A GENERATOR FOR A SET OF FUNCTIONS

BY
J. W. NEUBERGER

1. Introduction

Suppose that H = [S, +, ||-||] is a normed complete abelian group and that
Dy is a subset of S. Suppose furthermore that for each x in Do, T, is a func-
tion from [0, 1) to S. The main problem considered is that of finding a
Stieltjes-Volterra integral equation

t
(%) T.(t) = Tu(s) +[ iF-T,, 0<s<t<l,

which is satisfied for all x in Dy. The integral used is similar to one used in
[6].

Some ways in which such function collections arise are now described.

(1) If H is a linear space and for each ¢ > 0, M (t) is a bounded linear
transformation on H such that M (s)M (t) = M(s + t) if s, ¢ > 0, then one
has a semi-group of bounded linear transformations of the kind considered so
extensively in [1]. Here one may define T.(s) = M(s)x for 0 < s < 1.
In some cases an examination of the function F in () yields a generator for
M (see Section 3 of this paper). Results of this paper seem to apply only to
the “uniform’ case of [1].

(i1) If f is a continuous function from 8 X R (R is the real line) to S
so that (I) f(p, 0) = p for all p in S and (II) f(f(p, &), &) = f(p, t1 + &2)
for all p in S and ¢, ¢, in R, then f is a dynamical system (see for example
[5]). One may define T.(t) = f(x, t) for all x in S (or perhaps some subset
Dyof S) and 0 <t < 1. In some cases in which f is generated by a system
of differential equations, () is equivalent to this system (see Example 3,
Section 5 of [6]).

(iii) Suppose M is a continuous harmonic operator (see [7] or [3] for a
discussion and references), that is, M is a function from B X R to the set of
all bounded linear transformations on S such that M is continuous and of
bounded variation with respect to its first place, continuous with respect
to its second place and for each number triple r, s, t, M (r, s)M (s, t) = M(r,t)
and M(r,r) = I. Then, one may define T.(s) = M(s, 0)z for 0 < s < 1.
Then F in () generates the restriction of M to [0, 1) X [0, 1). Results of
this paper applied to the harmonic operator case duplicate some results of
[7] and [2]."

Received September 3, 1963.
1 Some recent results of Mac Nerney [4] extend the linear theory of [3] to nonlinear
problems. Some overlap can be seen in both the results and the methods of the present
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In [6], the problem of obtaining families of functions like the set of 7', ,  in
Do, was considered. The main process used there can be described as an

exponential process. In this paper, the opposite, i.e., logarithmic, process
is considered.

2. The main result

DermnirioN. If @ is a number set, then the statement that V is a varia-
tion function for @ means that V is a function from @ X @ to a non-negative
number set such that if each of s, p and ¢is in @ and p is in [s, ¢], then

V(s,p) = V(p,s) and V(s,p) + V(p,t) = V(s, 8).
A definition for integral and a sufficient condition for existence are given.

DermNiTION. Suppose that [a, b] is a number interval, X is a function
from [a, b] to S and F is a function on [a, b] such that if ¢ is in [a, b], F(¢) is a
transformation from a subset of S to a subset of S. The statement that X
is F-integrable from a to b means that there is a point w in S such that if
&£ > 0, there thereisa 6 > 0 such thatif &, -+, t,41 is & chain from a to b
with mesh < 8 and so, -+, s, is an interpolation sequence for &, -, tp41,
then

| w— 2i=0 [F(tisn) — F(8)1X () || < e.
Such a point w is of course unique and is denoted by [2 dF - X.

LemMa 0. Suppose that [a, b] is a number interval, U is a variation function
for la, b} and each of X and F is a function as in the first sentence of the above
definition. Suppose in addition that (1) X is continuous and (2) there is a
8 > 0 such that if each of s and t is in [a, b], each of u and v is in [s, t] and
|'s — t| < 8, then each of X (u) and X (v) is in the domain of F(t) — F(s) and

| IF(t) — F(s)]X(u) — [F(t) — F()1X () | < U, 8) | X(w) — X(v) ||
Then X is F-integrable from a to b.

A proof which follows closely an existence proof for ordinary integrals is
omitted. This lemma is similar to Theorem E of [6].

With H = [8, +, ||-|| ] a normed complete abelian group and D, a subset
of S, suppose that if x is in Dy, then T, is a function from [0, 1) to S such
that T,(0) = «. If tis in [0, 1), denote by D; the set of all T,(¢) for all
xin Dy. Denote by G the set of all (¢, T,(t)) for all y in Dyand all tin [0, 1).
Denote by I the identity transformation on S.

study and [4] if the underlying linear system of the latter is assumed to be a linear con-
tinuum. In making comparisons it should be noted that the functions A and M in this
paper correspond to V and W respectively in [4]. In the notation of [4], the point ¥ in
Lemma, 5 is denoted by > °[M — Ilw and the point T, (¢) in part (B) of the theorem is
denoted by . J]°[1 + alw.
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TaeorREM. Suppose that each of U and V is a continuous variation function
for [0, 1) so that
(1) | T=(t) — To(s) || LV, s)fzisinDoand 0 < s <t < 1,
(2) [Te(t) = To(8)] — [T(®) — Ty()1 || < U, 8) || Ta(s) — Tu(s) ||
if each of x and y tsin Doand 0 < s <t < 1, and
(8) the set G is open with respect to [0, 1) X S.
There s a functton F on [0, 1) such that
(1) ftisin [0, 1) then F(t) is a transformation from D, to S and
(2) the following hold:
(A) Ty(t) = Ty(s) + [edF-T,if0<s<t<1land
B) fe>0,and 0< s< t < 1 there is a 6 > 0 such that if
to, *+ , tuy1 28 @ chain from s to t of mesh < 8, then

| 7o) — {Tli~ I + Fltia) — FETo(s) || < .

A proof is developed by means of a sequence of lemmas, all of which are
under the hypothesis of the theorem.

LemMma. 1. If each of x and y is in Dy, s is in [0, 1) and T,(s) = Ty(s),
then T,(t) = T,(t) if s <t < 1.

Proof of Lemma 1.
| To(t) — Ty(t) | = [ [Ta(t) — Ta(s)] — [Ty(t) — Tou(s)] ||

S UG To(s) = T(s) || =0
so that T,(t) = T,(t).

Notation. If sisin [0, 1) and w is in D, , then I(w, s) denotes the set of
all numbers ¢ such that if « is in [s, t], then w is in D,. Note that such a
set I(w, s) is open with respect to [0, 1). If 0 < s < ¢ < 1, then M(, s)
denotes the function from D, to D, such that if w is in D, , M (¢, s)w = T,(1)
where z is such that w = T,(s).

Note that (2) in the hypothesis of the theorem is equivalent to the follow-
ing: || [M(t,s) — ITw— [M(t,s) —I|| K U@Es) |[w—z]|[f0<s<t<1
and each of w and z is in D,. Also note that (1) in the hypothesis of the

theorem is equivalent to || [M (¢, s) — Ilw || < V (¢, s) under the same condi-
tions.

LemMa 2. Suppose that 0 < s < 1, w 18 in D, and ¢ is in I(w, s). If
s<a<<b<tandty, :*, lus1ts a chain from a to b, then

| (b, 0) — T — { Dia M (tiss, 1) — D}w || < U, )V, a).
Proof of Lemma 2.
[ 4 (b, 0) = Iw — { im0 [M (b, &) — I} |
= || X0 {IM (b1, a) — M(t:, a)lw — [M(tipr, t:) — Iw} ||
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< Dt | IM(figa, ts) — IIM (i, @)w — [M(tigy, t;) — I'w ||
Z@=o U(ti+1 s ti) ” M(ti, a)w - w ”
< 220 Ultia, t)V(ti, a) < U(b, )V (b, a).

Lemma 3. Supposethat 0 < s < 1, w s in Dy, t is in I(w, s), a < b,
each of aand bis in [s,t] and r = 7o, +++ , Tas1%s @ chain fromatodb. If
Go, ", Qm1 1S @ refinement of r, then

A X M (i, ) = Tw — { X0 (M (gisa, 0:) — Do ||
< 22;0 V(rsq, 1) U(riqa, r3).
This follows easily from Lemma 2 and a proof is omitted.

Lemma 4. Suppose that 0 < s <t < 1, wis in D, and t is in I(w, s).
If ¢ > 0, there is a number & > 0 such that if each of r = 7o, +++ , ro41 and
q=qQo, ", qm+1 18 a chain from s to t of mesh < §, then

| { e M (riga, ) — Nw — { D70 M (gina, ) — Njw || < e.

Proof of Lemma 4. Suppose ¢ > 0. Denote by 6 a positive number so
that if each of a and bisin [s, ) and | @ — b | < §, then

Vb, a) < ¢e/[2 4+ 2U(b, a)].

Denote by each of »r = ro, -+, roq1 and ¢ = @o, ***, gm1 & chain from s
to t of mesh < 6 and by » = v, -+, Vw1 & common refinement of  and q.
By Lemma 3,

| At (M (rigs, ) — Iw — {270 [M(gina, ¢5) — Iw ||
< | { X [M(ml yra) — Iw — {2 =M (v, 0) — IN}w |

+ || {20 IM (viga, vi) — Nw — { D270 [M(giva, q:) — IN}w I
<2 V(Ti+1 ) Urign, 1) 4 200 V(ginn, ¢)U(gin, i) < &
since | ripn — ri| <8,1=0,---,nand | gipn — ;| <8,¢=0,---,m.

Lemma 5. Suppose that 0 < s <t < 1, w is tn D, and ¢ ¢s in I(w, s).
There 1s a unique point y of S with the following property: If ¢ > 0, there is
ad > 0sothatifty, - - -, tuy1 18 @ chain from s to t with mesh < &, then

|y = { X0 Mg, 1) — DYw || < e
Indication of proof of Lemma 5. Lemma 4 yields the fact that
o M (s 4+ G/n)(¢ = 8), 8 + [(E — 1)/nl(t — 8)] — Tw}om

is a Cauchy sequence. Denote its limit by y. A simple argument (which is
omitted) gives that y satisfies the conclusion of Lemma 5.
It is remarked that it follows from Lemma 3 that if ¢, - - , {n41 is a chain
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from s to ¢, then

“ Yy — {ZZ;O [M<ti+1 ) t@) - I]}w H S Z;;O V(ti+1 ) tq,) U(ti+] ’ ti)
<

and in particular, ||y — [M(¢,s) — Ilw || < V{4, s)U(4, s).

A point y satisfying the conclusion to Lemma 5 is denoted by A(f, s)w.
Note that if 0 < s < ¢t < 1, wis in D, and ¢ is in I(w, s), then A(Z, s)w is
defined.

Lemma 6. If 0 < s < p <t <1, wisin D, and each of p and t¢s in
I(w, s), then A(t, p)w + A(p, s)w = A(t, s)w.

A simple argument is omitted.

Lemma 7. Ifyisin Doand 0 < s < t < 1, there ts a § > 0 such that if
s<u<Lt|Tyu) —z|| <dandu <v <u-+3dthenzisinD,.

Proof of Lemma 7. Suppose the lemma is false. Denote by y an element
of Dy, by each of s and ¢ a number in [0, 1), by each of {u;}i= and {v;}7 a
number sequence and by {z;} = a point sequence in S so that

s < u < tus v < w175 || Ty(uw) —as]| < 1/¢

and z;isnotin D, ,2=1,2,---.

Denote by {n;}i~1 an increasing sequence of positive integers so that {u,,} 1=
converges and denote by « the limit of this sequence. Then, w is also the
limit of {v,}i=1. Since w is in [0, 1) and G is open in [0, 1) X S, there is a
6> 0sothatifzisin S, | Ty(u) — || < & and ¢ is in both [0, 1) and
[u — 8, u + 8], then (¢, z) isin G. Denote by §; a positive number < § so
that if |v — u | < §; then || Ty(u) — Ty(v) || < 8/2. Denoteby 7 an integer so
that 1/7 < 8:/2 and | u., — u| < 81/2. Then,

I Ty(un) — Ty(w) [| <6/2, || Ty(tn;) — 2, | < 1/m: < 8/2,

and hence || Ty(u) — au; || < 8. But |u — v,; | < 8 so that (va, ,2s;) isin
@, a contradiction.

It is remarked that since T, is uniformly continuous on closed subsets of
[0, 1), it follows from Lemma 7 that if 0 < s < ¢t < 1 and y is in Dy, then
there isa 6 > 0 so that if eachof a and bisin[s,¢,0 < b — a < dand u is
in [a, b], then T, (u) is in the domain of A(?, a).

Lemma 8. If 0 < s <t < 1, each of w and z is in D, and ¢ is in I(w, s)
and I(z, s), then

LA 9wl < V(L s) and || Al 8w — AL )z || < U s) [w—z .

Proof of Lemma 8. Suppose that ¢ > 0. Denote by &, +*+ , tnt1 & chain
from s to ¢ so that

A, s)w — {XioM(tis, ts) — Mw || < e
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and
At 8)z — { Xt [M(ti, ) — I} || < e
Since
i M tia, t) = D || < i | M (b1, 1) ~ o |
S Z:t:o V(ti+1 ) ti) S V(t7 8)
and

| {20 M (tiga, t) — Iw — { i (M (tiga, ts) — 1N} ||
Z?=o M (tiga, t) — Tw — [M (biga, t:) — Iz ||

<
S Z;;O U(ti+l ) t%) ” w—2 “ S U(ta 8) ” w—x “
it follows that
LA s)w | < e+ V(i s)
and
” A(ty s)w - A(t) 8)x ” S 2¢ + U(t, 8) ” w—2x ” )

from which the lemma follows.

Notation. Denote by F the function from [0, 1) such that if ¢ is in [0, 1),
then F(t) is the transformation K from D, to S with the following property:
If wisin D, and ¢ is the mid-point of I (w, t), then

Kw= A, q)w if t>q¢q and Kw= —A(q,)w if t <gq.
Note that if 0 < s < ¢t < 1, wis in D, and ¢ is in I(w, s), then I (w, t) =
I(w, s), A(t, s)w is defined and [F(t) — F(s)] w = A(t, s)w.

It is remarked that it follows from the second part of the conclusion to

Lemma 8 that if 0 < s < 1 and w is in D, , then there is a > 0 such that if
s <t < s+ 4, then F(t) — F(s) is continuous at w.

Lemma 9. If0 < s <t < landyisin Dy, then [} dF-T, exists.

Proof of Lemma 9. It follows from the remark following Lemma 7 that
there is a number & > 0 so that if each of a and bisin[s,f]and | b — a | < 8,
then T,(u) is in the domain of F(b) — F(a) for all u in [a, b]. Hence by
Lemma 8, if each of band aisin [s, ], | b — a | < & and each of « and v is
in [a, b}, then

[ [F(b) — F(a)ITy(u) — [F(b) — F(a)ITy(v) |
L U®, a) || Ty(u) — Ty(v) | .
Since T, is continuous, this lemma follows from Lemma O.

Proof of part (A) of the theorem. Suppose ¢ > 0. Denote by 8, a positive
number so that if &, ---, t,41 is a chain from s to ¢ with mesh < &; and
S0, *** , Sy is an interpolation sequence for &y, - - -, t,41 then

| fodF-Ty — 2 i [F(tiva) — F)ITy(s3) || < e/2.
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Denote by 8, a positive number so that if each of u and v is in [s, ] and
|u —v]| < 8, then
Viu,v) < ¢e/[2 4+ 2U(4, s)).

Denote min (8;, 8;) by 8. Denote by o, -, tus1 a chain from s to ¢ with
mesh < 6. Then,

| JedF-Ty) — i [F(tia) — FUNTy(8) || < &/2
and

[1T4() = Tu(8)] = im0 [F (i) — F(t)ITy(E:) ||
= | ZiollTy(tis) = Tu(t)] = [F(tin) = FIT,(8) ||
< 2o |l Ty(tann) — Ty(ts) — [F(tip) — F(0)1Ty(8) ||
Dot | IM (figa s ) — ITy(8) — A(tiga, 8) Ty(E) |
Dt V(i , 8 Utina, 1)
maxi—o,.....V (g1, ) U, 8) < €/2.
Hence, H [T, (t) — Ty(s)] — fﬁ dF-T, “ < ¢ for every ¢ > 0, that is,
Ty(t) = Ty(s) + s dF-T,.
This completes a proof to part (A) of the theorem.

Proof of part (B) of the theorem. Suppose that y is in Dy, 0 £ s <
t < land e > 0. Denote by 6; a positive number such that if s < u < ¢,
| Ty(w) — x|l < drand w < v < u + &, then zis in D,. Denote by 5 a
positive number < §; so that if each of a and bisin [s, f] and [b — a | < 5,
then V(b, a) < min (¢, &) exp (—U(4, s)).

Suppose that &y, - -+ , ty41 is & chain from s to ¢ with mesh < 8. Denote
I+ F(t,) — F(tia) by Ji,e=1,--- ;n+ 1. Denote

min (¢, &) exp (—U(4, s))
by R. It will now be shown that
| Ty(ts) — T+ JiTy(s) || < Rlexp U(ts,s) — 1], ¢=1,---,n+4 1.
| Ty(tr) — J1To(s) || = [ [Tu(t) — Tu(s)] — [F(t) — F(t)]Ty(s) ||
< V(ti,t)U(tr, ) < Rlexp U(ti,s) — 1.
Suppose that ¢ is a positive integer < n 4 1 and that
| Ty(ts) — Js--- JaTy(s) | < Rlexp U(ti,s) — 1].

<
<

Since
Rlexp U(ti,s) — 1] < min (¢, 81) exp (—U(E, 8)) exp U(t;,s) < &1,
it follows that J;y1 Ty(t:) and Jiq J; » - - J1 Ty(s) are defined and that
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| Ty(tiva) — Jaqa s - JuTy(s) ||
SN Mo, 2 Ty(ts) = Jia Ty(t) | + || Jora Ty(t) — Taga -+ J1 Ty(s) ||
S M (o y t) — NTy(t) — [F(tisn) — F(@)ITW(G) ||
+ | Tu(ts) — Jo--- JiTy(s) ||
+ [ [F(tiy1) — F(@)]Ty(t:) = [F(tiya) — F(t)i -+ JiTy(s) ||
< V(tigr, t) U(biga, i)
+ Rlexp U(t:,8) — 1] + U(tisa, t:)Rlexp U(ti, s) — 1]
< R{U(tiy1, t:) + [exp U(ti, s) — 11 + U(tia, ta)]}
= R{[l1 + U(tiz1,t:)] exp U(ts,s) — 1} < Rlexp U(tiy1,s) — 1].
Hence,
| Tu(®) — {TI*=o [T + Ftin) = F(t)1}Tu(s) ||
= 1| Ty(tass) = Juss -+ Ji Ty(s) || < Rlexp Ultnss, 8) — 1] < e,
This completes a proof to part (B) of the theorem.

3. An application to semi-groups
In this section a connection with semi-groups of transformations is estab-
lished.

CorOLLARY. If in addition to the hypothesis of the theorem 1t is true that H
1s a linear space and M(t,s) = M(t — s,0) for 0 < s <t < 1, then there is a
continuous function A from Do to S such that if F(t) = tA for 0 < t < 1, then
A and B of the theorem hold.

Proof of the corollary. If 0 < & < 1, denote M (5, 0) by Q(5). Note that
D, = D, and hence I(w, s) = [0, 1) for all sin [0, 1) and w in Dy. Also
note that Q(s)Q(t) = Q(s + t) provided that each of s, ¢t and s + ¢ is in
[0, 1). As in the proof of Lemma 5, if w is in Dy,

Zm1Q(1/2n) — Nwli— = (nlQ(1/20) — I}

converges. Denote by A a transformation from Do to S such that the limit
of this sequence is # Aw. If 0 < s < 1 and n is a positive integer, denote
by s the largest integer p so that p/2n < s.  Again as in the proof of Lemma 5,

{Q(s — sa/2n) — Iw + { 223m[Q(1/2n) — N}w}oa

converges for each point w of Do. Since || [@(s — $./2n) — Ilw | — 0 as
n — oo, it follows that

{Z‘ELO Q(1/2n) — I}w = sa/n{ 2 1= [Q(1/2n) — I}w—sAw as n— .
Denote sA by Fi(s) and (s — 3)A by F(s) for 0 < s < 1. Then F is as
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defined above since § is the mid-point of I(w, s) for all w in D,. Hence (A)
and (B) follow. They also are true for F replaced by F; since F1(t) — Fyi(s) =
F(t) — F(s) for 0 < s <t < 1. That A is continuous follows from the
remark preceding the statement of Lemma 9. This completes the argument
for the corollary.

Since D, = D, for 0 < s < 1, the definition of @ may be extended to the
nonnegative real axis in the following way: if ¢ > 1 denote by n a positive
integer so that t{/n < 1. Define Q(¢) to be [Q(¢/n)]". Then, @ forms a
semi-group of transformations. The transformation A defined above may
be said to generate Q.
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