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1. Introduction

Suppose that H IS, --, I1" 11] is a normed complete abelian group and that
Do is a subset of S. Suppose furthermore that for each x in Do, T is a func-
tion from [0, 1) to S. The main problem considered is that of finding a
Stieltjes-Volterra integral equation

P

(,) T(t) T(s) + I dF.T, 0

_
s

_
< 1,

which is satisfied for all x in Do. The integral used is similar to one used in
[6].
Some wys in which such function collections arise are now described.

(i) If H is a linear space and for each >_ O, M(t) is a bounded linear
transformation on H such that M(s)M(t) M(s t) if s, >_ 0, then one
has a semi-group of bounded linear transformations of the kind considered so
extensively in [1]. Here one may define T(s) M(s)x for 0

_
s < 1.

In some cases an examination of the function F in (,) yields a generator for
M (see Section 3 of this paper). Results of this paper seem to apply only to
the "uniform" case of [1].

(ii) If f is a continuous function from S X R (R is the real line) to S
so that (I) f(p, O) p for all p in S and (II) f(f(p, tl), t2) f(p, tl + t2)
for all p in S and h, t in R, then f is a dynamical system (see for example
[5]). One may define T(t) f(x, t) for all x in S (or perhaps some subset
Do of S) and 0 _< < 1. In some cases in which f is generated by a system
of differential equations, (.) is equivalent to this system (see Example 3,
Section 5 of [6]).

(iii) Suppose M is a continuous harmonic operator (see [7] or [3] for a
discussion and references), that is, M is a function from R R to the set of
all bounded linear transformations on S such that M is continuous and of
bounded variation with respect to its first place, continuous with respect
to its second place and for each number triple r, s, t, M(r, s)M(s, t) M(r, t)
andM(r,r) I. Then, one may define Tx(s) M(s,O)xforO_ s < 1.
Then F in (,) generates the restriction of M to [0, 1) X [0, 1). Results of
this paper applied to the harmonic operator case duplicate some results of
[7] and [2].

Received September 3, 1963.
Some recent results of Mac Nerney [4] extend the linear theory of [3] to nonlinear

problems. Some overlap can be seen in both the results and the methods of the present
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In [6], the problem of obtaining families of functions like the set of T, x in
Do, was considered. The main process used there can be described as an
exponential process. In this paper, the opposite, i.e., logarithmic, process
is considered.

2. The main result
DEFINITION. If Q is a number set, then the statement that V is a varia-

tion function for Q means that V is a function from Q Q to a non-negative
number set such that if each of s, p and is in Q and p is in [s, t], then

V(s, p) V(p, s) and V(s, p) + V(p, t) V(s, t).

A definition for integral and a sufficient condition for existence are given.

DEFINITION. Suppose that [a, b] is a number interval, X is a function
from [a, b] to S and F is a function on [a, 5] such that if is in [a, b], F(t) is a
transformation from a subset of S to a subset of S. The statement that X
is F-integrable from a to b means that there is a point w in S such that if
> 0, there there is a > 0 such that if t0, t+l is a chain from a to b

with mesh < and so, s is an interpolation sequence for to,
then

Such a point w is of course unique and is denoted by f dF. X.

LEMMA 0. Suppose that [a, b] is a number interval, U is a variation function
for [a, b] and each of X and F is a function as in the first sentence of the above
definition. Suppose in addition that (1) X is continuous and (2) there is a

> 0 such that if each of s and is in [a, b], each of u and v is in [s, t] and
s < 3, then each of X(u) and X(v) is in the domain of F(t) F(s) and

II IF(t) F(s)]X(u) IF(t) F(s)]X(v)11 <-- U(t, s)II X(u) X(v)11,
Then X is F-integrable from a to b.

A proof which follows closely an existence proof for ordinary integrals is
omitted. This lemma is similar to Theorem E of [6].
With H [S, , I1" I]] a normed complete abelian group and Do a subset

of S, suppose that if x is in Do, then T is a function from [0, 1) to S such
that Tx(0) x. If is in [0, 1), denote by Dt the set of all T(t) for all
x in Do. Denote by G the set of all (t, T(t) for all y in Do and all in [0, 1 ).
Denote by I the identity transformation on S.

study and [4] if the underlying linear system of the latter is assumed to be a linear con-
tinuum. In making comparisons it should be noted that the functions and M in this
paper correspond to V and W respectively in [4]. In the notation of [4], the point y in
Lemma 5 is denoted by t[M I]w and the point T(t) in part (B) of the theorem is
denoted by ,H[1 + ]w.
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THEOREM. Suppose that each of U and V is a continuous variation function
for [0, 1) so that

(1) [I Tx(t) Tx(s)1] - V(t, s)ifx is in Do and 0

_
s

_
< 1,

(2) II [V(t) T(s)] [V(t) T(s)] - U(t, s) T(s) T(s)[1
if each of x and y is in Do and O

_
s

_
< 1, and

(3) the set G is open with respect to [0, 1) X S.
There is a function F on [0, 1) such that

(1) if is in [0, 1) then F(t) is a transformation from D to S and
(2) the following hold"

(A) T(t) T(s) - 8 dF.T if 0

_
s

_
< 1 and

(B) if e > O, and 0

_
s

_
< 1 there is a > 0 such that if

to, t,+l is a chain from s to of mesh , then

II T(t) {I-I=0 [I + F(t+) F(t)]} T(s) [I < .
A proof is developed by means of a sequence of lemmas, all of which are

under the hypothesis of the theorem.

LEMMA. 1. If each of x and y is in Do, s is in [0, 1) and T(s) T(s),
then Tx(t) T(t) if s < < 1.

Proof of Lemma 1.

T=(t) T(t)II [T(t)- T(s)]- [T(t) Tu(s)]_
V(s, t)]l T=(s) T(s) 0

so that Tx(t) T(t).
Notation. If s is in [0, 1) and w is in Ds, then I(w, s) denotes the set of

all numbers such that if u is in Is, t], then w is in D.. Note that such a
set I(w, s) is open with respect to [0, 1). I .0

_
s

_
< 1, then M(t, s)

denotes the function from D, to Dt such that if w is in D,, M(t, s)w T(t)
where x is such that w T(s).
Note that (2) in the hypothesis of the theorem is equivalent to the follow-

ing: I1 [M(t, s) I]w [M(t, s) l]z <- V(t, s) II vo z II if0 <:_ s

_
< 1

and each of w and z is in D,. Also note that (1) in the hypothesis of the
theorem is equivalent to [M t, s) I]w <- V t, s) under the same condi-
tions.

LEMMX2. Suppose that 0

_
s 1, w is in D, and is in I(w, s). If

s

_
a

_
b

_
and to, t,+ is a chain from a to b, then

II [M(b, a) I]w -{E-:o [M(t+, t) I] }w ]l <-- U(b, a)V(b, a).

Proof of Lemma 2.

II [M(b, a) I]w {E:0 [M(t,+l, t) I] }w I[
II =0 {[M(ti+l, a) M(t,, a)]w [M(ti+, t) I]w} }1
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--o [M(t+l, t) I]M(t, a)w [M(t+, t) Ilw_
_,=o U(t+ t) V(t, a)

_
U(b, a) V(b, a).

LEMMA 3. Suppose that 0 <_ s < 1, w is in Ds, is in I(w, s), a < b,
each of a and b is in [s, t] and r- ro rn+l is a chain from a to b. If
qo q,+l is a refinement of r, then

II Zn-=o [M(r+I, r) I] }w Z=o [/(q+, q) I] lw II__
o V(r+ r) U(r+ ri).

This follows easily from Lemma 2 and a proof is omitted.

LEMMA 4. Suppose that 0 <_ s <_ 1, w is in D8 and is in I(w, s).
If > O, there is a number 8 > 0 such that if each of r to, r,+ and
q qo, q,+l is a chain from s to of mesh 8, then

11 Z=0 [M(r+i, r) I] }w Z--0 [M(q+l, qi) I] }w [I < .
Proof of Lemma 4. Suppose e > 0. Denote by 8 a positive number so

that if each of a and b is in Is, t] and a b < 8, then

V(b, a) < e/J2 + 2U(b, a)].

Denote by each of r r0, r,+ and q q0, qm+ a chain from s
to of mesh < 8 and by v v0, vu+ a common refinement of r and q.
By Lemma 3,

II Z=o [M(r+, r) I] }w Zo [/(q+, q) I] }w II-- II {Zo [M(r+l, r) I] }w {Z o[M(v+, v) I] }w ]1
+ II {E0 [M(Vi+l, yi) I] }vo E:=o [M(q+l, q) I] }w [I_
.= V(r+, r)U(r+, r) + ’=o V(q+, q)U(q+i, q) <

since r+ r < 8, i 0, n and q+l q[ < , i o, ..., m.

LEMMA 5. Suppose that 0 _< s <_ < 1, w is in D and is in [(w, s).
There is a unique point y of S with the following property" If > O, there is
a 8 > 0 so that if to, t,+ is a chain from s to with mesh < 8, then

Indication of proof of Lemma 5. Lemma 4 yields the fact that

o [M(s + (i/n)(t s), s + [(i 1)/n](t s)]

is a Cauchy sequence. Denote its limit by y. A simple argument (which is
omitted) gives that y satisfies the conclusion of Lemma 5.

It is remarked that it follows from Lemma 3 that if to, $n+1 is a chain
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from s to t, then

I] Y {E=0 [M(t,+, t,) I]}w II <- E=0 V(t,+l, t,)U(t,+,, t,)

and in particular, y [M (t, s) I]w V(t, s) V(t, s).
A point y satisfying the conclusion to Lemma 5 is denoted by A(t, s)w.

Note that if 0 s < 1, w is in D, and is in I(w, s), then h(t, s)w is
defined.

LEMMA 6. If O S p < 1, w is in D, and each of p and is in
I(w, s), then A(t, p)w + A(p, s)w A(t, s)w.

Asple rgument is omitted.

LMMh 7. If y is in Do and O s < 1, there is a > O such that if
s u t,] T(u) x] andu v uW,thenxisinD.

Proof of Lemma 7. Suppose the lemm is flse. Denote by y n element
of D0, by ech of s nd number in [0, 1), by ech of {u} nd {v}
number sequence nd by {x} point sequence in S so that

s u t, u v u + l/i, 11 II < 1/i

and x is not in D, i 1, 2, ....
Denote by {n} an increasing sequence of positive integers so that Un

converges and denote by u the limit of this sequence. Then, u is also the
limit of {v}. Since u is in [0, 1) and G is open in [0, 1) X S, there is a
> 0 so that if x is in S, T(u) x l < and q is in both [0, 1) and

[u , u + ], then (q, x) is in G. Denote by a positive number E so
thatv u then T(u) T(v) I < /2. Denotebyi anintegerm
that 1/i < /2 and u u < /2. Then,

and hence ]T(u) x < . But u- v < sothat (v,x) isin
G, a contradiction.

It is remarked that since T is uniformly continuous on closed subsets of
[0, 1), it follows from Lemma 7 that if 0 s g < 1 and y is in D0, then
thereisa > 0 so that if each of a and b is in [s, t] 0 g b- a <anduis
in [a, b], then T(u) is in the domain of A (b, a).

LEMMA 8. If 0 g S g < 1, each of w and x is in D and is in I(w, s)
and I (x, s), then

]IA(t,s)w]] g Y(t,s) and ]]A(t,s)w-- A(t,s)x] U(t,s) [[w- x(.

Proof of Lemma 8. Suppose that v > 0. Denote by t0, t+ a chain
from s to so that
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and

Since

and

II E--o [M(t+, t) I] }x II -< E=o [M(t+, t) I]x I!
< "=0 v(t,+, t) <_ v(t, s)

it follows that
A(t, s)w < e 4- V(t, s)

and
A(t, s)w A(t, s)x <- 2e -4- U(t, s) w x 11,

from which the lemm follows.
Notation. Denote by F the function from [0, 1) such that if is in [0, 1),

then F(t) is the transformation K from D to S with the following property"
If w is in D nd q is the mid-point of I(w, t), then

Kw= A(t,q)w if t q nd Kw=-h(q,t)w if t< q.

Note that if 0 s < 1, w is in D, nd is in I(w, ), then l(w, t)
I(w, s), A(t, s)w is defined nd IF(t) F(s)] w A(t, s)w.

It is remarked that it follows from the second prt of the conclusion to
Lemm 8 that if 0 s < 1 nd w is in D,, then there is 6 > 0 sueh that if
s s + 6, then F(t) F(s) is continuous t w.

LMM 9. U0 S < landyisinD0,thenfdF.Tuexists.

Proof of Lemma 9. It follows from the remark following Lemm 7 that
there is number 6 > 0 so that if eeh of a nd b is in Is, t] nd b a < 6,
then Tu(u) is in the domain of F(b) F(a) for 11 u in [a, b]. Hence by
Lemm 8, if eeh of b nd a is in Is, t], [b a < 6 nd eeh of u nd v is
in [a, b], then

[ IF(b) F(a)]T(u) -IF(b) F(a)]T(v)I

U(b, a)II T(u) T(v)II.

Since Tu is continuous, this lemma follows from Lemma 0.

Proof of part (A) of the theorem. Suppose e > 0. Denote by 6 a positive
number so that if to,..., tn+ is a chain from s to with mesh < 6 and
s0, s, is an interpolation sequence for t0, t,+ then

f dF. T Eo [F(t,+) V(t,)]T(s) [ < /2.
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Denote by 2 a positive number so that if each of u and v is in [s, t] and
u- v < 2,then

V(u, v) < e/[2 + 2U(t, s)].

Denote rain (til,
mesh <

Denote by to,... t+l a chain from s to with
Then,

II ft8 dF. Vu _,i"=o [F(ti+l) F(t)]Vu(ti) II < el2

_< max=0,....,V(t+, t)U(t, s) < e/2.

Hence, [[ [Tu(t) Tu(s)] f dF. Tu I[ < e for every e > 0, that is,

Tu(t) Tu(s) + ft8 dF. Tu
This completes a proof to part (A) of the theorem.

Proof of part (B) of the theorem. Suppose that y is in Do, 0
< 1 and e > 0. Denote by 1 a positive number such that if s _< u _< t,

IIT(u) xll < tilandu <_ v <_ u+il,thenxisinD,. Denote byia
positive number < il so that if each of a and b is in Is, t] and
then V(b, a) < min (e, ti) exp (-U(t, s)).

Suppose that to, t.+ is a chain from s to with mesh < ti. Denote
I -+- F(t) F(ti_l) by J, i 1, ..., n -- 1. Denote

rain (e, il) exp (-U(t, s))

by R. It will now be shown that

II T(t) J 51T(s) - R[exp U(t,s) 1], i- 1,...,n+ 1.

T(t) J T(s)II [T(t) T(s)] [F(t) F(to]T(s)II_
V(h to) V(h to) <_ R[exp V(h s) 1].

Suppose that i is a positive integer < n + 1 and that

11 Tu(t) J... J1 T(s) < R[exp U(t, s) 1].

Since

R[exp U(t, s) 1] <_ rain (e, til) exp (-U(t, s) exp U(t, s) <_ ,
it follows that J+l T(t) and Ji+ Ji J T(s) are defined and that
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T(t+) J+ J... J T(s)

<- M(t+, t)T(t) J+ T(t) -k-11 J+ T(t) J+... J T(s)

[M(t+, t) I]T(t) [F(t+) F(t)]T(t)

+ T(t) J... J T(s)[

+ [F(t+) F(t)]T(t) [F(t+,) F(t)]J... J T(s)

V(t+, t)U(t+, t)

+ R[exp U(t, s) 1] + U(t+a, t)R[exp U(t, s) 1]

R{ U(t+i, t) + [exp U(t, s) 1][1 + U(t+, t)]}

R{[1 + U(t+, t)] exp U(t, s) 1} g R[exp U(t+x, s) 1].

Hence,

V(t) {H=0 [I + F(t,+) F(t,)]} V(s)
T(t+) J+l’" J T(s) R[exp U(tn+, S) 1] < e.

This completes a proof to part (B) of the theorem.

3. An appiication o semi-groups
In this section a connection with semi-groups of transformations is estab-

lished.

COROhRY. If in addition to the hypothesis of the theorem it is true that H
is a linear space and M(t, s) M(t s, O) for 0 s < 1, then there is a
continuous function A from Do to S such that if F(t) tA for 0 < 1, then
A and B of the theorem hold.

Proof of the corollary. If 0 g 5 < 1, denote M(5, 0) by Q(). Note that
D, D0andhenceI(w, s) [0, 1) for allsin [0, 1) andwinD0. Also
note that Q(s)Q (t) Q (s + t) provided that each of s, and s + is in
[0, 1). As in the proof of Lemma 5, if w is in D0,

{= [Q(1/2n) I]}w}:= {n[Q(1/2n)

converges. Denote by A a transformation from D0 to S such that the limit
of this sequence is } Aw. If 0 s < 1 and n is a positive integer, denote
by s the largest integer p so that p/2n s. Again as in the proof of Lemma 5,

+
converges for each point w of D0. Since [Q(s s/2n) I]w 0 as
n , it follows that

0 [Q(1/2n) I] }w s/n , [Q(1/2,.) I] }w sAw as n .
DenotesA byF(s) and ( )A byF(s) for0 g s < 1. ThenFisas
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defined above since 1/2 is the mid-point of I(w, s) for all w in Ds. Hence (A)
and (B) follow. They also are true for F replaced by F1 since Fl(t) Fl(s)
F(t) F(s) for0 <_ s <_ < 1. That A is continuous follows from the
remark preceding the statement of Lemma 9. This completes the argument
for the corollary.

Since D Do for 0 _< s < 1, the definition of Q may be extended to the
nonnegative real axis in the following way" if >_ 1 denote by n a positive
integer so that tin < 1. Define Q(t) to be [Q(t/n)]. Then, Q forms a
semi-group of transformations. The transformation A defined above may
be said to generate Q.
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