
ADJOINT FUNCTORS AND TRIPLES
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A riple F (F, , ) in ctegory a consists of functor F a nd
morphisms la F, F F stisfying some identities (see 2, (T.1)-
(T.3)) nlogous to those stisfied in monoid. Cotriples re defined dually.

It has been recognized by Huber [4] that whenever one hs pir of adoint
functors T a , S a (see 1), then the functor TS (with appro-
priate morphisms resulting from the adjointness relation) constitutes a triple
in nd similarly ST yields cotriple in a.
The main objective of this pper is to show that this relation between d-

jointness nd triples is in some sense reversible. Given triple Y in a we de-
fine new ctegory a nd adoint functors T a a, S a a such
that the triple given by TS coincides with . There my be mny adoint
pirs which in this wy generate the triple Y, but among those there is a uni-
versal one (which therefore is in a sense the "best possible one") nd for this
one the functor T is faithful (Theorem 2.2). This construction cn best be
illustrated by n example. Let a be the ctegory of modules over a commu-
tative ring K nd let A be K-lgebm. The functor F A@ together with
morphisms nd resulting from the morphisms K A, h @ A A given
by the K-algebra structure of A, yield then a triple Y a. The ctegory
a is then precisely the ctegory of A-modules. The general construction of
a closely resembles this example. As another example, let a be the category
of sets nd let F be the functor which to ech set A ssigns the underlying
set of the free group generated by A. There results triple Y in a nd a is
the category of groups.

Let G (, e, G) be cotriple in category A. It has been recognized
by Godement [3] and Huber [4], that the iterates G of G together with face
and degeneracy morphisms

G+ G, G G+

defined using e and yield a simplicial structure which can be used to define
homology and cohomology.
Now if Y is a triple in a, then one has an adjoint pair T" aa,

S and therefore one has an associated cotriple G in . This in
turn yields a simplicial complex for every object in a, thus paving the way
for homology and cohomology in ar. In 4 we show that under suitable
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382 SAMUEL EILENBERG AND JOHN C. MOORE

conditions this complex is a projective resolution in a suitable relative sense as
developed by us in [2].
For some further developments of the ideas presented here see a forth-

coming dissertation of Jon M. Beck.

1. Review of adjoint functors
Given a category a we use the symbol a(A, A’) to denote the set of all

morphisms A -- A in a where A, A are objects of a.
We shall use the notation

(1.1) a S -t T (a,

whenever T a -- and S a are functors and a is an isomorphism

a a(S, )---.6t( ,T)

of functors. Explicitly for each pair A e a, B e a yields a bijection

satisfying

(1.2)

for

a a(S(B), A) (A, T(A))

a(gfS(h) T(g)a(f)h

h B’ ---+B, f: S(B) .-->A, g A ---->A’.

Under the relation (1.1) the functor S is said to be the coadjoint of T, and
T is said to be the adjoint of S.

Setting

(1.3) a(A) a-l(lr) ST(A) -- A(1.4) /(B) a(lr) B----> TS(B)

we obtain morphisms of functors

a ST---+ la, fl 1(R)---> TS

such that the compositions

S S STS aS S,

are identities. Conversely we have"

(1.5) a(f) T(f)(B)

(1.6) a-(g) a(A)S(g)

We shall write a (a,/).
Given

for f: S(B) A

for g B---. T(A).

T T TaTST T

a S ---t T a, (

c R- Q 6t,(
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we have
ca: SR ---t QT (a, e)

where ca is the composition

a(SR, a c(R, T)

If a (a, ), c (a, r) then

ca (o(QaR), (SrT)).
Given

(1.7)

(1.8)

e( QT).

a:ST: (a, 6t)

a’ S’ ---t T’ (a, )

and given morphisms S’ S, T ---> T’ we write

(1.9) -t

if the following diagram is commutative"

((S,) a 6t(,T)

a(S’, a’ ((’T’)

We note the following properties of adjointness of morphisms"

(1.10)

(1.11)

If in addition to the above we also have a" S" - T" (a, ds) and

’ --t ’ for ’ S" S’, / T’ -- T" then q’ --t ’If (1.7) and (1.8) hold and S’ -- S then there exists a unique
T ---> T’ such that q - . Further b is an isomorphism (or

identity) if and only if is.

(1.12) If (1.7), (1.8) and (1.9) hold and if c:R --t Q: (, e)
then R - Qb relative to the adjointness relations ca, ca’.

2. Triples

(T.1)

(T.2)

the composition F v__F F
_

F is the identity,

the composition F Fv) F F is the identity,

Let a be a category. A triple F (F, 7, ) in a consists of a functor
F a -- ( and of morphisms

1.-- F, t F-- F
such that
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(T.3) the diagram

F F

is commutative.

F -; F

Dually a cotriple (, e, F) in a is given by a triple (F*, e*, *) in the dual
category a*.
PROPOSITION 2.1. Let

(2.1) a" S - T" ((, )

with a (, fl ). Then

is a triple in 5. Dually

(a) (TS, , TaS)

/X(a) (ST, a, ST)

is a cotriple in a.
We say that a is generated by (2.1) and / a is cogenerated by (2.1).

Proof. Since (Ta)(T) lr we have (STa)(ST) 1st and (T.1)
holds. Since (aS)(S) ls we have (aST)(ST) ls so that (T.2)
holds. Relation (T.3) follows from the commutative diagram

STST aST) ST

STa

ST ’) 1.

THEOREM 2.2. Every triple F (F, 7, ) in a category ( admits a generator

(2.2) a" S

Moreover, there exists a universal generator

(2.3) a

of F such that for any generator (2.2) of Y there exists a unique functor
L ---. (ff such that

(2.4) LS S, La aL.
These relations imply
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(2.5) TL T.
In addition the functor T is faithful.

Proof. We define the objects of ar to be the pairs (A, ) where A is an
object of a and F(A) -- A is a morphism in A satisfying

(2.6) v(A) 1, F() (A).
A morphism (A, ) (A’, ’) in a given by a morphism f" A A
in a such that

(2.7) f ’F(f).
(A" "If [g] (A’, ’) then we define [g] [f] [gf]. This defines the

ctegory a. The functor T a ff is given by

Tr(A, ) A, T] f.
Clearly T is fsithful.
The functor S a a is defined by

S(A (F(A ), #(A ), Sr(f) [F(f)]

forf’AA’ina.
Since TS F we define

TS.la+F

Since [+] (F(A), #(A)) (A, ) is a morphism in a we define

STa la, aV(A, ) [].

For each A in a, the composition

becomes the composition

(E(A ), (A ) [Fv(A )] (F(A ), F(A [(A)] (E(A ), (A ) )

which is the identity. Similarly the composition

FTF

TFSFTF TFaF TFT (A, (A,

becomes the composition

A ..v(A)) F(A).. A

which again is the identity. This yields (2.3) with a (aF, F). Since

TFFF(A TFF(F(A ), (A T[(A )] (A)

we have (aF) F so that (2,3) is a generator for (F, y, ).
To show that (2.3) has the universal property consider an arbitrary gener-

ator (2.2) of Y.
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Given an object B in 5 we have a(B) ST(B) -- B and therefore

Ta(B) FT(B) TST(B)-- T(B).
We assert that (T(B), Ta(B) is an object in (. Firstly, the composition

T(B) qT TaFT(B) T(B)

is the identity since and (Ta)(T) lr. Secondly, from the commu-
tative diagram

we deduce

STST

ST

STa >ST

To)(FTo) To)( TSTo) To)( ToST) To)(T).

Thus we may define
L(B) (T(B), To(B)).

If f B ---> B’ in ( then

V(f)Ta(B)-- T(fo(n)) T(o(B’)ST(f)) (To(B))(TST(.f))

To(B’)FT(f).

Thus (2.7) holds and [T(f)] L(B) --> L(B’) is a morphism in a. Thus
setting L(f) IT(f)] we obtain a functor L -- (. Clearly

LS(A TS(A ), ToS(A (F(A ), (A S’(A
iS(f) --ITS(f)]- IF(f)] S(f)

so thatLS S. Also

TL(B) T’(T(B), Ta(B))= T(B)

Ti(f) T[T(f)] V(f)

so that TL T. Further

o’L(B) oY( T(B), Ta(B) [Ta(B)] Lo(B)

so that aL La. Thus (2.4) and (2.5) hold.
To show that L is unique consider another functor L’ ( - a" satisfying

(2.4). Let B e 5 and let L’(B) (A, ,). Then

A = T(A, <p)= T’L’(B)= T(B)

T[] To’(A, ,p)= T’o’L’(B)= T’L’o(B)= To(B)



ADJOINT FUNCTORS AND TRIPLES 387

and thus L’(B) L(B). If f B --* B’ then both L(f) and L(f) are mor-
phisms L(B) ---. L(B’). Since TFL T TFL it follows that
TL(f) TL’(f). The functor T being faithful it follows that
L(f) L’(f). Thus L L’. Since the uniqueness proof uses only (2.4)
while L satisfies (2.5), it follows that (2.5) is a consequence of (2.4). This
concludes the proof of 2.2.

PROPOSITION 2.3. Let

a’ST"

with a (a, ) and let F (F, v, ) be a triple in (L Then

’ TFS, TvS), (TS) (TEARS))

is a triple in

Proof. A purely computational proof was given by Huber [4, p. 10].
following proof is somewhat more conceptual. Let

c’ Q" (e, a)

with c (a, r) be a generator of Y. Thus (QR, r, QaR).
have by 1 the adjoint relationship

ac RS
with

ac (a(RaQ), TrS)/).

Then by 2.1, ac generates the triple

(ac) (TQRS, (TrS), (TQaRS)(TQRaQRS))

3. Adjoint triples
Let

(3.1)

We define

a’F-G" (a,a).

for n O, 1,
the identity.

The

We then

a" Fn-I G" (a,a)

inductively as follows. For n 0, F G 1 and a is
For n > 0, a is the composition

n--1

a(F,, ). a a ,Ga(F’-, G),, a(

In particular a a.
If F (F, 7, ) is a triple in a and G (i, e, G) is a cotriple in a, then

we write
a’F-tG
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if (3.1) holds and if

under a, a and a.
PROPOSITON 3.1. If F (F, 7, #) is a triple in a and if a F G (a, a)

then there exists a unique cotriple G , , G) such that a F G.

Proof. We must define and by the conditions t -t , n --t . Then by
(1.12), nF --t Ge and by (1.10) g(nF) - (Ge). Since (sF) le it follows
that (G) la. Similarly we show that (G) la and that
(G) (G). Thus G (, , G) is a cotriple as required.

PROPOSITION 3.2. Let

Then in ( we have

a S - T a, (
c R- S (, a

ca: (c) - A(a).

Proof. Let a (a, ), c (, r). Then by definition

A(a) (ST, a, ST), (c) (SR, -, SR)
By 1 we have

ca: SR ST.
Thus it suffices to show that

r- a, SzR - ST.
The relation r -t a is the commutativity relation in the diagram

a(SR, a c(R,T) a( ,ST)

a(, ’ ///a(,)
a( )

which follows from the commutative diagram

6t(R, T)

a(SR, ST) , a(,ST).
a(SR, a) a(r, ST)

a(,,)
a( )

a(r,
a(

The relation SzR ST follows from the commutativity of the diagram
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((SR, a_ 6(R,T) a(,ST)

a(SRSR, ca caa(SR, ST) a(,STST).
The commutativity in the left square follows from the commutative diagram

a(SR, a 16(R, T) 6(R, T)

((SrR, 6t(aR, T) B(Rr, T)

a(SRSR, 6t(RSR, T) a(SR, ST)
C

and the commutativity of the right square is shown dually.

PROPOSITION 3.3. Let Y (F, 7, ) be a triple in ( with a universal generator

(3.2) c R --t S (6, a).

Then the following properties are equivalent:
F has an adjoint F -- G a, (

(ii) The triple F has an adjoint cotriple F -- G,
(iii) The functor S has an adjoint

(3.3) a S --I T (a, ).

If the above is the case, then (3.3) is a universal cogenerator for G.

Proof. The implication (i) (ii) follows from 3.1 while the implication
(iii) (i) follows from 3.2. There remains to prove the implication
(ii) (iii) and the last statement.
Let

(3.4) a’ S’--q T’ (6’, a)

be a universal cogenerator for G. Assuming that e F --I G we shall con-
struct an isomorphism L B -- B’ of categories such that S’L S. Once
this is done we replace S’, T’, B’ by S, T T’L, B so that (3.4) becomes

(3.5) a: S -t T: (6, a)

which is still a universal cogenerator for G.
In order to construct L we take for (3.2) and (3.4) the explicit construc-

tions as given in 2. Thus an object of 6 is a pair (A, ) with F(A) A,
satisfying

Cv(A) 1A, F() Cv(A).

Dually, an object of 6’ is a pair (, A) with b A ---. G(A) such that

G() (A).
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Now given (A, ) e 63, let L(A, ) (e, A).
commutative diagram

so that

Since v -q we have the

a(F(A),A) a(A, G(A))

a(v(A ), A) \\,, ///a(A, (A))

a(A,A)

e(A )e (A 1

Since g --t i we have the commutative diagram

so that

a(F(A ), A e a(A, G(A

a(t(A ), A) l a(A, 6(A

a(F(A ), A) e a(A, G(A

e(v(A (A )eq.
On the other hand

e(F()) e[e()q] G(e)e.

Thus G(e)e (A)e so that L(A, q) e 63’.
Let If] (A, ) -- (A’, ’) be a morphism in 63. Then by defini-

tion f A -- A’ and ’F(f) f. Then

G(f)e e(f) e(’F(f)) (e’)f

so that [f] (e, A) -- (e’, A’) is a morphism in 63’. This yields the required
functor L.

4. Relations with projective classes

We rapidly review some of the notions discussed in [2] and needed here.
Let a be a pointed category. A sequence in ( is a diagram

(.) A’ f;A g ,4"

such that gf O. The sequence (.) is exact if f admits a factorization f kl
where/c is a kernel of g and is an epimorphism.

Let be a class of sequences (.) in a. An object P of a is -projective
if for every sequence (.) in the sequence

(**) A(P, A’) -- A(P, A) ---. A(P, A")
is exact in the category of pointed sets. The class 3 is called projective if the
following two conditions hold: (1) If (.) is sequence in a such that (**) is
exact for every -projective object P, then (.) is in ; (2) For every

A"g A -- in A there exists a sequence (.) in in which A’ is k-projective.
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If the class of all exact sequences in a is projective then ( is called projec-
tively perfect.

Let a be a pointed category with kernels and G (, c, G) a cotriple in
A, where the functor G A -- A is pointed.
We verify that for any A, B e ( the morphism

(4.1) a(G(B), c(A)) a(G(B), G(A)) -- a(G(B), A)

is surjective. Indeed, let G(B) -- A. Then

s(A)G()(B)

By [2, Ch. I, 6] this implies that the cotriple G determines a projective class
in ( as follows. A sequence

A’ f )A- g ; A"
(with gf 0) is in provided the sequence

a(G(B), A’) a(G(B), A) a(G(B), A")
is exact for every B e a. The -projective objects are the objects G(B),
B e a and their retracts. The class is exact if and only if e(A) is an epi-
morphism for every A
The kernel functor of

O._ K

___
G la

leads to a sequence

(4.2) -- GK GK GK. G. la--O
where K 1 K" KKn-: and d,, GK GK"- is the composition

GK, eK K, KK’- GKn_

Applied to any object A in a the sequence (4.2) yields a sequence in 9 and
since GK’(A) is -projective, there results a -projective resolution of A,
called the canonical resolution (relative to the cotriple G).
Now consider the morphisms. G+: g Gn+ Gn+---G i O, 1, ,n

defined as follows
.,-, g GGn-.

The "face" operators and the "degeneracy" operators g satisfy the usual
simplicial identities so that there results a simplicial functor ( with G+ in
degree n. If the category a is preadditive then we may construct the bouad-
ary operator

0 G+ - G
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by setting

There results a complex

(4.3) --+ G 1 --* 0

with

PROPOSITION 4.1. Let e be a preadditive category with kernels, and let
G (a, , G) be a cotriple in ( with G an additive functor. If for each A e
the morphism GK(A) is a kernel of G(A), then for each A a, the sequence
(4.3) applied to A is a -projective resolution of A.

Proof. Since (Ge)a 1 it follows from the hypothesis that

0 --+ GK- GK G;G )GO

is a split exact sequence. Since the functor G is additive, it follows that

0 GnK G’ Gn+l G G "-)’0

is split exact.
We define morphisms ., GK, _. Gn+

by induction as follows" r0 la G -- G; for n > 0, rn is the composition

GK, ,rn-lK G

We verify that for n > 0

Tn--1 dn e’n
There results a commutative diagram

er, 0 if i> 0

GK GK G

(4.4)

"-- G

The upper row the canonical resolution. To show that the lower row also
is a resolution (with augmentation e G l a) it suffices to show that the
morphism (4.4) is a homotopy equivalence of complexes. To verify this it
suffices to show that the upper row of (4.4) is the normalized subcomplex of
the simplicial complex G with r as inclusion) (for a neat exposition see [1, 3]).
To do this it suffices to show that r(A GK(A G+(A is the simalta-
neous kernel of e(A) G+(A) G(A) for i 1, 2, n. This means
that if f C G+(A) is such that e(A)f 0 for i 1, 2, n, then
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there exists a unique g C ----> GK’(A) such that r g f. For n 0 this is
clear. We now assume that n > 0 and proceed by induction.

Since GnK G’K ---> G’+1 is the kernel of e" Gs G"+1 -- G, therefore,
f admits a unique fctorization

C ----> G’K(A) G_ Gn+I(A ).

Let B K(A) and consider the commutative diagrams for i 1, 2,
n-l:

f’ G i(B) Gn-1C (B) (B)

GG’+I(A) ei.A) (A

We have (G-K)(e(B))f’ 0 and since G- is a kernel it follows that
e(B)f 0 for i 1, 2, n 1. Thus, by the inductive hypothesis,
f’ admits a unique factorization

C- g GK’-I(B) r,-l(B) G,(B).

Combining this with the factorization (4.5) of f we obtain a unique factori-
zation

C g GK’(A )...T.,(.A )_. Gn+I(A
of f, as required.
An alternative proof of 4.1 may be given as follows. Denote by the

complex (4.3) with the augmentation included (i.e. with la in degree -1 and
with 00 e). Next show that the complex (G(A) is contractible (i.e. is
split exact). This is done by defining s :Gn+l --+ G+ by s_l 0,
s (- 1)*-IG’ for n > 0. Then a calculation shows that

It follows that for every B e (t we have

(4.6) Ha(G(B), r(G(A))) O.

Next observe that the sequence

0 K(A) ---> G(A) --> A .---> 0

is in while the sequences

0 ----> G’K(A ---> G+I(A --+ G’(A ----> 0

are split exact for n > 0. There results an exact sequence of complexes

0 ----> a(G(B), ,K(A) a(G(B), OG(A)) a(G(B), ,(A)) ---+ O.
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Thus (4.6) implies an isomorphism

H, a(G(B), (A)) Hn_ a(G(B), K(A)).
Since H_: a(G(B), (A)) 0 for all A, B e a, it follows inductively that
H, ((G(B), (A)) 0 for all n. Thus (A) is in 9, as required.

This proof has the disadvantage of not exhibiting the canonical complex as
the normalized standard complex.

5. Properties of universal generators
Let F (F, , ) be a triple in a category a and let

(5.1) a" S --t T" ((’, (), a (a, ),
be the universal generator of F. From the explicit construction given in 2
it is clear that if a is a pointed (or additive) category and if F is a pointed
(or additive) functor, then ( is a pointed (or additive) category and the
functors S and T are pointed (or additive).

PROPOSITION 5.1. If a is a pointed category with kernels and if the functor
F is pointed, then ( is a pointed category with kernels and the functor T pre-
serves and reflects kernels (i.e. g is a kernel of f in ( if and only if Tg is a
kernel of Tf in a).

Proof. Let If] (A, ) -- (A’, " be a morphism in ay and let g A’ -- Abe a kernel of f in (t. Since

’Ff,F(g) ,’F(f)F(g) (fg) O,

it follows that there exists a unique ’ F(A’) -- A’ such that ge F(g).
Since

g,’n(A’) ,pF(g),(A’) ,pq(A )g g

and since g is a monomorphism, it follows that ,p’,q(A’) 1,. Similarly
since

g,p’F(’) ,pF(g)f(,p’) F(,p)F(g) ,p(A)F(g)

,pF(g)(A’) g,p’(A’)

we have ,p’F(,p’) ,p’(A’). Thus (A’, ’) is in a and

[g] (A’, ’) - (A, ).
Now let [h] (A, ) -- (A, ) be a morphism in B such that If] [h] 0.
Then fh 0 and there is a unique morphism k A ---) A’ such that h gk.
Then

gkql h F(h) F(g)F(k) g’F(k)

and therefore k ’F(t). Thus [k] (A, ) -- (A’, ’), and [hi [g] [k].
Thus [g] is a kernel of If] and the proposition is established.

PROPOSITION 5.2. If a is a pointed category with cokernels and the functor F



ADJOINT FUNCTORS AND TRIPLES 395

is pointed and preserves cokernels, then the category (F has cokernels and the
functor T preserves and reflects coternels.

Proof. Let [g] (A’, ’) -- (A, ) and let f A - App
be a cokernel of g

in a. Then F(f) is a cokernel of F(g). Since fF(g) fg’ 0 it follows
" A" ,’PFthat there exists a unique F(A’) such that f (f) Since

o"(A")f "F(f)q(A) f,c(A) f
it follows that 9"n(A") 1A,, Similarly since

"F(o"o F2 f ,’F f F , fpF , f,cu A

,’F(f)t(A) o"t(A")F2(f)
and since F(f) is an epimorphism, it follows that "F(’) "(AP’).
Thus (A’, o’) is in ar and If] (A, o) -- (A", P). Now let

[h] (A, ) --+ (A1, 1)

be such that [h] [g] 0. Then hg 0 and there is a unique morphism
/c A" -- A1 such that h /f. Then

ko"F(f lcf, h, olF h

implies that k" IF(/c). Thus [/c] (A", " -- (A1, 1) and [h] [k] If].
Thus If] is a cokernel of [g] and the proposition is established.
The above two propositions and known facts about abelian categories imply

t)ROPOSITION 5.3. If the category a is abelian and the functor F is additive
and preserves cokernels, then the category ( is abelian and the functor T pre-
serves and reflects exact sequences.

Now assume that the category Ct and the functor F are pointed, and let
be a projective class in the category a. By the adjoint theorem for projective
classes [2, Ch. II, 2], there results in ar a projective class
Explicitly a sequence

(A’, ’) [f (A, ) [-g] (A", ")
is in S if and only if

A’ f A gA"

is in S. The ; projective objects are the retracts of objects Sr(A)
(F(A), t(A)) where A is S-projective. Since the functor T is faithful, it
follows [2, Ch. II, 2] that if the class S is exact then the class SF also is exact.

In particular, if the category a is projectively perfect, and $1 is the class
of all exact sequences in a, then S is the class of all exact sequences in the
category a, which is therefore projectively perfect.

If in a we take S0 to be the class of all split exact sequences, there results a
projective class ; in a. The S-projective objects are the retracts of ob-
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jects S(A) (F(A), t(A)) where A is any object of a. This class
may also be arrived at in a different way as follows. The relation (5.1)
induces in APa cotriple

G A (a) (ST, a, ST)

where the superscript F has been omitted. This cotriple defines a projective
class 9 in A. The 9-projective objects of a are the retracts of objects
ST(A, ) S(A) (F(A), (A)) where (A, ) e ay. Since the compo-
sition

S S)STS ..__aS_ S
is the identity, it follows that for any A e a, S(A) is a retract of STS(A).
Thus S(A) is -projective. It follows that the P0-projective and the 9-pro-
jective objects coincide and thus 9. In particular, the canonical resolu-
tion yields an ’-projective resolution for every object of a.

If the category a is preadditive and the functor F is additive then the
category a also is preadditive and the functors S, T and G ST are addi-
tive. If further a has kernels, then a has kernels. We shall show that the
conditions of 4.1 are satisfied and therefore the standard complex for the
cotriple G yields 0-projective resolutions.

Indeed, the exact sequence

O_+ K__ G e
la -- 0

is the exact sequence

O--’K, K,)ST a
la --+ 0.

Since T preserves exact sequences, it follows that

(5.2) 0 TK T Ta
--> TST.. T 0

is exact. Since (Ta)(T) Ir it follows that the sequence (5.2) is split
exact and therefore since S is additive

0 STK STy, STST .ST% ST 0

is exact. Thus the sequence

is exact, as required.
O--> GK GK G G--e G--- O

6. Examples
Let K be a commutative ring and a the category of K-modules. Then

is an abelian category. ( is also a K-category, so that ((A, A’) is again an
object of a. The tensor product A (R) B over K yields a functor a X a --,
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nd we hve the ntuml isomorphism

(6.1) a a(h (R) B, A) a(B, a(h, A)).

We shall also employ the standard identifications

(6.2) K (R) A A, eo(g, A) A

Let h be a K-algebra. Then we have morphisms

(6.3) K--- A, A (R) A--- A

satisfying the usual identities. There results triple F (F, , ) where
F= A(R)

v(A) V(R) A, ,(A) (R)A.

We also have a cotriple G (, e, G) where G e(A,

(A) a(, A) a(h, A) a(g, A) A

and (A) is the composition

a(h, A)--= a(,A) a(h (R) h, A) a a(h, a(A,A)).

The relation (6.1) yields a F -t G. Further it is easy to verify that
v and ti. Thus we havea F- G.

Let M be the category of left A-modules, T M --+ a the usual "forgetful"
functor and let S, R A --+ xM be defined by S h(R), S’ ((h, ). Then
the relation (6.1) induces adjointness relations

a S-4 T: (M,a)

a T --t R: ((t, M)

which are respectively the universal generator for Y and the universal co-
generator for G, in agreement with 3.3.

Using theorems of Watts [5] it is easy to show that (up to isomorphisms)
the K-algebras yield all the triples 1 and all the cotriples G in (X such that F
preserves cokernels and (arbitrary) coproducts (i.e. direct sums) while G
preserves kernels and (arbitrary) products.
A K-coalgebra A is given by morphisms

(6.4) A-- K, A--+ A (R) h

satisfying the usual identities. There results a cotriple G (, e, G) in a
where G A(R)

e(A) g @ A, (A) $ (R) A.

We also have a triple F (F, n, u) where F a(A, )

(A) a(, A) A a(g, A) -- a(A, A)

and v(A) is the composition
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-1

a(A,a(A,A)) a a(,A)a(A (R) A,A) A(A, A).

We still have the relations a G - F, e v and ti -t , so that in a sense
we have G F. However G being a cotriple and F being a triple, 3.3 no
longer applies. Indeed, the construction of the universal generator for F
yields the category AM of left comodules (i.e. K-modules A with a morphism
A --* A (R) A satisfying suitable identities) while the construction of the uni-
versal cogenerator for G yields the category AM* of A-contramodules (i.e.
K-modules A with a morphism a(A, A) A satisfying suitable identities)
[see 2, Ch. III, 5]. These categories are in general distinct except when A is
K-projective and finitely generated over K, in which case AM and AM are
both isomorphic with the category ,M where a( t, K) is the K-algebra
dual to the coalgebra A.
Again it can be shown that (up to isomorphisms) the K-coalgebras yield

all the triples F and all the cotriples G in which F preserves kernels and
(arbitrary) products while G preserves cokernels and (arbitrary) coproducts.
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