A CLASS OF GENERALIZED T'I-GROUPS

BY
MICHAEL ASCHBACHER

This paper generalizes Suzuki’s characterization of T'I-groups. Specifi-
cally the following theorem is proved.

TuEOREM. Let G be a finite group in which the intersection of any two dis-
tinct Sylow 2-subgroups has 2-rank at most one. Let O’ (G)/0 (G) be the smallest
normal subgroup of G/O(G) of odd index. Then O'(G)/O(G) is one of the fol-
lowing:

1) a2-group,

(2) GL:(8), SL:(q), or the perfect nontrivial ceniral extension of A7 by a
2-group, or an extension of rank 1 of such a group,

(8) the extension of a 2-group by Ly(q), Sz(q), or Us(q), ¢ even,

(4) the central product of two copies of SLy(5) with amalgamated centers,
or its extension by an automorphism permuting the copies,

(5) L:(g), ¢ = 3,5 mod 8, or J (11), the smallest Janko group.

The proof of the above theorem is a reasonably straightforward applica-
tion of results of Alperin, Glauberman, and Shult on fusion, plus several clas-
gification theorems. The author would like to thank Professor John Walter
for pointing out several errors in the original version of this paper.

1. kI-groups

Let @ be a finite group. The 2-rank r (G') of G is the number of generators
of an elementary 2-subgroup of G of maximal order if | G| is even; if | G| is
odd, (@) = 0. For k a nonnegative integer, we define G to be a kI-group
if r(G) > k and for any two distinct Se-groups S and T of G, r(Sn T) < k.
If k = 0, Gis a TI or “trivial intersection” group as defined by Suzuki [7].

The following elementary result is essentially Lemma 1 in [7].

Lemma 1. Let G be a kI-group. Then
(1) «H <L Guwithr(H) > k then H is a kI-group,
(2) f H is a normal subgroup of odd order in G, then G/H is a kI-group.

LEmMA 2. Let G be a kI-group, S an Se-group of G, N = NeSand A < 8
such that either r(A) > k or A 13 elementary of rank k = 1. Then

{A’:ge@G, A° < N}= {A® : xz e N}.
Proof. Alperin’s theorem on fusion [1].

Lemma 3. Let G be a 2-nilpotent kI-group. Then either G is 2-closed or
r(@G) =k + 1.
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Proof. Assume the lemma to be false and let G be a counterexample with
H = O(G) of minimal order. Let E be an elementary 2-subgroup of G of
rank &k + 2, and let A = {1, a1, a», a3} be a 4-group in E. If B < E with
r(B) = k 4+ 1 and [B, H] = 1, then for all S;-groups S and T of G,
r(SnT)>r(0:(G)) > r(B) =k + 1, and G is 2-closed. So we can choose
A such that H; = Cx(a;) # H for all &. But E acts on each H;, so by mini-
mality of H, [E, H;] = 1. Thus H = ][] H; is centralized by E, and G is
2-closed.

Levmma 4. Let G be a solvable kI-group. Then either G is 2-closed or
r(@)=Fk+ 1.

Proof. Assume the lemma is false and let G be a minimal counterexample.
Let O = O(G). If O # 1, by minimality of G, G/O is 2-closed, and thus by
Lemma 3, Oy 2 (G) and therefore G is 2-closed. So O = 1.

Let K = 0:(@), S an Sy-group of G, H = 0.2 (G) and E an elementary
subgroup of S with r(E) = k + 2. r(K) < k, s0 r(EK/K) > 2. For
X < Glet X = XK/K. Lete;, 1 < i< 3, be representatives for nontrivial
cosets of a 4-group in E. Let K < H;, H; = Ca (&). E acts on H;, 80
by minimality of G, either EH; = G or EK < EH;. If EH; = G, then
(e:, K) < G, 80 ¢; e K contradicting choice of ¢;. Thus EK < E]]H, = EH.
Asr(EK) >k, [S,H] = 1.

Let H £ M, M /H minimal normal in G/H. Then M /H is a 2-group, so as
[§,H] = 1, M is 2-closed. Thus M < H and G = H is 2-closed.

2. 11-groups

For the remainder of this paper we let G be a minimal counterexample to
our main theorem. Let S be an Se-group of G and N = NgS. We shall
refer to the groups described in the statement of the main theorem
as “known”’.

Lemma 5. A 1I-group which is the central product of known groups, or the
extension of a known group by a 2-group, 1s known.

Proof. Assume H is a minimal counter example. Then O(H) = 1 and
O’ (H) = H. Suppose H is the extension of 4 by a 2-group. Then | H:4 | =
2 and we can take tin H — A to be a 2-element. Suppose ¢ centralizes A.
Then H/O,(H) is a TI-group and H is thus known. For, if T contains ¢ and
is contained in two Se-groups of H, then T = (t) < 0.(H). So ¢ induces an
outer automorphism of A. If A =< L:(¢9) or J(11), ¢ = 3, 5 mod 8, then H
contains a subgroup isomorphic to PGL;(3), a contradiction. If A = SL,(g),
g = e¢mod 4, ¢ = = 1, we can choose ¢ to be an involution inducing an auto-
morphism in PGL,(¢). Then C,(¢) has order 2(¢ + ¢) and does not
normalize an Ss-group of 4 unless ¢ = 3. So H = GL,(3). Similarly 4 =
GL,(3) or the perfect extension of A;. If A is the extension of a 2-group
by a TI-group, let S be a {-invariant S,-group of A. Then (f, N4S) is not
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2-closed, while 7(4) > 1 unless A = SLy(5), a case handled above. Thus A
contains the central product of two copies of SL;(5) as a subgroup of in-
dex at most two. Unless ¢ permutes these two copies we have a contradic-
tion as above.

Next let H be the central product of A and B, with 7(4) < r(B). Neither
A or B is a 2-group by the above. If r(B) > 1, then as A centralizes anS .-
group of B, A is a 2-group. Sor(B) = r(4) = 1. Similarlyif AnB = 1,
A and B are TI-groups and thus 2-groups. So A and B have a common
center. Now if ¢ and b are elements of order four in A and B respectively,
then ab is an involution which must lie in at most one S,-group of H, so a and
b lie in at most one Se-group of A and B respectively. Therefore 4 &~ B =~
SLy(5).

Various classification theorems imply 7 (G) > 1,80 Gis a 1I-group. Clearly
0(@) = 1and O'(@) = G. Further

Lemma 6. If 1 # H < G, then H < 0:(Q).

Proof. Let E = 0;(G) and 1 = H < G with H £ E. By minimality of
G, Hisknown. Let K = C¢H. K # Gsince O(G) = land H £ E.
Thus K is known. Therefore by Lemma 5, G is known.

LemMmA 7. Let z be an involution in Z (S).

(1) If Ce(z) is 2-closed, (°) is known.

(2) If 2¢Z(Q), and t is an wnvolution distinct from z with I = (¢, z) ] 8,
then (t°) is known.

Proof. (1) Let W) = (°: [¢, 2°] = 1). Since C¢(2) is 2-closed and
z2€eZ(S), Lemma 2 implies W is abelian. Thus a theorem of Schult [6] im-
plies (2°) is a central product of known groups, and thus known.

(2) LetZ = (z)andfor X < Qlet X = XZ/Z. ThenT < Z(3). Further
Lemma 2 implies W (I) is abelian, so Shult’s theorem implies (I)° is known and
thus also ().

Lemma 8. E = 0,(G) = 1.

Proof. Assume E 5 1. As G is not 2-closed, () = 1. Let 2 be the
involution in E.

Suppose S containg no normal 4-group. Then 8 is cyclic, generalized qua-
ternion, dihedral, or semidihedral [5, Proposition 9.5]. As r(G) > 1, S is
not cyclie or quaternion. Thus G has more than one class of involutions,
and transfer implies G has a subgroup of index two, contradicting Lemma, 6.

So let (¢, 2) be a 4-group normalin 8. r(E) = 1,s0t¢E. Thus by Lemma
6, G = (t°, and thefore by Lemma 7, G is known.

Let 2z be an involution in Z(S) and C = Ce(2). C is not 2-closed by
Lemmas 6, 7, and 8. By Glauberman’s Z* theorem [2], 2° n S # {2}, so by
Lemma 2, r(Z(S)) > 2. Thus since by minimality of G, C is known, C is
either the split extension of K = 0.(C) by a TI-group H, or C/0(C) is 2-
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closed and by Lemma 4, r(S) = 2 so that Z(S) contains all involutions in
S. Here we use the fact that the only perfect central extensions of a 2-group
of rank one by L:(q), Sz(q), or Us(g), q even, are SL;(5) and Sz (8),
1 <i<3. Alo that an S;-group of Sz’ (8) has a unique central involu-
tion [6].

If r(S) > 2,8 = T X K, T an S:-group of H. Now z is conjugate in
N to ueS — K, while all involutions in T are conjugate in C. Further all
involutions in § lie in Z(S8), so a similar result holds for all of them. There-
fore G has one class of involutions, and N is transitive on the involutions in
S. If T is abelian, it follows from the transitivity of N on its involutions
that S is elementary, and Walter’s classification of groups with abelian
Sz-groups [8] implies G is known. Similarly if 7 is not abelian then it is of
exponent four with elementary center (of order ¢ say) so K is quaternion of
order eight. Thus there are exactly 6¢ elements a of order four with o’ =
where z is the involution in K. It follows that | S | = 6¢(2¢ — 1) + 2¢ =
4q(3q — 1) # power of two, a contradiction.

Therefore S contains exactly three involutions and by a result of
G. Higman [3] is isomorphic to an S:-group of Us(4). But then a result of
Lyons implies G = Us(4).
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