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I. Introduction

Let @ be a group with finite order g. Denote the conjugacy classes of @ by
1, ., "", n, and choose a representative Ks in ech class s. If
x, x, x re the (bsolutely) irreducible characters of , then mtrix
of the form

M (x(Ks))

is cMled character table for @. (For bsic properties of group representations
nd characters, see one of the mny books on the subject; for example, the book
by Curtis nd Reiner [1].)
We define ddition nd multiplication of characters s for functions. The

set of characters in this wy generates ring X, the character ring of . The
irreducible characters x, xs, x form free bsis for X over the ring Z
of mtionM integers. We ssume x is the principM character of .
X is isomorphic to the smallest subring of the direct sum of n copies of the

complex number field C which contains the rows of M. Consequently, the
character table of determines the character ring X. In this pper we prove
the converse; i.e., we shM1 show that the character tble for cn be derived
directly from X, in n essentiMly constructive mnner.
The key tool used is the ordinary inner product on X. For , e X, this is

defined by

(1) f(, ) (G)(G).
g

The irreducible characters re n orthonorml set with respect to f:
(2) f(xi, Xs) 8i.

These expressions involve knowledge of either group elements or irreducible
characters, neither of which cn be obtained directly from X. Therefore, we
first give n internM characterization of the ordinary inner product among
biliner forms on X.

In pplictions, the character ring cn frequently be generated by few c-
cessible characters, for example, characters induced from certain subgroups,
nd the min theorem pplies to 11 these cases. We give n ppliction of
different nture, proof for theorem of G. Higmn’s on the group rings of
finite belin groups.

This pper is condensation of mjor prt of the uthor’s doctoral dis-
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sertation. I would like to thank Professors Hans Zassenhaus and Karl Kron-
stein for their generous help and encouragement.

II. Characterization of the ordinary inner product
There is a well-defined coniugation on X. This coincides with coniugation

in C; i.e., if G e @, x e X, then :(G) x(G). From definition (1), we have
that f is conjugate-associative:

(3) f(O, kx) f(Ob, x) 0, b, e X.

If a basis $x, , of X is fixed, then associated with a bilinear form p
is a matrix P (p(4, 4.) ). We say that p is unimodular if there is a basis
for X so that the corresponding matrix P is unimodular. Note in particular
that a unimodular form is nondegenerate. Equation (2) shows that f is uni-
modular.

Using an approach of D. G. Higman’s [2, p. 500] we get the following con-
nection between bilinear forms on X.

PROPOSITION 1. Let p: X >( X ---> Z and q: X )< X Z be conjugate-
associative, ,unimodular bilinear forms. There exists an invertible element e X
so that q(k, O) p(, ) for every , e X.

Proof. Let X* Homz (X, Z) be the set of all Z-module homomorphisms
of X into Z. X* is a Z-module in a natural way, and can be made into an
X-module by defining

(.v)(0) v( 0) o, x, v x*.
Define X -- X* by

It is strMghtforward to verify that is an X-homomorphism of X, considered
s an X-module, into X*. Furthermore, since p is unimodular, if
p(k, X) 0, then k 0. Thus is iniective.
To show that is suriective, let be an rbitrary element of X*. Let, , be a basis for X so that P (p($, $.)) is unimodular. Let

P- (p). Define v e X by

Then p(v, O) () for each j, so , ,.
Consequently, 0 is an X-isomorphism. Let q be another such form and q

be the associated X-isomorphism from X onto X*. Let a O-lq. If
a(xl) , 0

-1 (xl) =, then since a is an X-isomorphism of X onto itself,
a(O) O for every O e X. In particular, xl, so is invertible.
For any k e X, (0-1() () /, SO that q, 0. Hence for any O e X,

we have
q(k, O) p(k, O)

We pass to the complexification X, C (R)z X of X. X, is isomorphic



464 DONALD R. WEIDMAN

with, and for the present may be identified with, the class function ring of
@, the ring of all complex-valued functions on the set {K1, Ks, K}.

Contained in Xc are the characteristic functions w, , defined by

nj (k/g)

_
:r(K)xr,

where ]c is the number of elements in the class . From the orthogonMity
relations, we derive t once

(4)
(G) 1 if Ge

=0 if Ge.
From (4) it follows that

(5) + + + x.

These functions are characterized as the fundamental idempotents of X
i.e., by the equations (5) and the condition that n is the dimension of X,
over C.
Every bilinear form on X has a unique conjugate-bilinear extension to X.

Note in particular that (1), und therefore (3), holds for $, e X.
PROPOSITION 2. For any characteristic function and any X,,

f(O, v) f(x, v)O(K).

Proof. From (1) and (4) we have

(6) f(o, ,) 0(e),(e) o() .o(K).
g o,, g o g

For the particular case 0 x,

(7) f(x, ,) k/g.

Substituting (7) in (6) gives the desired result.
We remark also that ordinary conjugation can be distinguished internally

from all other conjugations on the ring X. If , , . is a Z-basis for,
X, any conjugation x x can be extended canonically to X, by definining

( a, ,)* , :, a, c.
Because of (4), ordinary conjugation, when so extended, satisfies

This equation gives a well-defined conjugation on X, which can restrict to at
most one conjugation on X.

THEOREM 1. The ordinary inner product is the unique conjugate-associative,
unimodular bilinear form p X X X Z for which every P(x, v) is a positive
ratial number.



THE CHARACTER RING OF A FINITE GROUP 465

Proof. From the previous remarks and equation (7), f does have the re-
quired properties. Let q’ X X X -. Z be another bilinear form satisfying
the hypotheses. By Proposition 1, there is an invertible element # of X so
that q(b, ) f(tb, ) for every , e X. This relation holds also on
since the form so defined is an extension of q. Applying Proposition 2, we
get

g(K) q(x q)
f(x, )

Thus every value of is positive rational. Since e X, every value is also
an algebraic integer, and hence a rational integer. Similarly, every value of
--1 must also be a positive rational integer. Consequently, every
(K-) +1, so xl, and q f.

III. The character table
We are now ready to construct the character table for @. The first step

is to choose a Z-basis ’1, ., for X which is orthonormal with respect
to f. It is easily shown that, after suitable permutation, xi or ’i
for each i; in particular, we can assume 1 1.
Next let 1, v2, be the fundamental idempotents of Xc. Let M be

the matrix whose i-j entry is f(, vj)/f(, vj). By Proposition2,
M ((K)). So M differs from a character table for @ only in that some
rows may be multiplied through by -1. Therefore the remaining task is to
determine coefficients e, e2, e, each e +/-1, so that M (e(K))
is a character table.
There is a class, which we may call , with these properties"

(i) ’(K) is real,
(9)

(ii) [-(K)I > I-i(K)[, i= 1,2, ...,n;j 1,2, ...,n.

For example, the class of the identity element E of @ has these properties.
Other classes may have them, too. Let 5 be one of them, and choose
el, e, e so that e(K) > 0.

Set M (e ’(K) ). We claim that M is a character table for @.

PROPOSITION 3. 3 contains one central element of @, whose order is 1 or 2.

Proof. Properties (9) hold for E as well as K1. Hence for each i there is
a u +/-1 so that ux(E) xi(K). By the orthogonality relations,

g/k ,?.. x(gl)(gl) ,. x(E)Y(E) g,

so kl 1 and contains one element K, which must therefore lie in the
center of @.

If A is an irreducible representation of @ with character , then by Schur’s
Lemma, K1 is represented by a scalar matrix"

As(g) w(g)-I.
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Taking traces, (deg )wi(K) u(deg xi), so w(K) :i:l, and A(K) I.
Since A is arbitrary, K E.

PROIOSITIO 4. Let N ((Ki)) be a character table for @. Then there
is a permutation r of the columns of N so that rN M.

Proof. For any G e @, and any irreducible representation/ of @, we have
(K G) w(KI)A(G), as in the proof of Proposition 3. Hence x(K G)
w(K)x(G). For any Ki,

(10) xi(Kj) xi(K Kj) wi(K1)xi(K1

In particular, 0 < xi(E) w(KI)xi(KI), implying

w(K)(K) e (K).

Since i +/-, we have w(K)x e’. From (10), we see that the
matrix M (w(K)(K)) coincides with the mutrix N (xi(rK)),
where r is the permutation of classes . -- K.Since vN is u character table for @ as well as N, Proposition 4 establishes
that M is a character table for @. We have proved the main theorem.

TUEOnEM 2. Let ( be a finite group with character ring X. The full table
of character values for @ is determined by X.

IV. Isomorphism theorems
We say two finite groups @ and @’ have the same character table if there is

one-to-one correspondence between the respective conjugacy classes .
and the irreducible characters x - x’ so that the matrices (x(K)) and
x’(Kj’ coincide.

PROI’OSITION 5. Let " X --. X’ be an isomorphism between the character
rings of the finite groups @ and @. Then (I)(:) (x) for every x X.

Proof. Conjugation in X is uniquely induced from the conjugation in X
defined by equation (8). extends canonically to a C-isomorphism from
X to X’ by defining

alp( E ai Xi) E ai(Xi), a e C.

If x ’ b v e X, then

() ( . i) . (.) b. O(rs’) O(x),

the next-to-last equality following since (/1), (/2), "", O(nn) are the
fundamental idempotents of Xtc.
THEOREM 3. Let @ and @’ be finite groups with character rings X and X’

respectively. Let q" X X’ be an isomorphism. Then @ and @’ have the
same character table.

Proof. Letf’ be the ordinary inner product on X’ and define q X X X --. Z
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by q(, ) f’((I)(O), ()). Then by Proposition 5 and Theorem 1,
q f. Hence the isomorphism preserves the ordinary inner product.
Consequently, the character table constructed from X as in the last section
coincides with the table constructed from X’.
Theorem 3 allows us to give a simple proof for the following theorem,

which was first proved by Graham Higman in 1940 [3].

THEOREM 4. Let @ and @’ be finite abelian groups such that their group rings
Z@ and Z@ over Z are isomorphic. Then @ and @’ are isomorphic.

Proof. A finite abelian group is isomorphic with its group of characters,
so its group ring is isomorphic with its character ring. Hence the hypotheses
imply that the respective character rings X and X are isomorphic. By
Theorem 3, @ and @’ have the same character table. This means the character
groups of @ and @’ are isomorphic, so that @ und ( are isomorphic.
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