then B} —B} =Y} =Y, fort € [0,T11] and |B} —B}| < 4e
for the same range of t’'s. We have

Ti1
/0 0y (X,)dL¥ | = | X} — X3 — (B, — BY)|

> |X7,, — Xg| — |Bpy, — Bj| > 5e —de =e.
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If eg > 0 is sufficiently small and £ < & then ny(z) > |ny(z)|/(2v* - 5e) for
z € dD N B(0,5¢), so [, " na(X,)dL¥ > e/(2v* - 5e) = 1/(10v%). We have
B? — B2 =Y? —Y§ for t € [0,Ty1], because Tyy < Ty, so |BZ — B2| < 4e for
s,t € [0,T11]. Recall that e < g9 < 1/(100v*). We obtain,

T11
X%11 = X%u - Xg 2 _|B%11 - B(2)| +/0 nQ(Xt)stX
> _de +1/(1007) > 62,

Let Tyo = sup{t < T1; : Xy € dD}. Then B%M — B%m = X%M - X%m >
6e — e = be, a contradiction, because |B? — B2| < 4e for s,t € [0,711]. This
proves that Ty1 > Ty.

Recall that we have assumed that Ly — Lg® > 20e. We have ny(z) > 1/2
for x € 9D N B(0,10¢), assuming ¢ > 0 is small and € < gy. Since T1; > Ty,
ny(X;) > 1/2 for t < Ty such that X; € 9D, so

Ty
X2, = X3, - X2 > —|B2, — BY| + / na(X,)dLY

> —de + (1/2)(L7, — L))

> —4e 4 10e = 6e.

Recall that T7 = sup{t < Ty : X; € D}. Then B, — B} = X7, — X7 >
6e — e = be, a contradiction, because |B — B2| < 4e for s,t € [0,711]. This
proves that if A holds then Li — L()f < 20e < 40r.

Note that XT4 - YT4 = XT7 - YT7, YT47XT7 S (9D, and T7 § T4 S T11.
Assuming that €y > 0 is small, these facts easily imply that the angle be-
tween X1 — Y7, and the tangent line to dD at Xr. is smaller than /8, so
d(Yr,,0D) < d(Xr,,Yr,)/2. Hence, Ty < Ty and, therefore, if Az occurs
then Ty < Ty < Tg A T19. This completes the proof that Ay C As.

It is easy to see that P(As) > ps > 0, where py depends only on &y and D.
It follows that P(As) > po.

We may now apply the strong Markov property at the stopping time Ty
and repeat the argument given in the first part of the proof, discussing the
case r < ¢/2. It is straightforward to complete the proof of part (i), adjusting
the values of c1, ca, 9,79 and py, if necessary.

(i) Let ¢; and ¢y be as in part (i) of the lemma, let TY = 0, and for k > 1
let

TP =inf{t > T¢ " d(X 1, X)) V d(Ype-1,Yy) > crd(Ype1,0D)},
Ty =inf{t > T4 LY — L1 > ced(Yye-1,0D)},
5 5

T8 =inf{t > TF"' .Y, € OD},
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TF =TF AT NTY,

TF = inf{t > T} : X, € OD}.
Let g > 0 be the constant which works for part (i) of the lemma. An
examination of the proof of part (i) shows that we have in fact proved a

statement stronger than that in part (i) of the lemma, namely, using the
notation of the first part of the proof,

(3.14) P(S1 <Ty ATy, LS, — LY < cor) > po.
Next we will estimate EA(Ypxp,+(c,), 0D). By Lemma 3.2,
(3.15) P( sup d(Xs, Xpx) € [27971,279] | Fra) < ced(Xqw,dD) /277
te[TF TH] ) ) !
< C7d<YT;71 , 8D)/2_j.

Write v = d(YTchq,@D), and let jo be the largest integer such that 277 >
diam(D). Consider j such that superr riart (co)) d(Xes X)) < 277, Tt is
not hard to show that if jo < j < [logeo| then d(Yrrr+ (e, 0D) < cre0277
for some c7 < oo. If j > [logeo| then d(Yprpr+(cy), 0D) < 7 + cse0277. This
and (3.15) imply that

50)7

E(d(YT§A7+(so)7aD) | ‘FTf)

< Z cre02IP( sup d(X¢, Xpp) € [279~1 277] | Fry)

- k ik
jo<j<|logeol telTy T3]

+ Z (v + cse0277)

[logeo|<j<|log~|
x P( sup d(Xt,XTf) €277 277] | ]:Tf)

te[T),TF]
+ > (vHeseo2 )P sup  d(Xy, Xpp) € 277,279 | Fpy)
§>|log| telTf T3]

< ) wee27(y/27Y)

Jjo<j<|logeol

+v+ Z 100277 (7/277) + Z c10€0277
[log eo|<j<|log | j>|log|
< eneoyllogeo| + 7 + cr2veo| log ¥| + c13vg0 < Y(1 + e13€0] log eo).-

Thus

Ed(Yrsnrt(co)) OD) | Fr) gt oot (o)
S rpr ooy (1 F crsfol log o)AV s o) OD)-
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This, (3.14) and the strong Markov property yield,

E(d(Yrpars (o) OD) (s, o1y Lird = <ot (c0)))
=B s> it crt 00y BAY T8 A+ (), OD) | Frp))
< (14 cazeollog o VE(L s, 575y Lipp—1 ot (c0)y AV i1 074 () OD))
< (1 + c13¢0]log eo)
X E(d(YTk prt () OD)1 {T§*1<T+(60)}E(1{512Tf} | ]:Té“*l))
< (1+ c13e0[logeo| ) E(d (YT5’°*1AT+(50)7 8D)1{512Tf*1}1{T§*1<T+(50)}
x(1=P(Iy ' <SS <Tf | S >T5 )
< (1 + c1ze0/logeo|)(1 — po)
X BVt (20 OD) s, o=y Lmit b (e0))
< (1+ c1ze0/logeo|)(1 — po)
XE(A(Y 7104 () OD) g, s iy Lipp 2t ()
We obtain by induction,
E(d(YTkAT+(so 8D)l{sl>T’C}1{:/“’“*1<-r+(go)})
< (14 c¢1380|log 50|) (1 - po)kEd(YTo D).
It follows that

X X
E(LS1AT+(50 L = Z E ( SiATt(e0) L ) {Sle[Tk Tk+1)})
k=0

o) k
_ . X X
=D B Lsepmrrsny D Ly crt oy Essiars (co) ~ Linrs o)
k=0 j=0
o) k
<Y B Ligiepmeroy 2 Lt crt (e 24 (Y ot ), OD)
k=0 j=0
<D BVt ) OD) L 5,518y Lt crt (2 )))

E
I
=3

NE

< > ea(1+ ceollogeo|) (1 — po)*Ed(Yro, 8D).

~
Il
=}

If we assume that ¢y > 0 is sufficiently small, this is bounded by
014Ed(Yf1—v507 8D) == Cl4d(Y0, 8D) O

Recall that a; and as are parameters in the definitions of Si’s and Uj’s
stated at the paragraph preceding Lemma 3.3.
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COROLLARY 3.4.  For any ai,az > 0, and any starting points (Xo,Yy) =
(z0,y0) € D x D, all stopping times Sy are finite a.s.

Proof. Let gy and rg be as in Lemma 3.3. By Lemma 3.1, there is a finite
stopping time Ty such that d(X7,, Y7 ) < €9 A 1. So there exist p; > 0 and
¢1 < oo such that P(T7 < ¢1) > p; > 0. Let T3 be the first time after T} when
either X or Y hits 0D, and note that d(Xr,,Yr,) = d(X1,,Yr) < €0 A ro.
Let

T3 = inf{t >1T5: d(Xt7XT2) V d(Y;/, YTZ) > CQT()}.

It is easy to see that P(Th < T3 < oo | T1 < o0) = 1 when ¢y > 0 is small.
Select such ¢y > 0 and apply the strong Markov property at 75 and Lemma 3.3
(1) to see that there exists po > 0 such that P(S; < T5 | T1 < 00) > pa. On the
other hand, for some c5 < 0o, we have P(T5 < Ty +cs3 | Th < 00) > 1—po/2. Tt
follows that P(S; < T3 < ¢1+¢3) > pip2/2 and so P(S1 > ¢;+c3) < 1 -2,
By the Markov property, P(S7 > k(c1 + ¢3)) < (1 — BLE2)F for k > 1, so
S1 < 00, a.s.

Recall that P(U, < oo | Sk < o0) = 1 for every k, according to the
remark made before the statement of Lemma 3.3. By induction and the
strong Markov property applied at Si’s and Uy’s, all stopping times Sy and
Uy are finite a.s. O

LEMMA 3.5. For any c¢; > 0, one can choose ay,as > 0 and g > 0 so
that for every k > 1 and all s,t € (Sx A 7T (), Ui A 7T (e0)), a.s.,
(X =Y, X = Ys) < c1d(Xguart (20)s YSuart(e0))-
Proof. Recall that D is assumed to be C*-smooth. Elementary geome-

try shows that for any ¢; > 0 there exist €g,a1,a2 > 0 with the following
properties. Suppose that z,y € D and r = d(z,y) < £9/2. Let

(3.16) Ay = B(x,2a17) N 0D,
Az = B(y,2a17) N 0D,
Az ={z€D:d(z,2) < 2ay7r,d(z,0D) < 2ay7?},
Ay ={z€D:d(y,2) <2ar,d(z,0D) < 2asr?},
As={z€D:FwecAj,u,w€Ay:z=v—u+w},
As={2€D:Fe€ Ay,u,w €Ay : 2=v —u+w},
A7 = A3 U A,
Ag = A4 U Ag,
B = sup{Z(zo — yo, x1 — ¥1) : To, 21 € A7,y0, Y1 € As}.

With a suitable choice of small ey, a1, as > 0, we have 8 < (¢1/4)r.
We will assume that Sy < 77 (gg) because otherwise (Sk A 7 (g0), Uk A
7%(g9)) = 0 and there is nothing to prove. Let € D be the closest point
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to Xg, and let y € 0D be the closest point to Ys,. Note that if ¢g and aq
are small then d(z,y) = r < 2d(Xg,,Ys,). We use points 2 and y to define
sets A, as in (3.16). We will argue that £(X; — Yy, X, — V) < 283, for all
s,t € (Sk,Ur A 7T (0)). Note that Xg, € A3 and Ys, € Ay. This and the
definition of § imply that £(Xg, — Ys,,x —y) < 0.

Suppose that there exists t € (Sk, Up A 77 (g0)) with Z(X; — Y,z —y) > 3
and let T = inf{t > S : L(X; — Y,z —y) > B}. By continuity, Z(Xr —
Yr,x —y) = (. Tt is impossible that both Xt and Y7 are in D, because then
we would have X; —Y; = X1 — Yr for some to > 0 and all t € (T —to, T +to).
This would imply that £(X; — Y,z —y) = § for t € (T — to,T + to), and,
therefore, inf{¢t > Sy : Z(Xy — Yy, —y) > 8} > T + o, a contradiction.
We will show that it cannot happen that Xp,Yr € 0D. Suppose that it is
true that X, Yy € 9D and recall that we are working under assumption that
T < Uy. The definition of Uy, implies that X7 € A3 C A7y and Y € A4 C Asg.
Since L(X7 — Ypr,x —y) = B, it follows that the supremum in the definition
of (3 is attained for points xg,x1,y0,y1 € 0D (take zg = x,y0 = y, 21 = Xr
and y; = Yr). Easy geometry shows that this cannot be the case because we
can slightly move either yy or y; into the interior of D to increase the value
of Z(J?O — Yo, T1 — yl)

Suppose without loss of generality that Xo € 9D and Yr € D. For some
random ¢; > 0, the process Y will not touch the boundary within [T, T + ¢1],
while the local time L¥ will have a non-zero increment, a.s. It is easy to
see that the local-time-term push that X will get over [T,T + t1] will make
(Xt — Y, x —y) smaller, and hence £(X; — Y,z —y) < S for t € [T, T + t4],
contradicting the definition of T. We conclude that £(X; — Y,z —y) < (3 for
t € (S, Ux A 77 (g0)). This and the fact that Z(Xs, — Ys,,x —y) < (3 imply
that

Z(Xt - Y%aXs - Ys) < 25 < (61/2)T < Cld(XSMYSk)v

for all s,t € (S, Ux A 71 (20)). O

Recall the definition of the stopping times Sj, Uy from the paragraph
preceding Lemma 3.3. For k > 1, define
Pt = —d(Xh %)
d(Xo,Ys)’
~ lo—o[ d(Xv; e, YU, at)
d(Xs; e Ys,nt)

Jj=1

Py = ﬁ d(Xs; 10t Y5, 41nt)

=0 d(XUj/\t7YUj/\t) ’

with the convention 0/0 = 1. Note that py = pip,. Let 7 = [y, (Sk, Ux] and
T7¢=(0,00)\ 7.
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LEMMA 3.6. For any c; > 0 there exist ag,eq > 0 such that if a1,as €
(0,a0) and d(Xo,Yy) < &g then for allt >0, a.s.,

- 1
o8 Pineteo + 5 | (A(X)LX +v(Y.)dLY)
[0,tAT(0)]NT

<a (Lfir(so) + wa(@) :

Proof. Since D is assumed to be C*%-smooth, for any ¢ € (0,1) and ¢3 > 0,
we can find €9 > 0 so small that for any =,y € 9D with d(z,y) < 2,

Ty
—(1 1/2 —c3/2 < —2 .
(= (1 e2)(1/2)0(@) — es/2)dly) < G bo -n(a)
< (= (1 =e2)(1/2)v(z) + c3/2)d(,y).
This, Lemma 3.5, differentiability of v and simple geometry show that one

can choose small aj,a2 > 0 and g9 > 0 so that for every £k > 1 and all
t € [Sk, Ux A 77 (g0)] such that X; € D, assuming Sy < 71 (&),

(—(1+ e2)(1/2)v(Xy) = e3)d(Xs,., Vs,) < %

< (_(1 - 02)(1/2)V(Xt) + C3)d(XSk7YSk)'

“n(Xy)

Analogous estimates hold for % -n(Y;). We obtain for t € [Sg,Ux A
Tt (EO)L

d(Xta }/t) - d(XSk 5 YS;C)

_ [ X, ML -X) y
- ‘/Sk d(X37Y8) (XS)dLS +/Sk d(Ys,Xs) (Ys)dLs

< [ e+ e, Yo )i
Sk

w2 + )X, Vs ar.
Sk

Thus

d(Xta Yt)
d(XSk ) Ysk)

<1-(-a)ar) [

Sk

t t

(v(X)dLE + v(Y,)dLY) + c3 / (dLX 4 dLY).
Sk
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We obtain in a similar way,

d(X:, V)

d(XSwYSk)

> 1 (14 e)(1/2) / (W(X)ALY + v(Y.)dLY) — e3 / (dLX +dLY).
S)c Sk

Note that d(X;,Y:)/d(Xs,,Ys,) € [1 —2a1,14 2a4] for t € [Sk, Uy ATT(20)],
S0

d(X:,Y:)
d(XSmYSk)
S (1 + 2&1)
A=/ [ Onany uraand) e [ @ +ae)).
Sk Sk
and
d(Xt;}/t)
d(XSk:5YSk)
Z (]. — 2@1)
Vv (1 — (14 ¢2)(1/2) /t (V(Xs)dLY + v(Ys)dLY) — c3 /t (dL¥ + dL§)> .
Sk Sk

We have 1+ a < e® for all a. For any ¢4 > 0 we can choose a; > 0 so small
that 1+a > ee~lal for q € [—2a1, 2a1]. Hence, for sufficiently small a1, and
t € [Sk, Ux A TT(g0)], assuming Sk < 77 (o),

_ d(X.Y) kH1 XU,YU
i d

pr= d(Xs,,Ys,) Ys;)

< <1 —(1/2 = ¢3/2) /t (W(X)dLY + v(Y)dLY) + cs /t

(dLX + dLSY)>
Sk Sk:

k—1 U,
<11 (1 —(1/2 - ¢3/2) / (WX )ALY + v(Y.)dLY)

J

Uj
+ 03/ (dL¥ + dLSY)>
S

J

< exp ( (1/2 - c2/2) /[ g L (YL

+c3 / (ALY +dLY) |,
[0,tAT(0)]NT
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and

pr >exp | —(1/2+ 02)/ (V(X5)dLY +v(Ys)dLY)
[0,¢AT(€0)INT
— 2¢3 / (dLY +dLY)
[0,tAT(e0)]NT

~aft/24a) | (w(X.)ldLY + (V)L )
[0,¢AT (0)]NT

2 / (aL¥ +azl)) ).
[0,tAT(g0)]NT

Since |v| is bounded and ¢, ¢35 and ¢4 are arbitrarily small, the last two esti-
mates yield the lemma. O

Recall that we have assumed that for every x € 0D, there are only finitely
many points y € 0D with a(z,y) = 0.

LEMMA 3.7. Suppose that z € 0D and let K = {y € 0D : a(z,y) = 0}
and My, = {y € 0D : a(z,y) € [27%, 27|}, There exist ko,c; < oo and
ca > 0 not depending on z such that for k > kg, the arc length measure of
M, is less than ¢127%/2 and the distance from My, to K is bounded below by
022_k.

Proof. We have assumed that the boundary of D is C*-smooth and that
there exist at most a finite number of points x1, 2, . . ., x, such that v(z;) = 0,
k = 1,...,n. Moreover, we have assumed that the third derivative of the
function representing the boundary does not vanish at any zy. This implies
that there exist dg, c3,cq > 0 such that if € 9D and d(z,zy) < dp for some
k then |v(z)| > esd(x,xy); moreover, if © € D and d(z,zy) > o for every
k =1,...,n, then |v(x)] > c4. We make §y smaller, if necessary, so that
d(xj,x) > 49 for all j # k. It is elementary to see that there exists ¢ > 0
with the following properties (i)—(iii).

(i) For every point & € 9D such that d(x, zx) > 2Jp for every k =1,...,n,
and every y € 0D with d(z,y) < do, we have |a(x,y)| > csd(z, y).

(i) If € 9D and d(z,z) < 2dp for some k, y € D, d(z,y) < dp, and y
lies on the same side of z as = then |a(z,y)| > csd(z,y)d(z, z).

(iii) If x = x for some k, y € 0D and d(z,y) < &g then |a(x,y)| >
esd(z, )2

Make &g smaller, if necessary, so that for any x,y € 0D with |a(z,y)| > 7 /4,
we have d(z,y) > 4do.

Consider any z € 0D and let z1,29,...,2, be all points in dD such
that «a(z,2,) = 0 or a(z,2r) = 7/2. The number m of such points is
bounded by a constant mg depending on D but not on z. The family of
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points {z1,...,2m,Z1,...,2,} divides 9D into n + m Jordan arcs T'y, k =
1,...,n + m. Let A denote the arc length measure on 9D, i.e., A(dz) is an
alternative notation for dzx.

Fix some Iy, and note that the curvature v(z) has a constant sign on this
arc because there are no x;’s between the endpoints of I';,. Since there are no
points z; between the endpoints of I', the function © — «(z, ) is monotone
on this arc. For an arc I'y, let y, and y,j denote its endpoints and assume
that a(z,z) takes the maximum on I'y at x =y, . It is elementary to deduce
from (i)—(iii) that for some ¢g > 0 depending only on D, and all j,

A{w €T afz,yp) € 27,2777} < 2772
Since the number of I';’s is bounded by a constant independent of z,
M{z € 0D : a(r.2) € [279,27971])) < e279/°,

Conditions (i)-(iii) easily imply that d(M;, K) > cg277 for some cg de-

pending only on D. O
LEMMA 3.8. There exists ¢c; < oo such that for any s > 0,
ps < exp(er (LY + L)),

Proof. Since D is assumed to be C4-smooth, there exists c; < oo such that
for any x € 9D and y € D,

(3.17) ‘n(z) < cod(z,y).

d(z,y)
Let Ty = 0, and for £ > 1,

T, =inf{t > Tp—1 : d(X, Y3) ¢ (%d(XTk,l,YTk,l)7 2d(X7,_,, Y7, )}
Anf{t > Tp_1 : LY — L, > 1} Ainf{t > Ty : L} — L}, >1}.

Then, by (3.17), for any k£ > 1 and ¢ € (Ty—1, Tk,

d(Xt7 }/t) - d(XTk71 9 YTK'—I)

t t

(X, — V) . / (Y, — X,) y

= A2s T 28] n(X,)dLY + A AL
/Tk1 d(Xs, Ys) () 1, d(Ys, Xs) ()

Tk Tlc
< / ed(X,, Yo)dLX + / ed(X,, Yo)dLY
Tk—l Tl«—l
Tk
< 202d(XTk71,YTk71)/ (dL¥ +dLY).
Tr-1
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This implies that for any t € (Tx—_1, Tk,
d(X,Y3) X X Y Y

— < 142c(L%» — L L+ — L

A, Yr, ) = PRl b I )

<exp(2eo(Ly, — L7, + LY —LY ),

and
k—1
d(X,Yy) d(Xz;, Y1)
d(X.,Y;) =
( ' t) d(XTk 17YTk 1 ;EI XT 1aYT 1)
k
< [[expea(Ls, — L | + LY, = Ly, )
=1
< eXp(QCQ(LQ)%c + L%c)).
This proves the lemma. (]

We define a partial order for two distinct points = (z1,22) and y =
(y1,y2) by saying that < y if 1 < y1, or 1 = y1 and z2 < y2. Let Z; be
the closest point in 9D to the pair { X, Y;}, if there is only one such point.
In the case when there are multiple points in 0D with the minimum distance
to {Xt, Yi}, we let Z; be the point which is the smallest one according to <;
an easy argument based on compactness of 9D shows that there exists such
a point. Our choice of the tie-breaking convention is arbitrary—it plays no
role in the proofs. Note that if Tp = inf{t > 0: X; € 9D or Y; € 9D} then
ZTO = XTO if XTO € 0D and YTO ¢ oD; ZTO = YTO if YTO € 0D and XTO ¢ oD;
Zr, can be either Xq, or Yr, if both X7, € 0D and Yq, € 0D.

The following piece of notation will be used in many lemmas,

F(s,u,x,a) = { sup d(X;,z) < a}.
s<t<u
The proof of the next lemma is the most complicated and delicate argument
in this paper.

LEMMA 3.9. Let To = inf{t > 0 : X; € 0D orY; € 0D} and ¢ =
d(Xo,Yy). There exist Bp € (1/2,1) and c1,¢co < 0o such that the follow-
ing hold. Assume that
(3.18)
|7T/2 — Z(Xo - %7H(Zo))| S Cld(Xo,Yo)Bo and d(Xo,aD) § CQd(Xo,Yb).

(i) There exist c3 < 0o and g > 0 such that whenever e < &g,
E|logd(Xs,,Ys,) —logd(Xo, Yp)| < cse.
(ii) For some 31 >0, B2 > 1, ¢y < 00 and g9 > 0, we have for all € < g,
E (1FC(TO,SI,Z(TO),551) [log d(Xs,,Ys,) — logd(Xo, Yo)|) < cag®.
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(iii) Let K = {x € OD : tana(Zy,z) > e~ }. For some 31 > 0, B2 > 1,
c5 < 00 and g9 > 0, we have for all € < g,

E (1(z5,ex) |logd(Xs,, Ys,) — logd(Xo, Yo)|) < cae™.

Proof. (i) Step 1. For some cg < 00, let
Ty = inf{t > Ty : d(X;,0D) ANd(Y;,0D) < d(Xy,Yy),
/2 = £(0(Zy), Xi = V)| < e1d(Xs, V)™,

Ty = inf{t > Ty : d(Xy, X13,) > c6d (X, Y1, )P,

T; = 1Hf{t >Th: X, € 8D}1{YT0€3D} + Hlf{t >Th:Y,; € 8D}1{YT0¢3D},

T, = 1nf{t >Th: Xy €0DorY; € (‘3D},

T5 = 1nf{t > T4 : d(Xt,XT4) > C6d(XT4,YT4)ﬂO},

Ts = inf{t >Ty: X € 8D}1{YT468D} + inf{t >Ty:Y, € 8D}1{YT4¢,9D}.
It is elementary to see that for a suitable choice of cg, {T5 < To} C {Th < Tz},
and similarly {Ts < T5} C {Th < T5}.

We will now estimate changes in the distance between X; and Y; over
the interval [Ty, Th A T3] under various scenarios, and probabilities of these
scenarios.

Let M, = {z € 9D : a(x, Zp) = 7/2}. For integer k and any x € M,, let
My, = {y € 9D : tana(y,z) € [27%,27%T1)}. Let N be such that Zr, € My.
Let k; be the largest integer with d(My,, M.) > 4ced (X, Yp)P0. Since we are
concerned with the case when d(Xy,Yp) is small, we can assume that k; > 0.

Suppose that —k; < k < 0. Then, by Lemmas 3.2 and 3.7, P(N = k) <
C7d(X0,Y0)2_k. If N = k then d(XTO,aD) V d(YTO,aD) < ng(Xo,%)Qk.
This and Lemma 3.2 imply that

P(Ty>Ty, |N=k) <P(IT3>T, | N =k) < cod(Xp,, Y7,) 2",
and, therefore,
P(N =k, Ty > Ty) < ciod(X7,, Y1, )27,

Elementary geometry shows that the distance between X; and Y; is reduced
by at most a factor of 1 — c112%% over the interval [To, T1 A T»], so we have
d(X7, a1y, Yriam,) > (1 — 1122K)d(Xo, Vo).

Next assume that 0 < k£ < k;. It follows from Lemmas 3.2 and 3.7
that P(N = k) < ¢12d(Xo,Y0)27%/2. We obviously have d(Xr,,0D) V
d(Yr,,0D) < d(Xo,Yp). This and Lemma 3.2 imply that

P(Ty>To |N=k)<P(T3>Ty | N =k) < c13d(Xrp,, Y5, )1 =7,
and, therefore,

P(N = k,Tl 2 Tg) S Cl4d(XTO,YT0)27ﬁ027k/2.
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We have /(n(Z;), X; — Y:) € (c1527F, 7 — ¢1527F) for t € [Ty, T]. Tt follows
that the distance between X; and Y; is reduced by at most a factor of ¢;62*
over the interval [To, T1 A 112]7 SO d(XTl/\T27 YTl/\Tg) Z 0162_kd(X0, YQ)

The next case is N < —k;. We trivially have P(N < —k;) < 1. If N < -k
then d(Xr,,0D) Vv d(Yr,,dD) < c17d(Xo, Yy) TP, Lemma 3.2 implies that
(3.19) P(N< -k, Th >2T5) <P(T1 >2T> | N < —ky)

SP(I3>T5 | N < —kp) < c1sd(X1y,, Y1)
The distance between X; and Y; is reduced by at most a factor of 1 —
c19d(Xr,, Y1,)?% over the interval [Ty, T1 A Ts], so d(X7, a1y, Yryam,) = (1 —
c19d(X1,, Yr,)%)d (X0, Y).

Let N’ be such that X1, € My if X1, € 0D and Yr, € My if Y, € OD.
We will analyze the change to d(X:,Y;) over the interval [Ty, Th A T3] for
different values of N', assuming that T} > Ty and N < —k;.

Suppose that —k; < k < 0. Since d(Xr,,dD) < cz0d(Xo, Yy)?, Lemmas
3.2 and 3.7 imply that P(N' =k | N < —ky, T1 > T) < ea1d(Xo, Yp)027F.
If N’ =k then d(X7,,0D) Vv d(Yr,,0D) < c22d(Xo, Yp)2*. This and Lemma
3.2 imply that

P(Ty >T5 | N < =k, Ty > To,N' = k)
<P(Ts>T5 | N < ki, Ty >To, N' = k)
< co3d(X7y, Y, ) 7P02".
We combine estimates of probabilities in this paragraph with (3.19) to obtain,
P(N S —kl,N/ = k‘,Tl Z T5) S Cg4d(XTO, YTO)Q.

The distance between X, and Y; is reduced by at most a factor of 1 — ¢p522F
over the interval [Ty, Ty A Ts), so d(X1yats, Y7 a1s) = (1 — c2522%)d (X0, Yo).

Next consider the case 0 < k < k. By Lemmas 3.2 and 3.7,
P(N' =k | N < ki, T1 > T») < ca6d(Xo, Yp)?0275/2,

If the event {N < —k;i,Th > Ts} holds then d(Xr,,0D) Vv d(Yr,,0D) <
d(Xp,Yp). This and Lemma 3.2 imply that

P(Ty >Ts | N < —k1,Ty > Ty, N' = k)
<P(Ts>Ts5 | N < -k, Th >To, N' = k)
< cord(Xr,, Y1) 77,
and, using (3.19),
P(N < —ki,N' =k, Ty > Ts) < cosd(X7,, Y1, )227%/2.

We have Z(n(Z;), X; — Y;) € (2027, 7 — c0927F) for t € [Ty, T5]. It follows
that the distance between X; and Y; is reduced by at most a factor of c392*
over the interval [To, T A T‘5]7 SO d(XTl/\Tsa YTI/\TS) > 0302*kd(X0, YQ)



SYNCHRONOUS COUPLINGS 221

Consider the case N’ < —k;. We trivially have P(N' < —k; | N <
—k’th > Tg) < 1. If N’ < —k’l then it holds that d(XT4,8D)\/d(YT478D) <
c31d(Xo, Yp) TP, This and Lemma 3.2 imply that

P(Ty >T5 | N < =k, Ty > T5,N' < —ky)
<P(T5>T5 | N < —ki, Ty >To,N' < —ky)
< c32d(X, Y13.)s

and, using (3.19),
P(N < —ky,N' < —ky, Ty > T5) < ¢33d(X1,, Y1,)*.

If N < —kq, the distance between X; and Y; is reduced by at most a
factor of 1 — c34d(X7,, Y7,)?% over the interval [Ty, Ty A T5], so we have
d(Xr a1y, Yroars) > (1 — e3ad(Xr,, Y1, )%)d (X0, Yo).

An argument similar to those given above yields

P(N < —ky, Ty > To, N' > k1) < c35d(Xo, Yp) 30072,
If {N < —k;,T1 > Ty, N > ki} holds then we have d(Xr,,Yr,) > (1 —

c36d (X1, Yr3,)2%)d (X0, Y).
Finally, Lemmas 3.2 and 3.7 imply that P(N > k;) < c37d(Xo, Yp) 7/,

Step 2. Recall that 6 denotes the usual Markov shift operator and let
A= {IN| <k} {71 < T2}) U ({N < ki } 0 {N' < b} 0 {T1 < T5}),
Tr =T11a +To 0 0 1N <hiyn(ri>To) + Tol(vshy)
+To 0 O, L Nk yn (N <k }n{Ty>Ts} T Tal{N <k} [N/ >k} -
Note that d(XT7, YT7) < d(Xo,}/E))
Let D(a) = {x € D : d(z,0D) < a}. We will define a number of stopping
times and events involving a parameter 3 > 1 whose value will be chosen

later. Recall that Z; is the closest point on dD to the pair {X;,Y;}. Let
0 =d(Xr,,Yr,) and for k > 0,

Vi = inf{t > Tr : X,,V; € D(6%)},
Gy ={|7/2 = Z(n(Zv,), Xv, — Yi,)| > c1d(Xv,, Yy, )}

We will define some stopping times ij and related events Ai assuming that
Vie > T7 (otherwise ij’s and Ai’s can be defined in an arbitrary way). If
G{, holds, we let V,j = V4 for all j. We will state the definitions in the case
when Gj, holds and Xy, € aD(aﬁ§) \ dD. In the case when G} holds and
Yy, € dD(6%) \ D, the roles of X; and Y; should be interchanged in the
definitions of ij ’s and Ai’s. Let C'S, be the orthonormal coordinate system
with the origin at the point in 0D that is closest to Xy, , whose first axis is
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tangent to D. We will write X; = (X}, X?) in this coordinate system. Note
that X, =0 in CSj. Let

V! =inf{t > Vi, : X, € D(6% /2)},

Ap={Vi <inf{t > Vi X, € DE6% )" or | X} | = 6%},
V2 =inf{t > Vi : X, € D(6%)°},

A2 = {V,f <inf{t > Vi : X, € D(6% /4) or |X}| = 2555}}.

If ¢ is small then 0D N B(Xy,,2d(Xv,, Yv,) V 25ﬁ§) is almost flat. If events
A} and A? occur, the process X; moves towards the boundary of D and then
away from the boundary, without moving too much in the horizontal direction
in C'S. The result is that the distance from Yy2 to 9D is greater than 5% /8.
It follows from Lemma 3.7 and its proof that there exists dg,c3g > 0 de-
pending only on D, such that if § < §p then either (i) Z(n(z),n(y)) > c350253
for all x = (2%,2?) € dD and y = (y',y?) € D with 3605 < —g! < 955%
and 36% < y! < 965, or (i) Z(n(z),n(y)) > c356%% for all z,y € 0D
with 106% < —z! < 166% and 106% < y! < 166%, in C'S,. We have to
consider cases (i) and (ii) because there might be a (single) z € 9D with
—166% < 2! < 166 and v(z) = 0. Depending on the sign of X2 — Yo,
one of the following events holds, ’ '

(3.20) Z(Xy2 — Yyz,n(z)) > c30°%, for x € 9D,35% < ' <957,
(3.21) Z(Xy2 —Yyz,n(z)) = 336275 for x € 8D,355§ < —z' <95%
(322) Z(Xyz —Yyz,n(z)) = 356253, for x € 9D, 106% < 2! < 1667,
(323) Z(Xyz —Yyz,n(z)) = 35623 | for z € 9D, 106% < —z' < 165% .

We will discuss only cases (3.20) and (3.22). The other cases are symmetric—
we leave them to the reader. In case (3.20) we let

V3 =inf{t > V2 : X} =667},

A} = {V,f <inf{t > V2: X} = —30% or X, € D(26%)° U D(65§/2)}} :
V& =inf{t > V3: X, € D(6% )},

A = {V,j <inf{t > V3 : X, € D(36%)° or | X} — 66% | = 5@%“}} .
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In case (3.22), we let
VE =inf{t > V2 : X} = 135%},
Af = {2 <inf{t > V2 X} = -36% or X, € D26% )" U D% /2)}},
VE =inf{t > V3 : X, € D(6% )},
Al = {V,j <inf{t > V3 : X, € D(36%)° or | X} — 136%| = 5ﬂ§}} .

In either case, let A, = A} N A7 N A} N A}, and similarly in cases (3.21) and
(3.23).

We will assume that dg > 0 is so small that 5o < 585 /4 for 0 < §y. We
will later impose an upper bound on (3 which, in turn, will impose an upper
bound on dyg. Note that given this assumption about &g, if d(Xo,Ys) < dg
and Ay holds then V;} < Vi1, so we can estimate the probability of the
intersection of consecutive Ay’s using the strong Markov property at times
Vi. Let

V2 =inf{t > Vi : X; € 9D},

Co=14 sup d(X,Xy,)<o% /2¢.
te[Vi, V7]

By Lemma 3.2,
(3.24)  P(CE| Xy, € OD(5%)\ D) < c390% /6% = cg90P5  (Bs=1),
We will find a lower bound for sup; ¢y, vs) d(X, ;) under assumption that

d(Xr,, Y1) > 5% and G N AN Cly1 occurred. First consider the case when
Xy, - Yy | > 593 /8. Then it is easy to see that the distance between X; and
Y; is reduced between times Vj and Vk5 by at most a constant factor c4g, so
d(X.,Y;) > 0% for t € [Vi, VP]. Next suppose that | Xy, — Yy | < 555/8.
Then | X} -V} < 593 /4 for t € [Vi, V}], because the boundary of D is “flat”
in the neighborhood under consideration. After time V,f, processes X; and
Y; move along 0D without touching it, to the place where the angle between
the line passing through both particles and the normal to the boundary of
the domain is bounded below by 03862@? . Tt follows that for t € [Vj, V}?], the
process Y; is reflecting on the part of the boundary where the angle between
the line passing through both particles and the normal to the boundary of the
domain is bounded below by 038525§ . Hence, the distance between X; and
Y; is reduced between times V, and Vk5 by at most a factor of 042625§ . This
implies that if G N Ay N Cyy1 holds then d(X;,Y:) > 043(53B§ for t € [Vi, V9]
Let
Fr=J (G5 U(GmNAnNCni1)),
k<m<2k
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and note that
U 4nn () Cnnc U @Lu@nnan)n [ Cmn

k<m<2k k<m<2k k<m<2k k<m<2k
C Fy.

It is elementary to see that the probability of Ay is bounded below by p; > 0,
not depending on k or 3, assuming ¢ is small. By the strong Markov property
applied at stopping times V;,,, we have P ([, <, <o A5,) < (1 — p1)k, so

(3.25) Pl |J 4| z21-0-p)~
k<m<2k

By (3.24),

Pl () Cul|>1- Y o (BamD,

k<m<2k k<m<2k

The quantity on the right hand side is bounded below by 1 — (1 — p;)*, for
small §. This and (3.25) imply that P(F)) > 1 —2(1 — p;)*, for small §. Let

Ty = inf{t > Ty : d(X;,dD) Ad(Y;,0D) < d(X;,Y;),
/2 — Z(0(Zy), Xy — Y3)| < erd(X,, Yy},

Note that if Gf, U (G N Ax N Cr41) occurs then Ty < Vk5 and d(Xr,, Yr,) >

043635§ . In view of the estimate for the probability of Fj, we see that for
k>1,

P(d(Xn,, Yn,) < e ) < 2(1 - py)*.
We choose (33 > 1 so that 82(1 —p;) < 1.

Step 3. Let cy4 be the same as co in the statement of Lemma 3.3, and let
¢45 be the same as ¢; in the statement of that lemma. Let T91 = Tg and for
k>1,

T = inf{t > Ty : d(Xt,XTgk) \ d(YuYTg)
> 2(d(Xry,0D) Vd(Yyy,0D))},
Tf) = nf{t > Ty : X, € D},
Tf, = inf{t > Ty : V; € 9D},
Tis = inf{t > Tfy : L — Ly, > caad(Yrp , OD) gy <1t
TF =inf{t > Tk : LY — L% > casd(Xgp , OD) ML rp sy 3.
T = inf{t > T{; : Y; € 9D} 7n <i
Tfs = inf{t > T, : X; € 0D} 75 w71},
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Tyt =inf{t > Ty : d(Xy, Xpp) V A(Ys, Yrx)
> 2¢45(d(Xps, D) V d(Ypy, D))}
A (T +Ti) A (T + T).

Note that d(Xry,Yr) = d(Xrny, Yr,) < d(Xo,Yo). It is easy to see that if
g0 > 0 is small and d(Xy, Yy) < go, we have P(TF, < TF) > py > 0, where py
depends only on D. By the strong Markov property applied at T A T4, and
Lemma 3.3 (i), for some p3 > 0,

P(S; < Tyt | Frpe, {51 > T5}) > ps.
Let ko be such that (1 — p3)*2~1 < 1/2. Then
P(S) > Ty2) < (1 —-p3)r2~t <1/2.

Step 4. Let Ti7 = Tgfz and note that
d(X7y, X1,,) VA(Yry, Y1) < cag(d(Xry, D) V d(Yry, OD)),

where cq6 = (2c45)*2. For t between Ty and Ti7, the angle between the
vector of reflection for any of the processes and X; — Y; is bounded below
by a quantity depending on IV; we will next discuss this dependence and its
consequences. We will examine various cases in the same order as in Step 1
and we will also recall some estimates from Step 1. There will be many cases
to consider—we will label them for future reference.

We start with a general remark that applies to many of the cases discussed
below. If T} < Ty then the lower bounds for d(X1,aT,, Y1, AT,) Obtained in
Step 1 apply also to d(Xr,,,Yr,,), for the same reasons, but with constants
that may be different. The same is true when 77 < T5.

(a) Consider the case when N = k and —k; < k < 0. Then we have
P(N = k) < c47d(Xo, Yo)27F,

P(N = kaTl Z TQ) S C48d(XTo7YTo)27ﬁ07

and (1 — C4922k)d(X0, Yo) S d(XTl/\T27YT1/\T2) S d(X(),YO). If T1 S TQ then
d(X1y,, Y1y,) > (1—c502%%)d(Xy, Yp). Note that the distance between X; and
Y; does not increase before time Ty = T¢. The increase of the local time L
between times T91 and Ty is bounded by ¢51d(Xo,Y)), and a similar bound
holds for the increment of L}, so, according to Lemma 3.8, d(Xr,,, Y7,,) <
d(Xo, Yp) (14 c52d(Xo, Yp)), assuming that d(Xp, Yo) is small. Combining the
two estimates, we obtain

(1 — ¢502%%)d(Xo, Yo) < d(X71y,, Yry.) < d(Xo, Y0)(1 + e52d(Xo, Y)).

(b) Next consider the case when N = k, —k; < k < 0, and T < Tj.
Then7 d(X77Y7) < d(X07Y0)7 d(X17aY17) < C53d(X87}/8)5 and llSiIlg Step 27
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forn>1,
P(N =k, T) > To,d(X1,., Yr,,) < esad(Xo, Yp)%")
< essd (X, Yr,)2 (1 — p1)"H.
(c) Assume that 0 < k < k;. Then P(N = k) < cs6d(Xo, Yp)27%/2,
P(N =k, Ty > T) < cs7d(Xq,, Y, )2~ P027+/2,

and c5827%d(Xo,Y0) < d(X7 a7y, Yryum,) < d(Xo,Yp). If Ty < T, then
we have d(XT177YT17) > C592_kd(X0,YQ). The inequality d(XT17,YT17) <

d(Xo, Yp)(1 + c0d(Xo, Yp)) holds for the same reason as in case (a). Com-
bining the two estimates, we see that

0582ikd(X0, Yo) S d(XTn’ YT17) S d(Xo,YQ)(l + Cﬁod(Xo,Yo)).

(d) Next consider the case when N =k, 0 < k < kq, and Ty < T;. Then,
d(X7,Y7) < d(Xo,YE)), d(X17,Y17) < Cﬁld(Xg,Yg), and using Step 2, for
n>1,

P(N =k, T1 > T5,d(Xn,,, Vr,,) < coa(ess2Fd(Xo, ¥5))*")
< ce3d(Xr,, Yr, )2 P02 k/2(1 — py)ntt,

(e) The next case is when N < —k;. We will use the trivial estimate P(N <
—k’l) S 1 We have d(XTl/\Tza YT1/\T2) Z (1 — C64d(XToa YTO)QBO)d(Xo, Yb) If
Tl S T2 then

(1 = e63d(Xry, Y1, )*)d(Xo, Yo) < d(Xry, Y1)
< d(Xo, Yo)(1 + ce6d (X0, Y0))-

(f) Recall that N’ is defined by the following conditions, X, € My if
X, € 0D, and Y7, € My if Y, € 0D. Suppose that —k; <k < 0. Then

P(N < —ki, N' =k, Ty > T5) < ce7d(X1,, Y, ),
and (1 — 66822k)d(X07Y0) < d(XTl/\T57YT1/\T5) < d(Xo,Yb) If N
N =k, —k1 <k <0, and T < T5 then we have d(Xp,,,Y7,)
c602%%)d(Xo, Yp) and
(1 — c692*)d(Xo, Y0) < d(X1y,, Y1y,) < d(Xo, Y0)(1 + cr0d(Xo, Yp)).

(@) N < —ky, N' =k, —k; < k <0, and T5 < T; then, d(Xy,Ys) <
d(Xo,Yy), d(X17,Y17) < er1d(Xs, Ys), and using Step 2, for n > 1,

_kla

<
> (1 -

P(N < —ki,N' =k, Ty > Ts,d(Xr,,, Yr,,) < crad(Xo, Yp)*5")
< c73d(Xp,, Y, )2 (1 — p1)" .
(h) I£0 < k < ki then
P(N < —ky,N' =k, Ty > T5) < crad (X1, Yp,)27 /2,
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and ¢7527%d(Xo,Y0) < d(X1yars, Yrars) < d(Xo,Yp). If N < —ky, N' =k,
0< k <kqy,and Ty < T5 then d(XT17, YT17) > 6762_kd(X0, YQ) and

c7627*d(Xo, Yo) < d(Xry., Yry,) < d(Xo, Yo)(1 + c77d(Xo, Yo)).

() N < -k, N =k 0<k <k, and T5 < Ty then, d(X7,Y7) <
d(X(),YQ), d(X177Y17) < C78d(X87Y8), and using Step 2, for n > 1,

P(N < —ky,N' =k, Ty > T5,d(X1y,, Y1,,) < C79(C752_kd(X0,Yo))gﬁgn)

< egod (X, Y, ) 2272 (1 = py)™ .

(j) The next case to be considered is when N < —k; and N/ < —k;. We

have P(N/ S —kl | N S —kl,Tl Z Tz) S ].7
P(N < —ki,N' < k1, T} > T5) < cs1d( X1, Y1,)?,

and d(XTl/\T57YT1/\T5) > (1 — ngd(XT07YTO)2ﬁo)d(X07Yo). If N S —k‘l,

N/ S 7]431, and Tl S T5 then d(XT17, YT17) Z (17083d(XT0,YTO)Z’BO)d(Xo,Yo)
and

(1 - CS3d(XTo7YTo)2ﬁo)d(X07§/0) < d(XT177YT17)
< d(Xo, Yp)(1 + cs4d(Xo, ).

(k) If N < 7]431, N’ < 7]61, and T < T then, d(X7,Y7) < d(Xo,}/O),
d(Xi7,Y17) < cg5d(Xs, Ys), and using Step 2, for n > 1,

P(N < 7]431,]\7/ < 7k13T1 > T57d(XT17aYT17) < Cgﬁd(XO’YO)Sﬁgn)
< egrd (X, V)2 (1 — p1)"t.

(1) Consider the case when N’ > k; and note that P(N < —Fk, Ty >
To, N > ki) < cgsd(Xo,Yo)1#300/2, If N < —ky, N' > ky, and T4 > T
then we have d(Xr,, Yr,) > (1 — cgod(X7,, Y7,)2%0)d (X0, Yp). If, in addition,
Ty < Ts then

d(XT177 YT17) > (1 - c90d(XTov YTU)QﬁO)d(XOa }/E))
and

(1 - Cgod(XTov YTo)zﬁO)d(Xov YO)

(m) If N < ki, N' > ki, and Ty < T4 then, d(X7,Ys) < d(Xo,Yo),
d(X17,Y17) < c92d(Xs, Ys), and using Step 2, for n > 1,

P(N < —ki, N' < —ky, Ty > T5,d(X7y,, Yi,,) < cosd(Xo, Yp)>%")
S Cg4d(XTo, YT0)2(]‘ 7p1)n+1'
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(n) Finally, we consider the case N > k;. We have P(N > k)
Cg5d(X0,Y0)1+ﬁ0/2. It follows that d(X7,Y7) < d(X(),YO), d(X17,Y17)
co6d(Xs, Ys), and using Step 2, for n > 1,

P(N < —ky,N' < —ky, Ty > Ts,d(X1y,, Yry,) < cord(Xo, Yp)3%")
< Cgsd(XTo,YTo)H’BO/Q(l —p)" T

The estimates for values of d(Xr,,,Yr,,) and the corresponding probabili-
ties listed above as (a)—(n) yield the following inequality. Its lines are labeled
according to the case they represent.

(3.26)
E| logd(XTnv YT17) - logd(X()v }/0)|
< Z cood(Xo, Y0)2 ¥ (€1002%* + c101d(X0, Y0)) (a)
— k1 <k<O0
+ Z Z c102d(Xo, Yp)? (1 — py)" !
k1 <k<On>1
x (c103 + (383" — 1)|log d(Xo, Y0)|) (b)
+ Z c10ad(Xo, Y0)27%?(c105k + c106d (X0, Y0)) (c)
0<k<k:
+ Z Z c10rd(Xo, ¥o)*~ 27 H2(1 = py)™t!
0<k<kin>1
x (108 + c10085" + c110kB3" + (385" — 1)|log d(Xo, Yo)|) (d)
+ c111d(Xo, ¥0)*% + ¢112d (X0, Yo) (e)
+ Z c113d(Xo, Y0)%(€1142%F + c115d(Xo, Y0)) (f)
— k1 <k<O
+ Z Z c116d(Xo, Y0)*(1 — p1)"
k1 <k<On>1
x (c117 + (363" — 1)| log d(Xo, Yo)|) (2)
+ Z 6118d(X07 Yo)22_k/2(cngk + C120d(X0, Yf))) (h)
0<k<k:
+ Z Z c121d(Xo, Yp)?27*/2(1 — py)"H!
0<k<k; n>1
X (122 + c12303" + c124k 33" + (385" — 1)|log d(Xo, Yo)|) (i)
+ c195d (X0, Y0)2% + c196d (X0, Yo) )

+ ) cr2rd(Xo, Y0)* (1 — p1)" (cras + (365" — 1)|log d(Xo, Yo)|) (k)

n>1
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+ c120d (X0, Y0) 37/2 (c130d (X0, ¥0)* + c131d (X0, Y0)) (1)
+ Z c132d(Xo, Y0)2 (1 — p1)" " (cas3 + (383" — 1)|log d(Xo, Yo)|) (m)
n>1
+ Z c13ad(Xo, o) FA0/2(1 — py)nt!
n>1
X (c135 + (35§n — 1)[log d(Xo, Yo)I)- (n)

Recall that 8y € (1/2,1) and 32(1 — p1) < 1. Given these constraints on the
values of the parameters, it is straightforward to check that (3.26) implies
that

E‘ log d(XT177 YT17) — log d()(()7 Yo)‘ S 6136d(X0, Yo)

Step 5. Tt is easy to check that our estimates on the size of d(X,Y?)
apply not only at 717 but on the whole interval [0, T17]. Hence,

E ?up ] |log d(X3,Y:) —logd(Xo, Yo)| < c136d(Xo, Yo).
t€[0,Ty7

At several places in our argument we have assumed that d(Xy, Yy) is small.
Let €1 > 0 be such that the last inequality holds if d(Xy, Yy) < e1. Let Qo =0,
Q1 =TirATH(e1) and Qi = Q106g, , for k > 2. Note that if d(Xq,,Yy,) =
€1 then d(XQn’YQn,) =£&1 for all n > k. If Qk = T17 00Qk71 < T+(€1) OoQk71
then we can apply the argument given in Steps 1-4 to the post-Qy process, by
the strong Markov property, because condition (3.18) is satisfied for ¢t = Qy,
in place of t = 0. It follows that if d(Xp,Yy) < &7 then

E S[up ] |10gd(Xta Yl-f) - log d(XOaYO)| S ClBGd(XOa }/0)7
t€[0,Q1

and

E( sup ‘logd(XhY;f) - logd(XQk—l’YQk—l)‘ ‘ ka—l)
te[Qr—1,Q1]

< 6137d(XQk—17YQk—1)'
The argument given in part (a) of Step 4 shows that, a.s.,
d<XQk ) YQk) < d(XQk—l ) YQkfl) + cl38d<XQk71 ) YQk—l)Z'
Ifd(Xo,_ ,, Yo, ,) <2d(Xo, Yo) then
C138C1(‘XQ1¢71 ’ YQk—1)2 < 46138d(XQov YQ0)2
and, therefore, d(Xg,, Yo, ) < 2d(Xy,Y)) for
k< d(Xqy, Yo,)/(4c13sd(Xq,, Yo,)?) = 1/(4c133d(Xo, Y0))-

This implies that for k& < 1/(4e138d(Xo, Y0)),

E( sup |10gd(Xtv Yt) - logd(XQk—l’YQk—1)| | ‘/,:.Qk—l) < 0139d(X07 YO)a
t€[Qr—1,Qk]
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and

E( sup |logd(X¢,Y;) —logd(Xo,Yo)| | Fqu_,) < cra0kd(Xo, Yo).
t€[Qk—1,Qk]

For k > 1/(4c138d(X0, Yp)), we use the bound d(Xg, ,,Yo, ,) < €1 to con-
clude that

E( sup |logd(Xt7}/t) - 1Ogd(XQk—1’YQk—l)| | ka—l) < ciar,
t€[Qr—1,Qk]

and

E( sup [logd(X:,Y;) —logd(Xo, Yo)| | Fq,_,) < crak.
te(Qr—1,Qk)

By Step 3, if d(Xo, Yy) < &1 then P(S; > Q) < 27F. Hence
(3.27)

E | [logd(Xs,,Ys,) —logd(Xo,Yo)| - 1 | | J{S1 € [Qk, Qrs1l}
k>0

<Y E(I(s,c/0uqin)y SUp |logd(Xy, ;) —logd(Xo, Yo)|)
kZO tE[Qk’Qk-%—l]

<Y E(l(s,q0 suwp  |logd(X;,Y;) —logd(Xo, Yo)|)
k>0 t€[Qk;Qr+1]

< > 27" ey 40kd (X, Yo) + > 27 1ok
k<1/(4e13sd(X0,Y0)) k>1/(4c135d(X0,Y0))
< c143d(Xo, Yo) + c144d(Xo, Yo) ™! exp(—c145d(Xo, Yo) ™)
< c146d(Xo, Y0).
Suppose that d(Xo, Yp) < €7 and let
W' =min{Qy : d(Xg,,Yo,) =c1},
W"” =inf{t >0: X, € 0D,n(X;) - (V; — X;) <0}
Anf{t > 0:Y; € dD,n(Y;) - (X; — ;) < 0},
with the convention that inf() = oo. Note that sup,cp ) d(Xe,Y:) <
d(Xo,Yp). This implies that W < W’ and if W < co then,
d(Xy,0D) Vv d(Yiyr,dD) < cra7d( Xy, Yiyn)? < c147d (X0, Yp)?.
By Lemma 3.8,
(3.28) (Liy: — Liy») + (LY — Liy»)
> cqs| logd (X, Yy ) — log d(Xw, Yy )|
> c1a8|logd(Xo, Yy) — logd(Xw, Y/ )| > ci49.
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Suppose £7 is less than €p in Lemma 3.3. Then, by Lemma 3.3 (ii) and the
strong Markov property applied at W,

E(LS, wr — Liye) + E(LE awr — Liyn) < c150d(Xo, Yo)?.
This and (3.28) imply that,
(329) P(W’ S Sl) S Cl5ld(X0,Y0)2.

Let W = inf{t > W' : d(X,Y;) = d(Xo, Yp)} and Wi = T3 0 Q. By
the last formula in Step 2 and the strong Markov property,

(330) E| log d.()({/{/1 , YW1) - log d.()({/{////7 YW”’)' S C152.

Let QZVI = Q o Ow,. Then, by the strong Markov property at Wy, (3.27),
(3.29) and (3.30),

E <| logd(Xs,,Ys,) — logd(Xo, Yo)|

» 1( s e [QZVI,QZV;J})MW«SI})

k>0
< c153d(Xo, Yo)?.
Let Wy, = Wj 0 0y, _, and Qij = Qo GW].. By induction we have
P(Wy < 1) < cr54d(Xo, o),
and for j > 1,

(331) E<|10gd(X517Y51) 710gd(X07Y0)|

X 1<U{51 € [Qfﬁ,@ﬂﬂ}) 1{Wj<sl}>

k>0

< e155d(Xo, Yo) ™.

Note that d(Xj, Yp) is bounded by the diameter of the domain, so
logd(Xs,,Ys,) — logd(Xo, Yo) < c156 + c157] log d(Xo, Yo)].
This, (3.29) and (3.30) imply that
(3.32) E(|logd(Xs,,Ys,) — logd(Xo, Yo)| - Liwr<s,<w})
< c158d(Xo, Yp)?| log d(Xo, Yp)|-
Let W] = W' o 0y, . Then, for k > 1,
(3.33) E(|logd(Xs,,Ys,) —logd(Xo,Yo)| - Lyw;<s,<wy.1})
< c159d(Xo, Yo)* 2| log d(Xo, Yp)|.
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It is straightforward to check that
UlQw. Qead uJUIQL " Qi 0 W, W] UUJIWY, Wieia] = [0, 00).
k ik k
Hence, part (i) of the lemma follows from (3.27), (3.31), (3.32) and (3.33).
(ii) Let A* = F¢(Ty, Sy, Z(Tp),d(Xo,Yp)?t) and assume that 3; € (0,1).
Recall the estimates for the probabilities that N takes values in [—kq,0] or
[0, k1] from Step 1 of part (i) of the proof. Analogous estimates, the strong
Markov property applied at time Ty, and an argument similar to that given
in Step 3 but with ko replaced by k3 = min{k : 27% < d(X,, Yy)?}, yield for
some (B4 > 0,
(334) P(A*) S 8160d(X0,1/b)ﬁ4,
P({—ks < N <0}NA") < c11d(Xo, Yp) T128,
P({O <N < ]413} N A*) < 6162d(X07Y0)1+ﬁ4.
We will estimate
E(|logd(Xr,,, Yr,;) — logd(Xo, ¥p)[1a-)

by splitting the integral into the sum of integrals over various events, as in
(3.26). An upper bound for the above expectation can be obtained by using
the same estimates as in (3.26), lines (b), (d), and (f)—(n), and replacing
estimates in lines (a), (c) and (e) by the following estimates. By estimates
similar to those in Step 2 (a), for some 35 > 0,

(3.35) E(|logd(Xr,,, Y1,,) —log d(Xo, Y0)|1{_, <n<0,7,<T}nA*)

< Y P(N=kT <T)(c1632%" + crad(Xo, Yp))
—k1<k<—k3

+P({—ks < N <0} N A*)(c1652%% + c166d (X0, Y0))

< Z c167d(Xo, Y0)2 % (c1682%% + c169d (X0, Y0))
—k1<k<—ks3

+ c170d(Xo, o) 4255 (1712727 + c172d(Xo, V)
< e173d(Xo, Yo) P + c174d (X0, Yo )2
+ c175d(Xo, Yo) TP 4 e176d (X, Yo)2 T A
< crrrd(Xo, Yp) 0.
Similarly, by estimates similar to Step 2 (c), for some G > 0,
(336)  E(|logd(Xry., Yr,) — log d(Xo, Yo) | Lioe vt 13 <zayrar)

< > P(N=kT <T)(cirsk + crrod(Xo, Yo))
k3<k<k1

+ P({O <N < kd} n A*)(Clgokg + Clgld(Xo,Y()))
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< Z c1s2d(Xo, Y0)2 7% 2 (c183k + c184d(Xo, o))
k3 <k<k;

+ c185d (X0, Y0) TP (c1s6ks + c1s7d (X0, Yp))
< c138d(Xo, Yo) T4/2 | log d(Xo, Yo)| + c189d (X, Yo)?TH4/2
+ c190d(Xo, Yo) P4 log d( X, Yo)| + cro1d(Xo, Yo)* T4
< c192d(Xo, Yp) .

Recall that By € (1/2,1). We apply estimates similar to those in Step 2 (e)
to see that for some §7 > 0,

(3.37) E(|logd(X7r,.,Yr,,) — logd(Xo, %)|1{N§_k17T1§T2}mA*)
< P(A")(c193d (X0, Y0)* + c194d(Xo, Y0))
< c195d(Xo, o) (c196d(Xo, Y0)*™ + c197d(X0,Yp))
< cr98d (X, Yo) ' 77

Note that the sum of lines (b), (d), and (f)—(n) in (3.26) is bounded by
c199d(Xo, Yp)?s for some cig9 and Bg > 1. This and (3.35)(3.37) imply that
for some cogg and B9 > 1,

E(|log d(Xt,,, Yr,;) — log d(Xo, Y0)|1a+) < ca00d(Xo, Y0)™.
As in part (i), we note that in fact we have proved that

E( ?UP | |log d(X¢,Y;) — log d(Xo, Y0)[14-) < eagod(Xo, Yo)™.
te[0,Tyr

Recall from part (i) that for k < 1/(4c138d(Xo,Yp)) we have d(Xg,,Yg,) <
Qd(XQ,Yo). Let

AZ = FC(TO © HQk—l , 51, Z(TO © oQk—l)’ d(XQk—l ) YQk—l)Bl)'
Then for k£ < 1/(4c138d(Xo, Y)),

E( sSup |10gd(Xth;ﬁ) - logd(XQk—l’YQk—lﬂlA*)
te[Qr—1,Qk]
<E( sup [logd(X,Y;) —logd(Xq,_,,Yg, ,)I1a;)
te[Qr—1,Qk]
< 0201d(X07Y0)B9~
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We have the following estimate analogous to (3.27),

(3.38)
E <| logd(Xs,,Ys,) — logd(Xo, Yo)|

X 1( U{S1 € [Qk7Qk+1]}> 1A*>

k>0

SZE(l{Sle[Qk,QkH]}t sup  |logd(Xy,Y:) — log d(Xo, Yo)|1ax)

E>0 €[Qk,Qr+1]

<> E(lscioueea)y  swp |logd(Xy,Y;) —logd(Xo, Yp)[1a;, )
k>0 te[Qr,Qr+1]

<Y E(l(s,>q, sup  |logd(Xy,Y:) —logd(Xo, Yo)1a: )
E>0 te€[Qr,Qr+1]

< Z 27" ea01kd(Xo, Yo)? + Z 27 e1a0k
kgl/(4c133d(X0,Y0)) k>1/(4cl3gd(Xo,Yo))

< €202d(Xo, Y0)™ + c203d(Xo, Yo) " exp(—c204d(Xo, Yo) )
< c905d (X0, Yp)™.

The expectation
E (| IOg d(XSI ) Ysl) - logd(X07 YO)‘1F°(TO,Sl,Z(TO),551))

is bounded by the estimates on the right hand sides of (3.31), (3.32), (3.33)
and (3.38). This easily implies part (ii) of the lemma.

(iii) Let C = {Zr, € K}. Note that C signifies the event discussed in part
(n) of Step 4 in part (i) of the proof. Recall from that step that P(C) <
c206d(Xo, Yp)?10 for some B9 > 1. If we add the factor 1¢ to the left hand
side of (3.26), the right hand side of (3.26) is reduced to line (n), and we
obtain

E ([logd(X7,;, Y7,;) — logd(Xo, Yo)[1c)
<> ea0rd(Xo, Yo) 2 (1 — p1)™ T (ca0s + (383" — 1)]log d(Xo, Vo))

n>1
< ca09d(Xo, Yp) 1,

for some (317 > 1. We have the following formula similar to (3.38),
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(3.39)

E | |logd(Xs,,Ys,) —logd(Xo,Yo)| - 1 | | J{S1 € (@ Qrral} | 1c
E>0

< E(1{s,<q,}|logd(Xs,,Ys,) —logd(Xo, Yp)|1c)

+ B(ls,ciqr.quayllogd(Xs, , Ys,) — logd(Xo, Yo)|1c)
E>1

S E(1{51§Q1}| logd(X517Y51) - IOgd(Xo, YO)|]'C)
+Y E(lgs,>q, sup |logd(X,Y;) —logd(Xo,Yo)1c)
t

k>1 €[Qr,Qr+1]
< ca09d (X0, Yo)"1 + Z 27 eauikd(Xo, Yo) 0!
k<1/(4c210d(X0,Y0))
+ Z 2 ep10kd (X, Yo) 10t

k>1/(4c210d(X0,Y0))
< ca00d(Xo, Yo)" + e213d (X0, Yo)?o
+ c214d(Xo, Yo) T 10 exp(—ca15d(Xo, o) 1)
< e216d (X0, Yo)"2,

for some (12 > 1. We can bound
E (| logd(Xs,,Ys,) — log d(XO,Y0)|1{ZT06K})

by the sum of the right hand sides of (3.31), (3.32), (3.33) and (3.39). Part
(iii) of the lemma follows. O

4. Arguments based on excursion theory

We start this section with a review of the excursion theory. See, e.g., [M]
for the foundations of the theory in the abstract setting and [B] for the special
case of excursions of Brownian motion. Although [B] does not discuss reflected
Brownian motion, all results we need from that book readily apply in the
present context. We will use two different but closely related “exit systems.”
The first one, presented below, is a simple exit system representing excursions
of a single reflected Brownian motion from 0D. The second exit system,
presented after Lemma 4.2, is more complex as it encodes the information
about two reflected Brownian motions X and Y, and stopping times Sy and
Uk.

An “exit system” for excursions of the reflected Brownian motion X from
0D is a pair (L}, H”) consisting of a positive continuous additive functional
L} and a family of “excursion laws” {H"},cop. We will soon show that
Ly = L. Let A denote the “cemetery” point outside R? and let C be
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the space of all functions f : [0,00) — R? U {A} which are continuous and
take values in R? on some interval [0,¢), and are equal to A on [(,00). For
x € 0D, the excursion law H* is a o-finite (positive) measure on C, such
that the canonical process is strong Markov on (tg,00), for every tg > 0,
with the transition probabilities of Brownian motion killed upon hitting 0D.
Moreover, H* gives zero mass to paths which do not start from x. We will be
concerned only with the “standard” excursion laws; see Definition 3.2 of [B].
For every x € 0D there exists a unique standard excursion law H* in D, up
to a multiplicative constant.

Excursions of X from 0D will be denoted e or ey, i.e., if s < u, Xs, Xy €
0D, and X, ¢ 0D for ¢t € (s,u) then e, = {es(t) = Xits, t € [0,u — s)}
and ((es) = u — s. By convention, es(t) = A for t > ¢, so ez = A if
inf{s >t: X, € 0D} =t. Let &, = {es : s <u}.

Let o = inf{s > 0 : L¥ > t} and let I be the set of left endpoints of
all connected components of (0,00) \ {t > 0: X; € dD}. The following is a
special case of the exit system formula of [M],

> Vi fler)

tel

4.1) E =E OOV[,HX(‘“) ds=E OOVtHXt dL},
(4.1) | v —e | ()

0

where V; is a predictable process and f : C — [0,00) is a universally mea-
surable function which vanishes on excursions e; identically equal to A. Here
and elsewhere H*(f) = [, fdH".

The normalization of the exit system is somewhat arbitrary; for example,
if (L}, H”) is an exit system and ¢ € (0,00) is a constant then (cLj, (1/c)H7)
is also an exit system. One can even make ¢ dependent on z € 9D. Let PY,
denote the distribution of Brownian motion starting from y and killed upon
exiting D. Theorem 7.2 of [B] shows how to choose a “canonical” exit system;
that theorem is stated for the usual planar Brownian motion but it is easy to
check that both the statement and the proof apply to the reflected Brownian
motion. According to that result, we can take L} to be the continuous addi-
tive functional whose Revuz measure is a constant multiple of the arc length
measure on 0D and H*’s to be standard excursion laws normalized so that

T _ 1 1 z+0n(x)
(1.2) H(4) = lim 5P (),
for any event A in a o-field generated by the process on an interval [tg, o), for
any to > 0. The normalization of the local time is linked to the normalization
of w,, given before the statement of Theorem 1.2.

The Revuz measure of LX is the measure dz/(2|D|) on 9D, i.e., if the
initial distribution of X is the uniform probability measure p in D then
E# fol 14(X,)dLY = [, dx/(2|D|) for any Borel set A C 0D; see Example
5.2.2 of [FOT).
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We will show that L} = L;X. It is sufficient to verify that the normalization
L; = Li works for the half-space D, = {(z1,22) : m2 > 0}. Let K, =
{(z1,22) € R?® : 29 = a} and T, = inf{t > 0 : By € K,}. Note that
PO0O+m(O0)N(T, < Typ.) = §/a for § < a, so HONT, < Tpp,) = 1/a,
assuming that H (%) is normalized as in (4.2). The reflected Brownian motion
X, in the half-plane D, with X, = (0,0), and its local time L;* on dD, may
be constructed from the planar Brownian motion B; = (B}, B?) starting from
(0,0) by the following formula,

X\ _ 1 p2 2\ . 2
(X¢, L )—((Bth 0@3&&) Og{ggtBs)-

Note that the y-coordinate of an excursion of the reflecting Brownian motion
X from OD* is just an excursion of 1-dimensional Brownian motion away
from 0. It is well-known that such 1-dimensional excursions form a Poisson
point process. The event that X; — (0, LX) does not hit K; before time 0% is
the same as the event that there is no excursion of X from 9D, such that it
starts at a time ¢ with LX = a, a € [0,1], and the height of the y-coordinate
of the excursion exceeds 1+ a. If we assume that L} = LX, then according
to the exit system formula (4.1), the probability of this event is equal to the

probability that a Poisson random variable with parameter fol 1J1ra da takes
value 0, i.e., this probability is equal to

(4.3) exp (— /01 : i ada) =1/2.

The event “X,; — (0, L) does not hit K; before time o:*” is the same as the
event “B; does not hit K7 before hitting K_;,” and, obviously, the last event
has probability 1/2. This agrees with (4.3) so the assumption that L} = L
is correct. In other words, the normalization of the local time L;* contained
implicitly in (1.1) and the normalization of excursion laws H® given in (4.2)
match so that (dLX, H?) is an exit system for X; from dD.

Let Tpp, = inf{t > 0: B; € 9D, }. Then by Theorem II.1.16 of [Bal,

P(O’O)H"((O’O))(Bl(TaD*) € dy) = dy.

1
om(1+ (y/9)?)
Hence,
.1 n
HOVG-) € dy) =l sPOOTONE! Top.) € dy)

i 1 1 J 1

=lim—- —————dy = —.

510 0 om(L+ (y/0)2) "~ w2

This means that w;(dy) = H*(e((—) € dy), and it is easy to see that this
result extends to all C?-smooth domains D.

LEMMA 4.1.  For some cy,cz,c3 € (0,00) and any x,y € D and a > 0,
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(i) PTY(LE > a) < 2e~ 99, and
(ii) P”"y(LYX(l) >a) < cge” 0,

Proof. (i) Since D is a bounded C?-smooth domain in R?, it is known (cf.
[BH]) that the transition density function p(t,x,y) of the reflecting Brownian
motion in D satisfies the estimate

p(t,z,y) < catLemesle=yl*/t for t € (0,1] and z,y € D.

Therefore,

sup EI[LI =cq sup/ / s, x,y)dsdy < oo.
z€D x€D JOD

Take c¢7 > 0 so that sup, .5 E*[L{] < 1/(2¢7). It follows from Khasminskii’s
inequality that
sup E* [e”Lfg} < 2.
z€D
This implies that for any a > 0,
P™Y(LY > a) < 2e 7

(ii) We have proved in part (i) that sup, .5 E7e i < 2. This, the addi-
tivity of L* and the Markov property of (X,Y), imply that Eexp(07(L]X —
Lj(_l)) < 2. A routine application of the Markov property at timest = 1,2,...

shows that

E*Y exp(cr L) = E%Y exp | ¢7 Z (Lj( - LJX_l) < 2k,
1<5<k
It follows that if cg > 0 is sufficiently small, then for integer k of the form
k = csa,
PoY(LY > a) = P (exp(cr L) > exp(cra)
< 2% exp(—cra) = 2% exp(—cra) < exp(—cra/2)

Since y — PY(LY > 1) = [, p(3.v.2 )Pz(L}//2 > 1)dz is continuous on D,
there is p1 > 0 such that inf, .5 PY(L} > 1) > p;. Hence

Px,y(LY < 1) Px,y(Li’ < 1) < (1 _pl)k — (1 _pl)CSG — %90

cga

For a of the form a = k/cg, where k > 1 is an integer, we obtain,

PYY(LYy 1y > a) <P™Y(L, > a) + P (0" (1) > cga)

cga

<P™Y(LY,>a)+P™Y(LY, <1)

cga —

< 67670‘/2 +e coa < c10e —cna
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It is elementary to see that by adjusting the values of the constants ci1g and
c11 we can make the formula valid for all ¢ > 0. By interchanging the roles
of X; and Y;, we obtain part (ii) of the lemma. d

Recall that |D| and |0D| denote the area of D and the length of its bound-
ary.

LEMMA 4.2.  Let p € C(9D). For any 6,p > 0 there exists to < oo such
that for every x € D, we have

1 [t 1
i) P* (sup 2 [ etepdnr - o w(y)dy‘ > 5) <p
tJo 2|D| Jap

t>to
(ii) In particular,

L |0D]

L > <

t  2|D[| = p

P” (Sup

t>to

Proof. Let p be the uniform probability distribution on D. By Lemma
4.1 (i), SqueD E“L{ < oco. Since ¢(x) is bounded, we can conclude that

sup,.p E7| fo ©(Xs)dLY| < oo and EH| fo ©(X)dLX| < oo. Since p is the
stationary dlstrlbutlon for X, the ergodic theorem shows that P#-a.s.,

: 1 X _ X
hmg p(Xo)dL = lim (1/k) > /n ¢ $)dL?

t—o0o
1<n<k

1
:E”/ o(X,)dLX.
0

The Revuz measure of LX is dz/(2|D|) on dD and ¢(z) is a continuous
function, so it is easy to see that

1
1
E“/ dLX = dy.
; o(Xs) 3D 6)D@(y) Yy

Therefore, P#-a.s.,

t

1 1
lim = X )dLX = — d
Am g | XAl = o | ely)dy,
and
i 1 [t x 1
(4.4) P (sup |- [ p(Xs)dLy — 57 | ¢(y)dy| >3/6 | <p/6,
t>to 0 2|D| oD

for any given 4, p > 0 and some ty < oo.
The arguments on p. 6 of [BB] or Theorem 2.4 in [BH] show that there are
constants ¢, co > 0 such that

(4.5) sup |pi(z,y) — | <cre @ fort>1.

z,yeD |D|
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Let t; < oo be so large that the right hand side of (4.5) is p/6. Then the
Markov property applied at t;, (4.4) and (4.5) imply that for z € D,

(4.6)

th+t 1
p* (sup —/ P(Xo)dLY — s w(y)dy’ > 5/6)
tZtO t tl 2|D| oD
ot [ eoxgany - g [ sn] 2 o) +2 <2
< P# | sup 7/ XSdLgf—/ ydy‘z 6)+<.
sty T T AD] oy 7 63
We can increase tg, if necessary, so that for all = € D,
(4.7)
1 [ttt 1 ty+t
P (g [ wtrga - [ etxa| 2 03) <
tZtO t t1 tl "l_t t1
and
t1
(4.8) | o <sup / o(X,)dLY | > 5/3) <p/3.
>t |T1 Tt Jo

Part (i) of the lemma follows from (4.6)—(4.8) and the triangle inequality. Part
(ii) follows from (i) by taking ¢ = 1. O

We will have to analyze excursions of X from 0D containing intervals
(Sk, Ur). The exit system (L;¥, H*) is inadequate for this purpose so we will
now introduce a “richer” version of this exit system, capable of keeping track
of some extra information.

Let £(¢t) = max{S; : &k > 0,5, € [0,¢]}. Consider the strong Markov
process (X, Yy, Xor), Yory) and let es(t) = (Xoie, Yore, Xo(stt)s Yo(s+t)) for

t > 0 and s such that X, € 0D and ((ey) 4 inf{t >s: X; € 9D} —s > 0.
For all other s, we let e, = A (a cemetery state added to R3). Note a technical
difference with the previous version of the exit system—here, the excursions
are not killed at ((es) but are continued after that time; this version of the
exit system is discussed in Maisonneuve [M].

We will describe an exit system (L;<, H®1v1:22:92)) for the process
(Xt,Y:, Xo(r), Yo(r)) from the set D x D°. For any (z1,y1,T2,y2) € 0D X 53,
H@uy122,92) ig o g-finite measure defined as follows. The first component
of (Xt,Y:, Xyr), Yo(r)) under H(@uy172,92) hag the same distribution on [0, ¢)
as an excursion under H*', defined previously. Under H®1:¥1:%2:92) the pro-
cess X; continues after ¢ as a reflected Brownian motion in D, starting from
X¢—, but otherwise independent of {Xy,t € [0,()}. The other components of
(X, }Q,Xg(t)7n(t)) are determined by the first component as follows. First,
we find B, the Brownian motion driving X, using the uniqueness of the solu-
tion to (1.1). Then we use B and (1.2) to define a reflected Brownian motion
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Y in D staring from y;. We set S{ = U§ = 0 and for k£ > 1,
Uy =inf{t > 0: d(Xy, z2) VdA(Yy, y2) > ard(z2,y2)},
S¢ =inf{t > Ug_, : d(X;,0D) v d(Y;,0D) < axd(Xy,Y:)?},
U]S = mf{t > Sz : d(XthSf) V d(}/hYS;;) Z ald(ng,Ysz)}.

Let ¢¢(t) = max{S; : k > 1,55 € [0,t]}. The last two components of the
process under H(*1:¥1:72:¥2) are defined to be Xpery and Yieyy if £°() > 0,
and xo and yo, if £¢(t) = 0.

Note that the exit system for (X;,Y;, Xy, Yeq)) from 0D x D’ is equiva-

lent, in a sense, to the exit system of X; from @D because D" is the state space
for (Y;, X¢@), Yeqr)). Moreover, since X and Y are strong solutions to the sto-
chastic Skorokhod equations (1.1)—(1.2) driven by the same Brownian motion,
it follows that (Y3, Xy(), Yy)) is a deterministic function of {X,,0 < s < t}.
We included (Y, Xy(), Yot)) in the process so that we can keep track of the
stopping times S and T} inside the excursions of X; away from 0D.

In the present context, the exit system formula of [M] changes its form
from that in (4.1) to

(49 EY Vi-f(e) =E /OO Vx HX @Y 0 XU Y XN (f)ds
t>0 0 ’

_ E/OO V, HXWY O.XE0)Y €O (f)arX
0

where V; is a predictable process and f is a non-negative universally measur-
able function which vanishes on excursions identically equal to A, and those
with ((e) = 0.

Let

T¢ =inf{t > Uy : X, € 0D or Y, € 0D},

and recall that Zpe = Xpe if X7e € D and Zpe = Yre otherwise. Recall
also that F(s,u,z,a) denotes {sup,,, d(Xs,z) < a}. Let Tx(A) = inf{t >
0:X; € A} o

We assume that the constant a; in the next lemma satisfies Lemma 3.6.

LEMMA 4.3.

(i) For any co > 0 there exist c; < oo and g9 > 0 such that if 1

0D, y1,x2,y2 € E; d(z1,22) Vd(y1,y2) < ard(xa,y2), d(x1,91)
cod(z2,y2), d(z1,y1) < € < €, and |7/2 — ZL(y1 — x1,n(x1))]
cald(xl,yl), then

H@vow282) (|log pre —log psg| | UT <€) < cre.

INTV m

(ii) For any co, 1 > 0, there exist ¢ < 0o and g9 > 0 such that if x1
D, y1, 22,92 € D, d(z1,22) Vd(y1,92) < ard(z2,92), d(z1,y1)

V- m
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cod(z2,y2), d(z1,11) < e <eo, k> 1, and |7/2—ZL(y1 —x1,n(x1))| <
cald(azl,yl), then

H@v1r292) (| log pe — log psg [ 1que<r+(emyncy | UF <€) < et tk=Dh

(iii) For any co > 0 there exist 51 > 0, B2 > 1, and g9 > 0 such that if x1 €

dD, y1,z2,y> € D, d(z1,22) Vd(y1,y2) < ard(zz,y2), d(z1,y1) >
cod(z2,y2), d(z1,y1) < € < €, and |7/2 — ZL(y1 — x1,n(z1))] <
cald(xl,yl), then

B2

H($1;y1;9327y2) (‘ ]ongf — 10gp5§|1{T6§S§‘}1FC(T6,S§,ZTE,sﬁl) | Ule < C) < ef2.

(iv) For any co > 0 there exist 31 > 0, B2 > 1, and eg > 0 such that if x1 €
8D, Y1,T2,Y2 € D, d(xl,xg) V d(yl,yg) < ald(.ﬁg,yg), d(xl,yl)
cod(z2,y2), d(z1,y1) < € < eg, and |7/2 — L(y1 — z1,n(x1))|
¢y td(z1,y1), then

2
<

H(zlﬁyl,xz,lﬂ) (‘ IngUf — 10gp5§|1{S§ST"~}1FC(S§,T‘3,ZTe,851) | Ule < C) < g@Z_

(v) For any co,B0 > 0 there evist 1 > 0, B2 > 1 and g > 0 such
that Zf T € aDa Y1,T2,Y2 S D7 d($15$2) \/d(yl7y2) < ald(332>y2);
d(z1,91) > cod(z2,92), d(z1,91) < € < €0, and |7/2 — Z(y1 —
z1,n(x1))| < co_ld(xl,yl), then

H(wrvae) <| log pue — 108 psg |1 (55 <r+ (e}

X 1pe(re 1 (D), Zpe 1) | UL < C) <

(vi) Let K = K(z1,6,61) = {x € 9D : tana(xy,2) > e 7}, For any
co > 0 there exist ¢y < 00, B >0, B2 > 1 and g9 > 0 such that if x1 €
0D, y1,72,y2 € D, d(x1,22) V d(y1,y2) < ard(z2,y2), d(z1,y1) >
cod(z2,y2), d(z1,y1) < € < eo, and |7/2 — L(y1 — z1,n(x71))| <
cgld(xl,yl), then

H(x11y17x27y2) (|10ngie — 10gpS§|1{ZTe€K} | Uf < C) < 61562.

(vil) Let K be defined as in (vi). For any co > 0 there exist By, 31 > 0,
Bo > 1 and €9 > 0 such that if ¥, € 0D, y1,T2,y2 € D, d(z1,22) V
d(y1,y2) < ard(x2,y2), d(z1,91) > cod(22,¥2), d(z1,11) < € < o,
and |7/2 — L(y1 — z1,n(x1))] < cald(xl,yl), then

Hrvrae) (l log pug — 108 psg|Lisg<r+(ch0))

X Lix(rx(op)ek} | Ul < C) < e,
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Proof. Parts (i), (iii) and (vi) of the lemma follow from the strong Markov
property applied at U{ and Lemma 3.9 (i), (ii) and (iii). Part (vii) follows
from (v) (proved below) and (vi). It remains to prove (ii), (iv) and (v).

(ii) For k& > 2, if d(Xge ,Yse ) < 7 then both processes are within
distance c2e2%1 of D at time S¢_,. Brownian motion starting at a point
z at most cpe??t units away from 9D will hit 9D before hitting 9B(z, &)
with probability no less than 1 — c3e®. This and the strong Markov property
applied at S¢_;, j =2,3,...,k, imply that

H(@1y1,72,92) (U,? < T+(€ﬁ1) AC | Us < C) < 646(1971)&1.

We combine this with part (i), using the strong Markov property at time U,
to see that (ii) holds.

(iv) If S§ < T° then d(Xgg,Yse) < € and d(Xs2,0D) < c1e®. Suppose
that 3; € (0,2). Brownian motion starting at a point z at most c1e? units
away from 0D will hit 0D before hitting 9B(z,”) with probability not less
than 1 — coe?~ %1, By the strong Markov property applied at S,

Hlrvvmv2) (Fe(SS Ty (0D), Xsg, ™) | Uf < ¢, 85 < T° Fsg) < cze® .

This, the strong Markov property applied at S§ and part (i) of the lemma
imply part (iv), for a suitable choice of 5; and (s.
(v) We have for some (2 > 1,

(4.10)  Hvvnr2v2) (I log prrg —10g psg |17+ (c80)> 55}

X 1pe(re 1 (D), Zpe ef1) | UL < <>
< HEvy122.92) (|long1e —log psg|1pe(re 55,270 e 72y | UT < C)
+ H e (\ log puy —log psg|1(ss<r+(e50)nTx (0D)}
X 1p(7e 58 Zpe 1 /2)
X Lpe(ssrx (9D),x(55),e% /2) | Ul < C)
< P 4 @y e2p2) (\ log pue —log psg|1se<r+(co)aTx (9D)}
X 1pe(se mx (0D),x(58),e%1 /2) | UT < C)7

where the last inequality follows from (iii). It will suffice to bound the second
term on the right hand side. If d(Xg;, Ysg) < &, then d(Xgz,dD) < ¢;%%.
Choose (87 > 0 so that 26y — 81 > 0. Brownian motion starting at a point
z at most c;e2% units away from 9D will hit D before hitting 0B(z, "1 /2)
with probability not less than 1 — cpe?#0=61, By the strong Markov property
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applied at S5,

H(®1y1,72,y2) (FC(S§7TX(8D)’XS§’€/BI/2) | Ug < ¢, 85 < T+(€BO),-7:S§)
< 635250—51_

This, the strong Markov property applied at S§ and part (i) of the lemma
imply that the second term on the right hand side of (4.10) is bounded by
cqett260=B1  This completes the proof of the lemma. O

LEMMA 4.4.
(i) There exists c; < oo such that for x1 € D, y1,2,y2 € D,

H@ve2:92)| Jog cos a(ry, Xe_)| < 1.

(ii) Let K = K(z1,6,01) = {x € 0D : tana(xy,x) > e 71}, For any
co > 0 there exist 7 > 0, B2 > 1 and €9 > 0 such that if x1 €
0D, y1,72,y2 € D, d(x1,22) V d(y1,y2) < ard(z2,y2), d(z1,y1) >
cod(z2,y2), d(z1,y1) < € < go, and |7/2 — Z(y1 — z1,n(x1))| <
co *d(z1,y1), then

H@vie292) (|1og cos azy, X )| Lxry@opyexy | Uf <) <&

(iii) For any co > 0 there exist $1 > 0, B2 > 1 and g9 > 0 such that if x1
D, y1,22,y2 € D, d(z1,22) V d(y1,92) < ard(z2,92), d(z1,41)
COd((E27y2)7 d(xlayl) S € S €0, and |7T/2 - é(yl - 1’171’1((E1))|
cotd(w1, 1), then

INTV M

H(T1,91,72,y2) (‘ IOgCOSOé(J;j,XC_)|1{T6§S§}1Fc(Te)S§,ZTe’€[31) | Uy < C)
< P2
(iv) For anyco >0 there exist 51 > 0, B2 > 1 and g9 > 0 such that if 1
D, y1,22,y2 € D, d(z1,22) V d(y1,y2) < ard(x2,y2), d(x1,91)

cod(x2,y2), d(z1,91) < € < e, and |1/2 — Z(y1 — x1,n(x1))]
cald(ml,yl), then

INIV M

H($1,y1,xz7y2) (‘ logcosa(xl,XC,)|1{S§§Te}1FC(S§7Te7ZTC7651) | Ule § C)
< P2
(v) Foranycy >0 thg"e exist $1 > 0, B2 > 1 and g9 > 0 such that if x1
0D, y1,22,y2 € D, d(w1,22) V d(y1,y2) < ard(z2,y2), d(z1,v1)

COd($27y2)7 d(xlayl) S € S €0, and |7T/2 - Z(yl - $17n($1))|
cotd(w1,y1), then

INTV M

H(@191,02,92) (Iog cos a1, X¢ )1 pe(re 7 (9D), 2pe 1) | U <€) < .
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Proof. (i) Recall from Section 1 that we have assumed that the boundary
of D is C*-smooth and that there exist at most a finite number of points
X1,%2,...,%, such that v(xg) = 0, k = 1,...,n, and the third derivative
of the function representing the boundary does not vanish at any zy. This
implies that there exist dg, ce,c3 > 0 such that if z € 9D and d(z,zy) < do
then |v(z)| > cod(z,zy); moreover, if x € D and d(z,zi) > do for every
k=1,...,n, then |v(z)| > c3. We make §p smaller, if necessary, so that we
can assume that d(z;,z;) > 4d¢ for all j # k. It is elementary to see that
there exists ¢4 > 0 with the following properties (a)—(c).

(a) For every & € 9D such that d(z,z) > 26y for k =1,...,n, and every
y € 0D with d(z,y) < do, we have |a(z,y)| > cad(z,y).

(b) If € 9D and d(z,zy) < 2Jp for some k, y € D, d(z,y) < dy, and y
lies on the same side of z as = then |a(z,y)| > csd(z,y)d(z, z).

(¢) Suppose that * = zy for some k. If y € 9D and d(z,y) < dg then
(e, y)| > erd(z, y)°.

Make &g smaller, if necessary, so that for any x,y € 0D with |a(z,y)| > 7/4,
we have d(z,y) > 4do.

It is standard to prove, using the same methods as in the proof of Lemma
3.2, that for some c5,cs < co and all € 9D, we have w,(dy) < csd(x,y) 2dy
if d(z,y) < do, and w,(dy) < cgdy if d(z,y) > do.

Consider any z € 9D and let 21, 29, ..., 2, be all points in 0D such that
a(z,2;) = m/2. The number m of such points is bounded by a constant
mg depending on D but not on z. Let I'; be the set of points on the same
connected component of D as z, within the distance §y from z. The family of
points {z1, ..., Zm, 1, .., Ty } divides 9D\I'; into Jordan arcs T'g, 2 < k < ny,
with ng < n +m. For an arc I'y, let y, and y,j denote its endpoints, and
let I, = {z € Ty : d(y,,z) < o}, I = {z € Ty : d(y,z) < &}, and
T =T\ (T UT).

Since

HEv1w22)|log cos az, X¢_ )| = H?|log cos az, X¢_ )|

= / | log cos a(z, y)|w-(dy),
oD

we will estimate the integral on the right hand side. We will split the integral
into the sum of integrals over I'y’s. Let A denote the arc length measure on
0D, i.e., A(dx) is an alternative and equivalent notation for dz.

Since v(x) is bounded over 9D, for x € Ty we have a(z,2) < crd(z, z)
and so |logcosa(r,z)| < cgd(z,2)?. Recall that w,(dy) < csd(z,y) 2dy if
d(z,y) < §p. This implies that

do
(4.11) / |log cos a(z, y)|w, (dy) < 2/ cgu’csu2du < cody.
r 0
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Consider an arc I'y, with k& > 2. First assume that the distance between g,
and y; is greater than dp. Since the curvature v(z) has the constant sign on
[k, the function z — «a(z,z) takes its maximum at one or both endpoints of
I'. Recall that, by convention, a(z,x) < m/2. This and (a)—(c) show that

AM{z el :1/2—a(z,y,) € 277,277} < c1027772.
We have w,(dz) < cgdx for € Ty, so
(4.12) / |log cos a(z,y)|w. (dy) < e11 ZjQ‘j/Q = c12,
Ty i>1
and similarly

/+ |log cos a(z, y)|w. (dy) < c1a.
r

k

By (a), for z € T'Y, 7/2 — a(x,z) > c13 > 0, where ¢13 does not depend on 2
or k. Hence,

/0 | log cos a(z,y)|w.(dy) < ¢14]0D| = ¢y5.
r

k

Next suppose that the distance between y,” and y,j is less than §y. Then
one of the endpoints of I'y, say y, , is a point x;,, and y,‘f is a point zj;,. By
Lemma 3.7,

A{z €Ty :m/2 —a(z,yy) € 277,277} < 1627772,
for 279 < cy7d(y;, , y)). Hence,
(4.13) / | log cos a(z, y)|w. (dy) < c18 Z G279/ < .
b 29 <errd(yg )

Since the number of arcs ng is bounded by a constant independent of z, we
obtain

HEvre22)|og cos afz, Xe )| < Z/ | log cos a(z, y)|w. (dy) < egp.
k YTk

(i) Tt is not hard to prove, using (4.2), that H@vv1:22:92)(Ue < () > coe™?,
so part (i) implies that

(4.14) H@1y22:92) (| log cos a(y, Xe )| | UF <€) < ese.

The proof of part (ii) can be finished by applying the same ideas as in part
(i). The only modification that is needed is to restrict the range of j in (4.12)
to 277 < P, and similarly for (4.13).
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(iii) We have
(4.15)  H@vy1w2.y2) <| log cos a(z1, X¢- )| 1(re<ssy
X 1pe(re ¢, zpe ey | UL < C)
< HPvne2v2) (| log cos a(z1, XC—)|1FC(T"~7S§,XTe75f’1)
X Lyresss Xpe=zre} | UL < C)

+ H@1y1e2.2) (| log cos a(x1, XC_)\lFC(TX(aD)7sg7zTe,am/2)
X 1iype=zpe Tx(0D)<s5y | U < C)

IRy (| log cos a1, X¢ )L pe(re T3 (9D), vipe 251 /2)
X Lo =zpe e 00y | UE < ).

The first term on the right hand side is bounded by c;e% for some 85 > 1 by
(4.14), the strong Markov property applied at T.(0D), and (3.34). A similar
bound holds for the second term, by the strong Markov property applied at
Tx (0D). To estimate the last term, we fix a 84 € (1,1 + $1) and note that,

(4.16)
Hwowr22) (| log cos aay, X¢-) L pe(re mx (0D),Yre 251 /2)
X L{ype=zre Te<Tx (0D)} | U <€)
< HEv0e292) (|log cos alwr, X¢ )| L{ary 0D).an) <200 | U <€)
+ Ho 22 (|log cos alwr, Xe-)[1gagey, opy<erny | Uf <€)
+ H@1y172,92) (Ilog cos av(ay, Xe ) iary (9D),21)>2:5 d(Xye,0D)>ef4}
X 1pe(re Ty (9D),Yre 01 /2) L {Ype=Zpe Te<Tx (0D)} | Uf < C)'

To bound the first term on the right hand side we use the same idea that
underlies (4.11). The conditioning on {Uf < (} transforms the excursion law
H into a probability distribution. The event in question concerns Brownian
motion starting at X (Uf) and killed upon hitting the boundary. The starting
point, X (Uf), is at most cee units away from z;. For points y € 9D with
d(71,y) € (27%,27FF1] we have |logcosa(r1,y)| < 327 2%, and the proba-
bility of hitting the set of such points is bounded by c4e2*, by Lemma 3.2.
Let k1 be the smallest integer such that 27F1 < ¢, and let ks be the smallest
integer such that 272 < 2%, Then the first term on the right hand side of
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(4.16) is bounded by
k2

Z Cg272kC4€2]C < 6582.
k=ky
We turn to the second term on the right hand side of (4.16). It is rather
easy to show, using (4.14) and the same ideas as in part (i) of the proof, that
for any r > 0,

H@vve2:92) (| log cos oy, X )| | Us < ¢, d(Xye,0D) = 1) < cee.
It is straightforward to see that
HEvvm2v2) (d(Xye,0D) < 7 | Uf < ¢) < erre™ L.

One can use these estimates to find a bound of the form cge® with 85 > 1,
for the second term on the right hand side of (4.16).

To bound the third term on the right hand side of (4.16), we condition
the process {X;,t € (Uf,¢)} under H@1:¥1:22:%2) on its endpoints Xye and
X1y (op)- The result is an h-process R, in the sense of Doob, starting at Xy
and killed at X, (9p). Consider random sets

K, ={z € D :d(z,0D) < coe"™ d(z,z1) < 7 /2,

d(z, X1y (op)) > €7 /2},
Ky ={x € D:d(z,0D) <e,d(z,z1) > 551/2,d(m,XTX(,9D)) > P12y,

for some c9. Suppose that the events in the indicator functions in the last
term on the right hand side of (4.16) hold. If d(zy, Zre) < €%1/2 then the
process R must hit K7, otherwise it must hit K5. The following two estimates
follow from standard properties of harmonic measure. If d(Xye,dD) > b
then the probability that the h-process R hits K is bounded by ¢ge!*t#1 =51,
and the probability that it hits K is bounded by ¢1;6' =71, The conditioning
on {Uy < (} contributes a factor of ciae (see (4.14)), so we obtain a bound
c13(e2HPr=Bs 4 2781y < 1485 for the third term on the right hand side of
(4.16), for some (5 > 1. All terms on the right hand side of (4.16) have bounds
of this form so this finishes the proof of part (ii) of the lemma.
(iv) We have

H(T1,y1,72,y2) (‘ IOgCOSQ(IlaX(—)|1{S§§T"~}1FC(S§,TG,ZT67531) ‘ Us < C)

< H(ﬂil;y17$27y2)(|10gcosa(1~1’XC)|1{S§STX(8D)}

X 1pe(ss,Tx (0D), Xy o) | UT < C)-

This can be estimated just like the last term on the right hand side of (4.15),
i.e., (4.16). The crucial point is that the distance from X to D must be less
than ci? at time SS. The estimates of the third term on the right hand side
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of (4.16) are based on the fact that the distance from X to D at time T is
bounded by coe!*#1 (see the definition of K7).

(v) This estimate has been already proved in part (iii) because the relevant
expression appears as the last term on the right hand side in (4.15). O

LEMMA 4.5.

(i) There exist Bo,01 > 0, B2 > 1 and co,e9 > 0 such that if x,
OD, y1,22,y2 € D, d(wy,22) V d(y1,y2) < ard(zz,y2), d(z1,y1)
cod(x2,v2), d(x1,91) < € < eo, and |7/2 — ZL(y1 — x1,n(21))]
cytd(w1,y1), then

INIV M

H(m,yhaﬂmyz)( ’]0g pr — log p_g; — | log COS a(xl, ng)” 1{S§§7—+(550)}

X Lp(re 85,200 £P) LF(Te Tx (0D), Zge 1) | UT < C) <e.

(ii) There exist Bo >0, B1 > 1 and co,e0 > 0 such that if 1 € OD,
y1,22,y2 € D, d(zy,22) V d(y1,y2) < ard(w2,92), d(z1,1) >
cod(z2,92), d(z1,11) < € < €0, and |7/2 — Z(y1 — 21, 0(21))| <
cald(ml,yl), then

H(@1y1,w2,y2) ( |log pue —log pse — |log cos a(wy, X(—)H
X Lige<rt(epoyy | UT < C) <&

Proof. (i) Let z1,22,. .., 2m, € 0D be all points with a(z1, 2;) = /2. For
integer k, let My C 9D be the set of all points y such that tana(y,z1) €
[27F 27F+1]. Fix some 33 such that 0 < 33 < 1 < 1. Let ko be the smallest
integer with 2750 < ¢~/ and K = Uk<r, Mk- By Lemmas 4.3 (vii) and 4.4
(ii), we have for some 3y > 0, B2 > 1,

H(®1,91,72,y2) ( ’10g pus — log pss — |log cosa(ml,XC,)H

X Lige<rt(ero)y Lx(rx(0D)ery | UT < C)

< HPvvnr2 ) (| log pug —10g psg|Lss<r+(e90)y L{x(Tx (9D))eK} | UT < C)
+ H(‘cl’yl’“’yQ)(|logcosa(ml,XC,)|1{X(TX(3D))GK} | Uf < C)
< b2
It follows that it will suffice to show that for some G4 > 1,

H@1p1,22,y2) ( |log pus — log pss — |log cos a(z, XC*)H

X Lix(Tx (0D) 2K} L F(Te S5, Zre 1) LE(Te T (0D), Zpe eP1) | UT < C) < efa,
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Let
Ty = S5
Ainf{t > U?: Y, € 9D and |[Z(n(Y;), X; — Y;) — /2| < erd(z1,92)}
Ainf{t > U¢: X, € 9D and |Z(n(X}), X; — Y;) — /2] < erd (1, 92)" }.

for some c¢;.  We will assume that events F(T¢,S§, Zz.,e’) and
F(T¢,Tx(0D), Zre,e%) hold. Using this assumption, we will estimate
|log pue — log pr, — |log cos (w1, X¢_)||. Let k1 be the smallest integer with
d(Il,Mkl) < b If X(Tx(ﬁD)) S Uk>k1 M, then T = Tx(aD) A Ty(aD)
Hence, d(Xye,Yye) = d(Xry, Yry,) and |logcos oz, Xc—)| < 26?1, Thus,
in this case,

‘logpyf — log pr, — |log cos oz(acl,XC_)H < P,
Now we make an extra assumption that 51 > 1/2 and we conclude that
(4.17) H(@1y1,2,92) ( |log pue — log psg — | log cos a(w1, X¢— )|
X L{X (Tx (9D)€U s i, Mi} LF(T¢, S5, Z7e £51)

X Lp(re T (0D),Zpe e#1) | Uf < g)

< 025251 _ 025[357

for some (G5 > 1.

Suppose that X (Tx (0D)) € My with k1 < k < kg. Note that, by assump-
tion, |a(x1, Z;) — alw1, Xe—)| < ez for all t € [Uf, T1] such that one of the
processes X or Y is on the boundary at time ¢. We have (d/dv)|logcosvy| =
tan-y for v € (0,7/2). This and easy geometry imply that the change in p; on
the interval [U7, T1] is equal to logcos a(z1, X¢—) up to an additive constant
bounded by ¢,27 % ie.,

|log pye — log pr, — |log cos (w1, X¢)|| < 27 FeP,
By the strong Markov property applied at Uy and Lemma 3.2,
H@ovo2v2) (X (Ty (D)) € My | U < ¢) < e5e2”,
so for k1 < k < ko,
H@1y1,22,92) ( |10ngf —log psg — |log cos a(xy, XC,)H 1ix(7x (9D))eM}

e 1+
X 1p(Te, 85, Z7e 1) L (T, Tx (0D), Z7e 1) | UT < C) <cee
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and

H(xhyl,x%yz)( MOg pus — log psg — |log cos au(z1, XC*)”
X L{x(Tx (0D))eUy, <pery Mi} LF(T S5, Z7e 1)

X Lp(re Ty (9D), Zpe e81) | UL < C)

< cre'tPr)loge| < cges,
for some B > 1. This and (4.17) imply that for some 37 > 1,

(4.18) H(@1y1,w2,2) ( |log pue — log pr, — |log cos a(ay, X¢— )|
X Lex(rx(0D))g K} F(Te 55, Zpe 1)
X Lp(re 1y (0D), Zpe &) | UL < C) < coe™.

The following definitions assume that Xp. € 9D. If Y. € 9D then the
roles of X and Y should be interchanged in the definitions of T, T#¥ Tk TF
and T{“H. Let Tll =T, and for k > 1,

TH = inf{t > TF : d(Y;, Yyp) > 2d(Yy, 0D)},
Ty = inf{t > T} : Y, € 9D},
TE= (e > T L 1 > ciod(¥ry 0D)),
T8 =Ty NTY ANTY,

TFH = inf{t >TF : X, €D or Y; € dD}.

If TFF < 77(e) and d(Xpx, Xpe) < & then |7/2 — Z(n(Z;), X; — Yi)| <
c11e™ for t € [TF, TP and L;flk+1 - Liflk < Clgd(Xle,Yle){fﬁl. The change
of d(X,,Y;) on the interval [TF, T#!] is bounded by the product of these num-
bers, that is Clgd(Xle,Yle){‘:Q'@l. This implies that the increment of |log p;|

on the interval [TF, TF'] is bounded by ¢1462?'. By Lemma 3.3 (i), the prob-
ability that S§ > T¥ is bounded by p¥, for some p; < 1. We obtain, by the
strong Markov property applies at 17,

H(z11y17m27y2) ( ’10g T, — log pSS

< E phe1ae® < e5e®t = cp5e.
k>1

Lisg<r+ (001 Lp(Te 85,270 201) | UT < C)

The exponent (g is greater than 1 provided 1 > 1/2. Part (i) of the lemma
follows from the last estimate and (4.18).
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(ii) We have
H (HngUF —log psg — |log cos (w1, X¢_ )| Lise<rt(emoyy | UT < C)
< HE1we2,02) ( llong{i — log psg — | log cos a1, ng)H Lise<rt(cf0)}
X (e, 55, Zre 1) LE(Te Ty (9D), Zpe e01) | UT < C)
+ H(@1y1,22,92) (|10gPUf —log psg|1(re<ssylpe(re, 55,200 1) | U < C)
+ H@1y1w2.2) (| log pue —log psg|Liss<re}lpe(ss, e, zpe o) | U < C)

+ H($1,y1,a¢2,y2) <| log pUle — 10g pss |1{S§ST+(€BO)}

X lFu(Te,TX(aD),ZTc7561) | Uy < C)
+ H@1y1,72,2) (| log cos a(@1, X¢— )1 (re<ssiIpe(re 55, 20e 001y | UL < g)

+ H(w1,y1>$2,y2) (|IOgcosa(‘rlvXC*)‘1{S§§TE}1FC(S§,T€,ZTe,sﬁl) | Ule S C)

+ H@1y1e2.2) (Ilog cos a1, X¢ )1 pe(re 7 (9D), 20e 1) | UF <€)

Part (ii) of the lemma follows from the above formula, part (i) of this lemma,
and estimates in Lemma 4.3 (iii)—(v) and Lemma 4.4 (iii)—(v). O

LEMMA 4.6. For any By € (1,2) there exist B2 > 0, and €9 > 0 such that
if e <eg and d(Xo,Yp) < € then

P(d(Y,x,0D) > &) <&’

Proof. By Lemma 4.1 (i), P(LYy > a) < ¢je” % Hence, for any (3 > 0
1
and some (4 > 0,

P(LZ} > B3]loge|) < c1 exp(—caf33]loge|) = .
If the event A; & {LY« < fs|loge|} holds then, by Lemma 3.8,
1
sup  d(Xy,Y:) < d(Xo, Yo) exp(ca(1+ B3] logel)) < ez’ =% = c5e' 5.
tE[O,UiX]

Choose B3 > 0 so small that we can find g and (7 such that 85 < Gg < 07 <
1—fsand By =1 — B5 + Pe.

Let Ty = inf{t > 0: X; € 9D} and {V;,0 <t < of ~T1} € {X,x 1,0 <
t < off —T1}. If we condition on the values of X7, and X,x, the process V
is a reflected Brownian motion in D starting from X,x and conditioned to
approach Xr, at its lifetime. It is easy to see that P(d(Xr, X,x) < gls) <

Be
CgE™.
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Suppose that the event A> = {d(Xr,, X;x) > %} holds. Conditional on

this event, the probability that V does not spend £%7 units of local time on the
boundary of D before leaving the disc B(Vy,<%) is bounded by %75 Let
As be the event that V spends €7 or more units of local time on the boundary
of OD before leaving the disc B(Vp,e%). If A3 holds then it is easy to see
that d(Y,x,dD) < e'~%+F = &/t We have shown that d(Y,x,dD) < & if
Ay N Ay N Az holds. Since P((A; N Ay N A3)¢) < &P + el + P77Fs | the
lemma follows. O

Recall that eg denotes an excursion of X from the boundary of D starting
at time s and let a(es) = a(es(0),es((—)).

LEMMA 4.7.  For any d,p > 0 there exist to,co < 0o such that for every
r € D, we have

(i) P Z |logcosa(es)| > co | <p,

€s Egto

(ii) P® (sup 1 Z | log cos a(es)|

u
uZto es€EL

51 o,
- log cos a(z,y)|w,(dy)dz
301 o BD\ (2, 9)|w-(dy)

Proof. (i) It suffices to show that Zesegto
tation, bounded by a constant independent of x. This follows from the exit
system formula (4.1), Lemma 4.1 (i) and Lemma 4.4 (i).

(ii) Suppose that Xy has the uniform distribution in D. Then, by the exit
system formula, and since the Revuz measure of L;* is dz/(2|D|),

26)<p.

| log cos a(es)| has a finite expec-

1
E Z | log cos a(es)| :E/ HX)(]log cos a(es)])dLY
0

es€E
51 oo,
= — logcos a(z,y)|w,(dy)dz.

By Lemma 4.4 (i) and its proof, the last integral is finite.
Let Vi =3 . cepe, , [logcosales)|. By the ergodic theorem,

.1 .
uh—>Holoﬂ Z | log cos a(es)| —klir{:o(l/k) Z Vi
es€Eu 1<n<k

51 o,
= — logcos a(z,y)|w,(dy)dz.
3D Jop 8D\ (2, y)|w:(dy)

Recall from (4.5) that the transition density p;(x,y) of reflected Brownian
motion converges to 1/|D| exponentially fast as t — oo, uniformly in (z,y) €
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D This can be used to finish the proof of part (ii) of the present lemma,
using the same argument as in the proof of Lemma 4.2 (i). O

Recall that 7¢ = {J, (Uk, Sk+1]-

LEMMA 4.8. There exist ¢1,e9 > 0 such that if d(Xo,Yp) < e < gq then
foranyt>1,
E/ dLX < cite|logel.
Ten[0,0X AT

Proof. 1t is easy to deduce from Lemma 3.3 that
(4.19) E(LY - L{,) < coe.

S1/\7’E+

Next we will estimate (Lgfk+1 - L)U(k)l{Uk<T€+}' Fix some k > 1 and assume
that Uy < 7':_. Note that d(XUk,aD) V d(YUk,aD) < CSd(XUkaYUk)- Let T}
be the first time after Uy when either X or Y is in dD. Let ng be the greatest
integer such that 27" is greater than the diameter of D and let ny be the
least integer greater than |logd(Xy, , Yy, )|/log2. By Lemma 3.2,

P(d(XUMXTl) > 2771) < C3d(XUk,YUk)2n,
for ng < n < ny. This obviously implies that
P(d(Xy,, Xr,) € 27,27 ")) < e3d(Xy,, Y, )27,

for ng < mn < n;. Simple geometry shows that if d(Xy, , X7,) € 277,27 "]
and ZT1 = XT1 then d(YTl,aD) < C4d<XUk,YUk)2_n, and if ZT1 = YTl then
d(X7,,0D) < esd(Xy,, Yy, )2~ ™. Hence,
:P(d(‘XT1 5 BD) \% Cl(Y'T1 5 8D) S [C4d(XUk 5 YUk)2_n_1, C4d(XUk 5 YUk)2_n])
< e3d(Xuy, Y, )2",
for ng < n <ny, and
E(d()(T1 s 8D) V CI(Y—T1 s 8D)) < Csd(XUk y YUk,)2| log d(XUk y YUk)l
By Lemma 3.3 (ii), assuming that g is small,
E (L3, - L, | Uk < 7") < cod(Xu,, Yo, )2 log d(Xu,, Yo, ).
It is elementary to check that
E (Ly, — L, | Sk <7) > erd(Xs,, Ys,),
and the conditional distribution of L*’U(k —Lgk given {5y < 77"} is stochastically

bounded by an exponential random variable with mean csd(Xg,,Ys, ). Note
that d(Xy,,, Yu,) < cod(Xs,,Ys, ). Hence,

df -
Nm = chog| 10g€|(L§k - Lé’(k)l{Sk<T:—} - (L§k+1 - L)U(k)l{Uk<T:—}
k=1
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is a submartingale with respect to the filtration F, = .7-';("’};. If

m

M =inf{m: Y (L} —L%,) >t}
k=1

and M; = M A j then

M;
By (clog\ log e|(LE, — L&) Lpg, ooty — (L., — Lffk)l{UkQ;}) >0,
k=1

and
M; M;
EY (L3, - Ly, oriy < E cipelloge| (L, — LE ) g, <rty-
k=1 k=1
We let j — oo and obtain by the monotone convergence
M M
EY (L3, — L5 ) crry SE Y croellogel (L3, — L3 )1(s, o0y
k=1 k=1

< eqpte|logel.

Hence,

M
E/ dLX <ESN (LE . —LE)1, 4+ < cntellogel.
Ten[Uy,0X ATF(e)] ; Sk+1 Ur ) M {Up<rd}

This and (4.19) imply the lemma. O

Recall that ey denotes an excursion of X from 0D starting at time s,
ales) = ales(0),es(C—)), and &; is the family of excursions e with s < t. See
the beginning of Section 3 for the definition of p,.

LEMMA 4.9. Let £*(t) be the restriction of & to those excursions e, that
satisfy the condition SUPe(y yi¢(e,)) A(Xs, Ys) < elo. For any By € (0,1)
there exist 81 € (3/2,2), €0, 82 > 0 and ¢ < 0o such that if Xo € 0D, € < &y,
d(Xo,Yo) < e and d(Yy,0D) < P then,

E|logp,x — Z |log cos afes)|| < e,
es€E*(oX)

Proof. Recall the “rich” version of the exit system introduced before Lemma
4.3, and the accompanying notation, i.e., stopping times S} and Uf. Let k;
be the smallest (random) integer such that Sy, > oiX. We will show that the
triangle inequality yields
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(4.20)

log p,x — Z | log cos a(es)]
es€E* (o’f()

< > Liug>¢(e)y| log cos afes)|
es€E*(0X),s€ET

+ > Live<c(e.)y |log pus —log pss — |log cos a(es)|
e €E*(aX), 5T

D D Lupsce llong;—logps;H

es€E* (o) k=2

+ Z | log cos a(es)|

e €E%(0X),5¢T

+ [log ps, —log po| + |log ps,, —log pyx|.

We will argue that the right hand side properly accounts for all the terms on
the left hand side of the last formula. All the terms of the sum
Zeses*(aff) | log cos a(es )|, appearing on the left hand side, are accounted for
on the first, second and fourth lines on the right hand side. The quantity
log Pyx can be represented as the sum of log py, — log ps,,,, for all k such
that 0 < Uy < Spy1 < 0y, except that there are two extra terms corre-
sponding to subintervals at the very beginning and at the end of [0, 5]. The
two extra subintervals are accounted for on the last line of (4.20). The in-
tervals [Ug, Sk+1] C [0,07] are matched with excursions es in the following
way. Consider a Uy and find an excursion e; = {es(t),t € [s,s + ((es))} such
that Uy € [s,s + ((es)]. Then Uy is one of the times Uf for this excursion.
Note that if Uf > ((es) for an excursion es then there are no k such that
Uy € [s,5+ ((es)], so we restrict the sums on the second and third lines ap-
propriately. We split the sums according to whether £ = 1 or k£ > 2, and
whether s € 7 or not. The sums on the second and third lines do not contain
terms corresponding to Uf with s ¢ 7. This is because if s ¢ 7 then [s, S§]
is a subinterval of [Uy, Sk+1] with Sg+1 = S5. Then Uy, = U;* for some j and
some excursion e}, with v < s but note that we cannot have j =1 and u ¢ 7.
Hence, there is already a term accounting for the interval [Uy, Sg11]-

The following estimate is based on the same ideas as the proof of Lemma
4.4 (1) If d(l‘l,yl) <e then

H(Il’yl’“’yz)(l{Ufzc(eS)}|1ogcosa(cc1,X<_)|)§/ cor 2| log cos(car)|dr
0

g
S/ cor2eq(esr)?dr = cse.
0
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Hence, by the exit system formula (4.9),

(4.21) E Z L{vesc(e.)y| logcosales)] < cse.
es€E*(0X),s€T

We have H(@1v1:22:92)|log cos a(zq, Xe—)| < ¢ for all (z1,y1,72,y2) by
Lemma 4.4 (i) so, by the exit system formula (4.9) and Lemma 4.8,

=

(4.22) E Z |log cos aes)| < ¢ dLX

es€E*(0X),5¢T /Tcﬂ[o,af(/\r‘*'(sﬁo)]
< creP|logel.

We have by Lemma 4.5 (ii), for some 33 > 1,

H®@1y1,22,92) ( }longIe —log pss — | log cos a1, X¢_ )|

X 1egecrt(eroyy | UT < C> < crd(z1,91)%,
so, by the strong Markov property applied at Uy,

H@11,22,y2) ( |10g pus — log pss — |log cos a(xy, ch)“

X 1{S§§T+(EBO)}1{U1€§C})

< crd(zy, yl)BSH(m,yl,zz,yz) (Us <Q).
This and the exit system formula (4.9) yield,
(4.23)

E Z Live<c(e.) |log pue — log pgg — |log cos av(es )| lige<r+(cro)y
es€E*(0X),s€T

SE ) ed(X V)M Lwpegeny
es€E*(0{X),s€T

We will now estimate the right hand side of (4.23). Let
Mj = (P71 = 1X) = esd(Xu,, Y0,) ) s, <ot o0y

It is not hard to check that E(L*,)J(j - Lfg(j | Fs;) > cod(Xs,,Ys,;) and also
d(Xy,,Yy,) < c10d(Xs,,Ys;). Hence for an appropriate cg > 0, we have
EM; > 0 and the process Ny =}, M; is a submartingale. Let K = inf{k :
ngk(L)U(j —Lg(j) > 1}. It is easy to check that L)U(j —Lg(j is stochastically ma-
jorized by an exponential random variable with mean c;;d (X S; Ysj) < ¢116P0.
By the strong Markov theorem applied at time %, we have E Y i< (L —

J
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LX ) < 14 ¢116%. By the optional stopping theorem we have ENga, > 0 for
any fixed n, so

sB D d(Xu,, Yi,) P Lis <o ooy

I<KAn

RS (I Loy
J<KAn

S 56371(1 + 0116'60).

Letting n — oo, we obtain

(4.24) E Y d(Xy,,Yu,) " 1g, <ot (o)) < €126P7
J<K

Note that

(4.25) E Z erd(Xs, Vo) Live<c(en)y

es€E*(03X),s€T
<E Z d(Xu,,Yu,) " 1(s, <ot (ch0))
<K

so this, (4.23) and (4.24) imply that

E Y Lwpcreay|logpur —logpsg — logcosales)l| Ligg<r+ (o0
es€E*(0X),s€T
< cpze L
By Lemma 4.3 (ii) and the strong Markov property applied at Uf, if
d(z1,y1) <% and k > 2 then
H(@151,22,92) (| log pug — log ps¢

£ Lup <ot epor2yney Lus <) < crae™ D2,

so the exit system formula (4.9) implies

(426) E Y Zl{UfSC(eS)}‘IngUﬁ_IngSEJrl
es€E* (o) k>2

< 2014550(]@*1)/2 < 0156@*,

k>2
for some (B4 > 0.
By Lemma 3.9 (i),
(4.27) E|log ps, — log po| < c16¢.

By Lemma 4.6, for some (5 > 0,
B B
(4.28) P(d(Y(,f,&D) > el <et2.
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By Lemma 3.9 (i),

(4.29) E (| log ps,,, — logpaff|1{d(yuf( ,8D)§eﬂ1}) < crre.

The lemma follows from (4.20), (4.21), (4.22), (4.25), (4.26), (4.27), (4.28)
and (4.29). O

Proof of Theorem 1.2. The proof will consist of three steps. First we are
going to define some events. Then we will estimate their probabilities and
choose the values of the parameters so that the probabilities of the events
defined in Step 1 are large. Finally, we will prove that if all of the events
defined in Step 1 hold then d(X;,Y;) has the asymptotic behavior asserted in
the theorem.

Step 1. Suppose that A(D) > 0 and fix arbitrarily small §, p > 0. Assume
that § < A(D)/8.

We will define a number of events and stopping times, depending on param-
eters ¢, ko, c1, ..., cg, whose values will be specified later on. We will assume
that all these parameters are reals in (0, 00), except that ko > 0 is a (large)
integer. The constant € will represent the initial distance between the two
Brownian particles, i.e., e = d(Xg, Yy). Let

= {1-6 < (s/o¥(s)(ID|/IOD]) < 143, Vs> ko},

Ay = {sup (L}:x(t) - 2t> < O} N sup d(X, V) <crp,
t>ko t<oX (ko)

t 1

sup |- | w(XG)dLY — S V(y)dy‘ <0,

{t><7X o) 2|D[ Jap

t . 1

As = sup |- | v(Ys)dL, — — y)dy‘ <4,

ol P 20D Sy
Ay = sup |— |10g cos a(es)|
u>oX (ko) es€E

- — log cos a(z, y)|w, (dy)dz <c5},
mDmADAD'g (2 )l (dy) | < e

A = { 108 Py (kg) — Z |log cos a(e,)|| < oX(ko)d p ,

es€fax<k0)

/ WX ALY | < 0¥ (ko)5 b |
Ten[0,0X (ko)]
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Ag = / v(Y,)dLY
TeN[0,0% (ko)]

For each event A; on the above list, let A; denote the event defined in the
same way except that kg is replaced by kg — 1. The same remark applies to
Zj and g;

For integer k£ > 0, let

Af = {LB;X(kOJrkH) — LY x (ko sy < (c3log(k + 2))2}7
Ty =0X (ko +k+1)

A7 (2 exp(—calko + K)(A(D) = 76) + ea(1 + (es log(k +2))%))),
Ty =inf{t > o™ (ko +k+1): L = LYx 5y = (cslog(k +2))*}

A7+ (2 exp(=calko + K)(A(D) = 76) + ea(1 + (es log(k +2))%))),

< UX(k0)5} .

AF={1
8 {A(X X (g 11 Yo X (kg 4 1)) € exP(—c2(ko+F) (A(D)—=76))}

< 026}a

A =1
8 {d(XﬁX(k0+k),Yax(ko_'_k))ge exp(—ca2(ko+k)(A(D)—-T78))}

< 026}7

A’g = {d( X% (ko) YoX (ko+k)) > €exp(—ca(ko + k)(A(D) —70))}
U{A(Yyx o k1), D) < £ expl(—esealho + K)(A(D) — 7)) ).

X v(X,)dLX

/TCﬁ[gX(ko-&-k),Tk]

X v(Yy)dLY

~/Tcﬂ[ax (ko+k),Ty]

Let £%(s,t) be the subset of & \ & consisting of these excursions e, that
satisfy
sup d(X,,Y,) <e®exp(—ceca(ko + k)(A(D) — 76)),
Ue[u;u+c(eu))

and let

k
AlO = { H 1{d(XO.X(k0+j)’YO_X(kO+]»))SEexp(*C2(k0+j)(A(D)*75))}
0<j<k

x |log w - Z |log cos a(es)|| < 026}.
PoX (ko+k) es€ER< (0 X (ko+k),0X (ko+k-+1))
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Step 2. 1In this step, we will choose the parameters so that all events defined
in the previous step have large probabilities. All the bounds on probabilities
will hold uniformly for all starting points (Xo, Yy) € D’ with d(Xo, Yy) =e.
The starting points will not be reflected in the notation. We can assume that
€ > 0 is arbitrarily small in view of Lemma 3.1.

First we use Lemma 4.2 (ii) to choose ko so large that P(A4;) > 1 — p. Let
co € (0,1) be such that if A; holds then for all k£ > 0,

(4.30) ca(ko + k) < o™ (ko + k).

We choose ¢; to be the constant g9 of Lemma 3.6, assuming that the
constant ¢; in that lemma takes the value c2d/3.

Lemma 4.2 is stated for the process X; but it applies equally to Y;. It is an
easy consequence of part (ii) of that lemma applied to both X; and Y; that

if we enlarge ko, if necessary, then P (suptZkO(L}:X W~ 2t) < O) >1-—p It

follows from Lemma 3.8 that if sz(ko) < 2ko and ¢ is sufficiently small then

SUDy< X (ko) A(Xt, Y2) < c1. Hence, for sufficiently small ¢, P(A2) > 1 —p.
Using Lemma 4.2 (i) we can find ¢; so large that

(4.31) P (sup

>t

2|D] Jap

t
1/ (X, )dLY — —1 u(y)dy‘ < 5) S 1-p)2.
0

By part (ii) of the same lemma, we can enlarge ko, if necessary, so that
P(0%X (ko) > t1) > 1—p/2. Hence, for this value of kg we have P(A3) > 1—p.
Since (4.31) holds with X replaced by Y, our argument shows that P(Ag) >
1 — p for the same value of k.

Enlarge ko, if necessary, so that P(o0X (ko) > tg) > 1 — p/2, where t; is the
constant in the statement of Lemma 4.7 (ii), assuming that in that lemma p
is replaced with p/2 and ¢ is replaced with ¢2d. Then it is easy to check, using
Lemma 4.7 (ii), that P(A4) > 1 — p holds with this choice of kq.

We will next show that with an appropriate choice of the parameters,
P(As) > 1 — p. Suppose that Sy > 0 and (1 € (3/2,2) so that we can
apply Lemma 4.9 with these parameters. Recall the notation £*(¢) from that
lemma. Let

F ={d(X,x,Y,x) < e} n{d(Y,x,0D) < &'},
G; = {1og(poy, /7o)

- 3 | log cos afes)|| < ax(ko)a/(zko)},

s € (o X, \E* (o)



262 KRZYSZTOF BURDZY, ZHEN-QING CHEN, AND PETER JONES

G = {1og(p,y, /7o)

- 3 | log cos afe,)|| < aX(ko)d/(Zko)}.

eség(aé(_'_l)\é‘(o'kx)

Choose €1 > 0 so small that for £ =0,1,..., kg — 1, using Lemma 4.9 and the
strong Markov property at oj\, P(G} | Fi) > 1 — p/(4ko). This implies that
P(Gy) > 1 —p/(4ko) — P(FY).

By Lemma 4.6, we can find €5 > 0 so small that for k =1,..., kg — 1, the
conditional probability of {d(Y,x,0D) < 71} given {d(Xox ,Y,x ) <ea}
is greater than 1 — p/(8kg). By Lemmas 3.8 and 4.1 (ii), we can make ¢ so
small that d(Xoﬁ‘,pYa,i‘,l) < e Neg for k =1,..., kg — 1 with probability
greater than 1 — p/(8ky). With this choice of ¢ we have P(G}) > 1 —p/(2ko)
for k=0,....k0 — 1, 50 P(Up<pcpo_1 Gi) = 1 —p/2.

It follows from Lemmas 3.8 and 4.1 (ii) that if € is sufficiently small then
P(rH (kDY) > ko) > 1—p/2. I 7 (kD) > ko then £ (ko) = £(ko), s0 we obtain
P(Uo<t<io—1 Gr) = 1 —p. It is easy to check that Jo<p<p, 1 Gk C A5, s0
with our choice of parameters € and ko, P(A4s) > 1 — p.

Recall that v* = sup,cop V()] < co. Lemma 4.8 implies that for some
€1 >0,C; <oo,and € <egg < ey,

E/ |v(X)|ALE < v*Chkoeo|log ol.
TeN[0,0% (ko)ATT (€0)]

It follows that,

(4.32) P / [V (Xs)|[dLY > cokod
T<N[0,0X (ko)ATT (€0)]

S V*Clk0<€0| log Eol/(02k05).

According to (4.30), if A; holds then cokod < 0¥ (ko)d. Suppose that &g
is so small that we have v*Cikoeg|logeo|/(cekod) < p/2. We have shown
that P(sup,<,x ) d(Xe, Y:) < e1) > P(A2) > 1 —p if € is small. The
same argument applied with g in place of ¢; shows that we can choose ¢
so small that P(r%(eg) > 0%(ko)) > 1 — p/2. This and (4.32) imply that
P(Al N A6) >1—2p.

We make ko larger, if necessary, so that by Lemma 4.2 (ii) we have
P(oY (2ky) < 0X(ko)) < p/6. By the same lemma, we can choose Cy so
that P(Cakod < 0% (kg)8) > 1 — p/6. Then we can make € so small that the
same argument that leads to (4.32) gives

p(/ W(Y)ILY > Cokod | < pf6.
T<N[0,0Y (2ko) ATt (g0)]



SYNCHRONOUS COUPLINGS 263

Recall that P(7+(g9) > 0% (ko)) > 1 — p/2. Combining all these estimates,
we obtain P(A; N A4g N ﬁg) >1-3p.

Recall the definition of events A;- and ﬁ; By enlarging ko, if necessary,
and making ¢ smaller, we obtain the same estimates for events A; and gg as
for A; and Ej, for example, P(A} N Ay N Aj) > 1 — 3p.

By Lemma 4.1 (ii), for some Cs5,Cy € (0, 00),

P(A%) < C3exp(—Ca(cslog(k +2))%).

We choose c3 so large that Y-, P((4%)°) <p.
Let ¢4 be the constant called ¢ in Lemma 3.8.
We make ¢ smaller, if necessary, so that

7 £ eexp(—ca(ko + k)(A(D) — 70) + ca(1 + (cs log(k + 2))2))

is smaller than the constant ¢y in Lemma 4.8, for £k > 0. Let C5 be the
constant ¢; of Lemma 4.8. Using the strong Markov property at o (ko + k),
and applying Lemma 4.8, we see that for k£ > 0,

P((45)) < B

X,)dLX
625 V( S)d s

/Z’Cﬂ[ax(ko-i-k)ka]
1

< —U*E/ ary

26 Ten[oX (ko+k),Tk]

1 *
< —v"Cyy|logH|.
62(5
We make ¢ smaller, if necessary, so that > r P((4%)°) < p.
We apply Lemma 4.8 to Y; in place of X; to see that for k > 0,

P((A%)) < —E

Y,)dLY
o v(Ys)dLg

/'Z'Cﬂ[ox(k:0+k),T]:‘]

1

< —v'E dLY

/Tcm[ax(koJrk),T,j]

< —v*Cs(czlog(k +2))*~|log /.
025

We make ¢ smaller, if necessary, so that > ,- P((A5)°) < p.
We choose ¢ € (3/2,2) and Cg such that, by Lemma 4.6,
P((A%)°) < % exp(—Csca(ko + k) (A(D) — 76)).

By making ¢ smaller, if necessary, we obtain Y - |, P((4§)°) < p/2. Note
that the summation index starts from k = —1, not k = 0 (obviously, we can
assume that ko > 1).
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Choose a ¢g € (0,1). By Lemma 4.9, for some C7,Cs, and k > 0,
1
P((4k)° | A5™) < 01 exp(~Cealho + K)(A(D) ~ T9)).
2

We make ¢ smaller, if necessary, so that Y-, P((A5)° U (4%,)¢) < p.

We decrease the value of € once again so that the argument of 77 in the
definition of T}, is less than the constant £ in the statement of Lemma 3.6 for
k > ko, assuming that the constant ¢; in Lemma 3.6 takes the value ¢26/3.

By our choice of the parameters we arrive at the following bound,

(4.33) P(A1mAgmAgmﬁgmA4mA5mA6mZ6
NALNAL N AL N AN AL N AL N AN AL

N ﬂ(A’;mA’gnZ’gmA’gmA’fo)) >1—21p.
k=0

Step 3. We will assume that all parameters have the values chosen in
the previous step and that all events that appear in (4.33) hold. Given this
assumption, we will prove that (logp;)/t € [-A(D) — 83, —A(D) + 8] for all
t 2 O'X (/f())

Recall that d(Xo, Yp) = € > 0. First we will deal with the case t = o (ko).
Since As, Av3,A6 and 116 hold,

(4.34) < 20% (ko)9,

1
/ V(XALY = o (k)5 | v(y)dy
TA[0,0X (ko)) 2|D| Jop
and

1
s [ V(Y)ALY — 0% (ko)== [ wly)dy| < 20¥ (o).
T[0,0% (ko)] 2|D[ Jop

Since A; and As hold, we can use Lemma 3.6 and (4.30) to conclude that

log oty — (1/2) [ ((X)ALX + v(Y,)dLY)
TN[0,0% (ko)]

< (c26/3) (ko + Lyx (1)
S O'X (k0)6
This and (4.34)—(4.35) yield,

1
21D[ Jop

Since A4 and As are assumed to hold,

1
108 Do (o) — UX(ko)m /8D /80 |log cos a(z, y)|w. (dy)dz

(436) 108 7ox (k) — 0 (ko)

V(y)dy' < 50% (ko)d.

< 20% (ko)d.
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This and (4.36) imply

1
10g o (k) — UX(k‘o)m - v(y)dy
1
—ax(ko)—/ / | log cos a(z,y)|w. (dy)dz
2|D| Jop Jop

< 70% (ko)é.

Hence we have 10g pyx (1) /0™ (ko) € [-A(D) — 76, —A(D) +76]. Using events

A% and /Té in place of Aj and A;, we can also prove that log p,x 5,—1)/0™ (ko—
1) € [-A(D) — 75, —A(D) + 74).
Suppose that

108 Pox (ko+4)/ 0" (ko + j) € [-A(D) — 76, —A(D) + 76]

for some k£ > 0 and all j < k. We will show that the same holds for j = k+ 1.
The event A% holds so

(4.37) Lc)r(x(koJrkJrl) - LfX(ngrk) + L(}r/X(kﬁkH) - LZX(ko+k)

<1+ (c3log(k + 2))2.
By the induction assumption,
(4.38) A(Xox (kyk)s YoX (kok)) < €exp(—0™ (ko + k)(A(D) — 76)).
This, (4.37) and Lemma 3.8 imply that

sup d(X:,Y:)
te[oX (ko+k),0X (ko+k+1)]

< eexp(—oX (ko + k)(A(D) — 78) + ca(1 + (c3log(k +2))?).

This and the assumption that A% holds show that T}, = 0% (ko +k+1) < T},
By (4.38) and (4.30),

d(Xox (ko t+1)s YoX (kg +k)) < €xp(—c2(ko + k)(A(D) — 79)),

so the indicator functions in the definitions of events Af and A’g take values
1. Since these events are assumed to hold, we obtain

V(XS)dLs( S 625a

/Tcm[ax (ko+k),0% (ko+k+1)]
and

v(Ys)dLY | < ¢y0.

/7’Cm[ax (ko+k),0% (ko+k+1)]
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By the induction assumption, these estimates hold for all n = 0,1,...,k in
place of k, so
/ V(X)dLY | < ea(k + 1)0,
T<N[0,0X (ko+k+1)]
and
/ v(Ys)dLY | < ca(k +1)6.
TeN[0,0X (ko+k+1)]

This, (4.30), and the inequalities in Az and As imply that

1
(4.39) / V(X)ALY — X (ko +k+1)=— [ v(y)dy
TO[0,0X (ko+k+1)] 2|D| Jop
< 20% (ko + k + 1)6,
and
1
(4.40) / v(Yy)dLY — X (ko +k+1) = v(y)dy
TO[0,0X (ko-+k+1)] 2|D| Jop

< 20% (ko + k +1)4.

Since Ty, = 0% (ko + k + 1) < T} and A holds, Lemma 3.6 and (4.39)—(4.40)
imply that,

(4.41)

- 1
108 Pox (ko th+1) — 0 (ko + K + 1)m o V(y)dy’

< (c20/3)(ko + LYx (1,,) +40™ (ko + k +1)6
< 50% (ko + k + 1.

In view of the assumption that A4, A5 and A{O hold for all 5 = 0,...,k,
and using (4.30), we have

1
087 i) ~ b0+ K+ 1) [ [ logeosa(e.y)les (dg)d
2|D| Jop Jop
< 20% (ko + k +1)4.
This combined with (4.41) shows that

1
10800 (kg +k+1) — 0 (Ko + k + 1)@ - v(y)dy

1
— o5 (ko+k+1)=— / / |log cos a(z, y)|w.(dy)dz
2|D| Jop Jop

< 70 (ko + k + 1)6.



SYNCHRONOUS COUPLINGS 267

In other words, 10g pyx (ko 1k+1)/0~ (ko + k + 1) € [-A(D) — 76, —A(D) + 74].
This completes the induction step.
We have proved that if the events in (4.33) hold then

log an(k0+k)/0'X(k0 + k‘) S [—A(D) - 7(57 —A(D) + 7(5]

for all integer k > 0. We will extend this claim to all real ¢ greater than some
t; < oo. By Lemma 4.2 (ii), limg_oo 0% (ko + k + 1)/0% (ko + k) = 1, as.
Lemma 3.8 and (4.37) imply that for ¢ € [0 (ko + k), 0% (ko + k +1)] we have

1og pt — 108 pox g1y < Co(1 + (c3log(k +2))?),
108 Pox (ko k1) — l0g pr < Co(1 + (c3log(k + 2))?).

These observations easily imply that for some ¢; < oo and all real t > t; we
have (log p:)/t € [-A(D)—80, —A(D)+80]. Recall from Step 2 that this holds
with probability greater than 1 — 21p. Since p and 0 are arbitrarily small, the
proof is complete. O
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