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The purpose of this note is to show that for an arbitrary Markov process
with a transition function p(, , ) measurable in (, ) on a measurable
space (X, (B), where (B is generated by countably many sets, there exists a
strict Markov process with right-continuous paths on a compact, separable,
metric completion of X, with resolvent carryin the continuous functions
into C, with a transition function on the topological Borel field, and which is
equal to the original process with probability 1 at each except for in a
countable set. To this effect we shall use Theorem III of [5], which requires
one additional hypothesis" we assume that the family p(.,
separates points in X. It will also be proved that the same result holds for a
non-homogeneous process with transition function p(, ; , ) measurable
in (, , ). These facts extend the conclusions of [3] under weaker hypothe-
ses. The metric space involved here is different from that of [3], however,
and its definition is more complicated. Finally, we ive an example to in-
dicate that the present results cannot be strengthened to obtain, in eneral,
a semigroup carrying C into C.
The construction of the metric depends on the lemma which follows.

LEMMA 1. There exists a countable collection S of 5-measurable functions f,
0

_
f

_
1, with the following properties.

(a) S contains the indicator functions x of the sets E in a countable field
generating

(b) The linear closure of S in the uniform norm is closed under the resolvent
operators

Rx f(x) e-X*p(t, x, dy)f(y) dr, k > O.

(c) The linear closure of S is closed under multiplication.

Proof. It is known that a countable collection of sets generates a countable
field. Consequently, let {E} be a countable field generating (B, and let S,
to begin with, contain the indicator functions x of E, 1

_
i. Imitating the

proceedure in [3, p. 327], we proceed inductively as follows. Let {} be
countable dense set in (0, oo ), and let So be {x}. Then given S, n

_
0,

let S+ be obtained by applying countably often in alternating succession

Received March 23, 1964.
As noted in [3] and [4], this may always be brought about by a preliminary identifi-

cation of points in X.
Actually, Ray’s results hold directly for the situation of [3], as follows from a forth-

coming paper of H. Kunita and T. Watanabe. In this case, however, one does not always
have resolvents mapping C --* C.
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the operations of (i) applying n+l R,n+l and adjoining the range obtained,
then applying successively tl R,1, ..., t Rn and adjoining their ranges,
and (ii) closing the resulting set under the operation of multiplication. It
is clear that for each n, Sn is countable, is closed under gl R, t R,n,
and is closed under multiplication. Let S limn-. Sn. Then S is closed
under tn R, 0 __< n, and under multiplication, and the elements of S are
bounded by 0 and 1. Finally, by the continuity in t of R in the uniform
operator topology, it is seen that the uniform linear closure of S is closed
under R, g > 0, as well as under multiplication. Thus S satisfies the re-
quirements of the lemma.
Turning to the definition of our metric, let ), > 0 be fixed and {g(i)},

g(i) > O, i g(i) < be a sequence of real numbers, and let {f/be an enu-
meration of the range ),Rx(S) together with all finite products of elements in
that range. Then we set

d(x, y) g(i)
i1

f(x) fi(y)

It follows easily (see [3, p. 325]) that d(x, y) is a metric on X, that con-
vergence is equivalent to simultaneous convergence of the numerators f(x),
and that the completion of X in this metric is a compact, separable metric
space of diameter less than or equal to 1.

It will next be shown that the resolvent R may be extended to a resolvent
on the space ( of continuous functions on , satisfying the hypotheses of
[5, Theorems I and III]. Since the family/f/is closed under multiplication,
it follows from the Stone-Weierstrass theorem that the space is the uniform
linear closure of the family I]}, where ] is the con.tinuous extension of f
to X. Lemma 1 implies that R,, t > 0, carries the uniform linear closure of
{f} into itself, since this closure is contained in C1 S, and since R,f
Rx(f(X t)R,f). We may therefore define a resolvent/ on by restrict-
ing each to g C, and setting/ g. The family ),Rx(S) separates
points in X, hence its extension to a family of functions in separates points
in . It thus satisfies the hypotheses of [5, Theorems I and III].
Returning to the process X(t), we define

when this limit exists in the metric d(x, y) for all >_ 0 simultaneously, and
we set (t) x0 for some fixed x0 e X otherwise. Since, for fi e kRx(S),
e-Xf(X() is a supermartingale in , and therefore has simultaneous right-
hand limits with probability 1, the first case of our definition is seen to have
probability 1.

THEOREM 1. f((t) is a regularization of X(t) as described at the start.

Proof. That X(t) .(t) a.s. except for in some countable set follows
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from a theorem of Doob [1, Theorem 11.2] uccording to which a separable
supermartingale has at most countably many fixed discontinuities (see [2,
p. 612]). To complete the proof, it is sufficient to establish that .(t) is
one of the processes "Yt(w)" of [5, Theorem III] corresponding to the resol-
vent R,. This follows exactly as in [3, p. 335], but for the reader’s convenience
we repeat the proof. Let/5(t, x, E) be the transition function associated with
/ by [5, Theorem I]. Then/5(t, x, E) is the unique transition function with
this resolvent and such that for 0 O, f p(t, x, dy)O(y) is right-continuous
in t, > 0, for each x. Since (t) is right-continuous, it need only be shown
that i0(t, x, E) is a transition function for .(t). We set H+(t) f’l>0 ff (t+ e),
where X(t’), t’ <_ t, is measurable with respect to if(t), and hence )(t’),
t’ <_ t, is measurable with respect to H+(t). Then it is sufficient to prove that
fore0, t’ > O, und A eH+(

f fo f foe-t p(t, (t’), dx)e(x) dt dP e g(f( -t- t)) dt dP.

If A is in ff(t’) and P{f(t’) X(t’)} 1, then this follows since

e-"’ iv(t, x(t’), dx)o(x) dr, dP e-"’o(X(t -I- t)) d* dP.

In he contrary ese, we my choose sequence t, $ t’ or which he bove
conditions hold, A being in (t,) uomielly, nd hen le n --+ m, using
right-continuity of (t) nd continuity of/ O, to derive he ideniy in he
limit. This eomplees he proof,
The construction will now be exended

X(t) be ny Mrkov process on (X, (B) wih rnsiion function
p(t, x; t,., E), nd form he "spee4ime process" (X(t), t) on

(x x (0, oo), (0, o )),
where (B(O, o is the real Borel field on (0, m ). We assume tha for each

The connection between the topological a-field of and (B is derived in [3, Theorem
1.3]. In short, the restriction of this field to X coincides with the subfield of (B gener-
ated by the measurable family p(t,., E), > O, E . At this point, we call attention
to two errors in [3]. In Theorem 1.1, the field G*+(T) must be replaced by the field
G+(T) ,_ G,(T), where G,,(t) is generated by the sets{X(t), E}, and {t,e R}, R in
the real Borel sets, and in (1.2),

F(tx dx T, w)
must be replaced by

F(tx T, dxx T, w).

Secondly, in the proof of Theorem 1.3, p. 331, line-6 ft., it is necessary to replace "simple
function," by "simple function measurable over X , where is the ring of finite
unions of intervals". The approximation must then be almost uniformly rather than
uniformly, and the boundedness of the convergence must be used in pussing to the
limit.

The author is indebted to Professor S. Orey for the idea of using the space-time
process for this purpose.
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tl, p(tl, .; t., E), t2 > t, E e 6, separates points in X. The transition
function of (X(t), t) is defined by

p( t, (x, t’), E X It’ -[- t}) p(t’, x; t’ + t, E).

The earlier construction may now be applied to the process (X(t), t). For
the sets Ei, we choose the field generated by the sets A. Ik, where the A
generate 6 and the Ik are all intervals with rational endpoints. Since the
space X X (0, is contained in the state space of the regularized process,
we may reidentify the points with the same x-coordinate, and introduce the
corresponding non-homogeneous transition function

/5(tl, x; t2, E) 5(t. t, y, E X R) for y (x, tl), and

/(h, y; t2, E) p(t2 h, y, E R) for y not of the form (x, t).

It is clear that the Markov property is retained, and that the resulting process
with the points (x, t) identified to x satisfies the regularity assertions (except,
of course, for the one involving a resolvent). However, it is no longer clear
what connection there is between the topological a-field, following the iden-
tification of points, and the original field 6. According to [3, Theorem 1.3,
corollary] there is for each set in the field generated by

p(t, (x, t’), E X R), > O, E e6, R e6(O, ),

a set in the topological a-field whose restriction to X X (0, is equal to
the given set. But the field generated by p(t, (x, t.), E X R) contains the
products of sets in that generated by p(t, x; t3, E), 0 <_ t2 <_ ta, Ee6,
with the point t2, since in particular p(t, (x, t2), E X (0, )) must be
measurable, and we may set ta t. Hence for each set B in the field
generated by p(t2, x; t3, E) there is a set/ for lJhe regularized process such
that, if P {X(t) (t)} 1, then

P [(X(t) e B)/ ((t) e/)} 0.

In the homogeneous case, it would be desirable if the completion discussed
above could be further enlarged in such a way that the resulting semigroups
Tt would map C - C. One knows that Tt maps the closure of the range of
R, into itself, but this will not, in general, be all of C. The following ex-
ample, moreover, is designed to show that a completion large enough to result
in a semigroup mapping C into C may destroy the possibility of any identifica-
tion between the original process and the "regularized" process. In this
example the latter differs from the former with positive probability at each t.
It was suggested by [4, Example IV] of a process in which Rx maps C into
C but T, does not.

Example 1. Let X,,(t) be a Markov process on the space (0, 1] u {2},
with X,,(0) x’, and the transition function
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p(t, 2, 2) 1;
p(t,x,x+t) 1 forx-t- t_ 1;
p(t,x,x + 1) 1/2 p(t,x, 2) for 1 < x +

_
2;

p(t,x,x + t-- n) 2-n, p(t,x, 2) 1 2
forn<x+t_n-!,,n>_l.

The process consists of uniform translation to the right on (0, 1] followed by
return to 0+ or absorption at 2, each with probability 1/2. It is not difficult to
see that for any countable field {Ei/generating (2/n (the Borel sets of (0, 111
and any countable family {f/ of functions containing the indicators xi of
E and generating a metric in which the functions Rxf are uniformly con-
tinuous, as constructed above, the metric topology is identical to the Euclidean
topology on (0, 1] u {2/, and the completion is [0, 1] t /2/. For any con-
tinuous function on this space such that (1) 1/2((0) + (2)), and each
x (0, 1), the semigroup 5Pt of the regularized process ,(t) (which has right-
continuous paths and thus never reaches the point 1) is discontinuous at x
when 1 x. In order to make t carry continuous functions into them-
selves, therefore, each point x (0, 1) must be split into two points xl(x)
and x.(x) corresponding to limits from the left and from the right of
art 1-- x. But since

T_x (x(x)) g(1), while T_x (x2(x)) 1/2((0) + (2)),

in order to identify the original process X,(t) with the process ,(t) one
would have to identify x (0, 1) with x(x). On the other hand, right-con-
tinuity of path for ,(t) requires that ,(t) take on the value x.(x) when-
ever X, (t) x. Thus the process X, (t), x’ 2, would differ from ,(t)
at all up to and including inft" X,(t) 2. This concludes the example.
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