
ON ANALYTIC STRUCTURE IN THE MAXIMAL IDEAL SPACE OFH=(D")

Le Ho (D") denote he complex Bneh lgebr o bounded holomorphie
uneions on he open uni polydise

", C"" ,1 < 1, ,lzl < i}.O [.
The mp (z,, ..., z) f(zx, ..., z) imbeds D s n open subse of he
mximl ideal spe of H(D); so we le M (H, (D) denote he olosure of
D in his spoe. By n nlygio mp into M (H. (D) we mean fungion

F:D

such that ] o F is nlytic in D for every f in H (D), where is the Glfnd
extension of f to M(H (D")). The image of F is clled n nlytic set ia
M (H (D") ). If F is one-one, then F (D’) is m-dimensional nlytic poly-
disc.

In this pper we construct vrious dimensional nlytic polydiscs in
M(H (D) s limits of nlytic mps into D nd compare these in nturl
wy with the nlytic structure in M (H (D) ), the n-fold Crteia product
of M (H (D)). We lso show that only points belonging to the closure of
ero sets of functions in H (D) cn belong to nlytic sets obtained in this
mnner.
The mximal ideal spce of the lgebrH(D) hs been extensively studied,

beaning with I. J. Schrk [13], nd continuing with D. Newman [12],
A. Gleson nd H. Whitney [5], L. Crleson [3, 4], A. Kerr-Lwson [11],
K. Hoffmn [8, 10], nd others. In the pper of I. J. Schrk, it ws shown
that there exist non-trivial nlytic mppings from D into M (H(D))D.
Ans Kerr-Lwson [11] extended the Schrk ide nd showed that "non-
tngentil" nd "oricyculr" points in M(H (D)) lie in non-tribal nlytic
sets. By n lgebric rgument, K. Hoffmn [8] showed that ech non-trivial
Gleson prt in M(H (D)) is 1-dimensional nlytic disc. Shortly there-
fter Professor Hoffmn [10] gve "geometric" method for obtaining the
coordinate mps for the nlytic discs in M (H (D)).
The nturl inductive vehicle for generalization to higher dimensional

polydiscs is the topological tensor product @ H(D), where @ is the
completion of the MgebrMc tensor product @ in the uniform norm. How-
ever, it is now well known (see [1]) that @ H(D) H(D’). Hence,
the lifting of 1-dimensional results becomes more thou routine.
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I. Preliminaries
M(H (D) ) is compc Husdorff space with topology as follows: net

{,} converges to 0 if and only if , (f) converges to 0 (f) for all f in H(D).
If e M(H (D)), then the Gleason part containing , denoted P (), is
defined as

P() {b e M(H(D’*)):p(,b) < 1}
where

p(, &) sup {I](&)l’fg(D’),ifl <_ 1,]() 0}
is the pseudo-hyperbolic distance from to . This defines an equivalence
relation on M(H (D’)). Parts are important in the investigation of analytic
structure since any analytic set through is contained in the Gleason part
P () (see [2, p. 130]).

Using the Schwar inequality it is easy to show that p restricted to D" has
the following useful formula.

LEMMA 1.1. For (z, ..., z,), (w, ..., w,) e D",
Zk Wk

p z z, w w. max<<,
1 w

Another application of the Schwar inequality, in combination with the
preceding lemma, gives a generalization of Pick’s theorem to higher dimensions
(see [7, p. 239]).

THEOREM 1.2 (Pick). If f e H (D") with Ill <- 1, then

p ff (z, ..., z. ), f( ..., ) ) <_ p ( (z ..., z. ), Gv, ..., ,
for all (z z, ), (wx w, e D".

We shall often use the resulting corollary.

COOLAaY 1.3. Let {ax} and {#x} be nets in D indexed by the same set and
converging in M(H (D) to and b respectively. If p(ax, x) --+ 0, then

b.

Proof. If(ax) f(#x)l <- 2p(f(ax),f(#x)).

In [10] the problem of determining which subsets of M (H.(D)) support
analytic structure is shown to be directly related to the concept of an interpo-
lating sequence. A countable subset, {a,}, of D is called an interpolating
sequence if there exists > 0 such that

for all k. In particular, un interpolating sequence is u Blaschke sequence
(See [9, p. 197].)
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THEOREM 1.4 (Hoffman [10]). For a e D, let L(z) (z + a)/ (1 + az).
As a net {} in D converges to a point q in M (H. (D the corresponding
maps L, converge in M(H (D )) to a map L,, which is analytic, and maps
D onto the part P (). P () is non-trivial if and only if belongs to the clos-
ure of an interpolating sequence. In this case L is one-one and p(z, w)
p (L (z), L (w)). Finally if e M (H (D) ) is a point of a non-trivial part
and S and T are subsets of D such that is an accumulation point of both, then

inf[p(s,t)" seS, teT] 0.

We shall need the following results on interpolating sequences. The first is
a special case of a more general result on Banach algebras (see [9, p. 205]). A
more direct proof is indicated in [10, p. 89].
THEOREM 1.5. Let S c D be an interpolating sequence for H (D ).

Then the closure of S in M(H (D is homeomorphic to the ech compactifi-
cation of the natural numbers.

THEOREM 1.6 (Hayman [6]). Let {a} be an interpolating sequence for
H.. (D ). Then there exists a sequence of functions {f.} in H (D and a con-
stant c > 0 such that f (a, ) ’ (gronecker delta) and f (z ) < c
for all z D.

By (R) H..(D) we denote the smallest closed subalgebra of H.(D’)
which contains all functions of the form F (zl, ..., z,) f(z) for some j
and some choice offin H. (D). Since the maximal ideal space of @ H. (D) is
M (H. (D))’, there is a natural continuous map

r M (Hc (D ) ----) M (H (D

defined by r (#) # restricted to (R)x-iH (D). It is easy to see that parts
in M(H(D)) are products of parts from M(H (D)), and if e P (#),
then r()e P (r(#)). We shall use the r map to relate M (H (Dn)) and
M (D

II. Analytic Structure over D- X M(H(D)) X D-Following the lead of Hoffman, it is natural to search for analytic maps into
M(H (D) as limits of analytic maps into D. Since the family of analytic
functions on D is closed under bounded pointwise convergence, the set of all
analytic maps from D into M (H (D) is a closed subset of M (H (D) )’’;
therefore, any map obtained as a limit of such mappings is analytic.
In this section we completely settle the question of analytic structure over

D- X M(H (D) ) X D-, 1 _< k _< n, with the aid of the following theorem.

TEOREM 2.1. r is one-one over D- X M(H (D)) X D-, 1 < k _< n.

Proof. Let e M (H. (D") and

Dk-1r() (zo m, Zo e X M (H. (D ) X D’-.



426 WAYNE CUTRER

Let lax} --* m. It suffices to show that

I(zo, o, zo)} -* .
Let (Zo, a, Zo)}, j A, be a converging subnet of (zo, ax, Zo)} and choose

{((w,),, (w=),, ..., (w.),)}, i eB,
converging to . By considering the product ordering on 2 A X B, we
can assume that we huve a eommon indexing set. Then (w)} --* m and
{a} --+ m for e 2. Let f eH (O") with f _< 1, and assume that e > 0.
Then there exists o e 2 such that >_ o implies

o (((w), (w_,)), Zo) < e/6,

p(((w+x), ..., (w,)n), z) < e/6,

If(z, (), zo m ff (zo zo))[ < /6,

and , (f (zo z f (zo z < /3.
It follows that for >_ o,
If((,), "", (.)) :(zo, ,, z’o)

<_ 20 (f (wl )n (w,, ) ), f (zo (w )n Z’o ) + 2e/3
<_ 2 (((), ..., (_), (w+), ..., (w,)), (zo, zo)) + 2/3

by Theorem 1.2.
to ; therefore,

Thus each converging subnet of (Zo, ax, Zo)} converges

(zo, , zo)} - ,
and r is one-one over D-1 X M(H (D)) X D"-.
COROLLARY 2.2. Each f e H (D’) has a bounded continuous extension to

D-I X M(H (D ) X D’-.
COROLLARY 2.3. Let M (H.. (D") and

Dk_lr ( (zo m, Zo e X M (H.c (D X D"-.
Then P () is an n-dimensional ((n 1)-dimensional) analytic polydisc
whenever P (m is non-trivial (trivial).

Proof. Assume P (m) is non-trivial und let lax} -* m. Then

(zo, ,, zo)} -by Theorem 2.1. Define Lx D- X D X D"- -+ D" by

Lx (z, w, z’) (L, (z), La (w), L,o, (z’)),
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where
L,0 (z) D*- --+ D*- nd L,0’ (z’) D-* --* D-*

are defined in each coordinate by the maps of Theorem 1.4. Since is one-
one over

D-1 X M(H(D)) X D-,
it follows that Lx L" D M(H(D)), where L is nlytic,

L(D P (),

ndL is one-one since @ H(D) separates points on L(D). If # P ()
and () (w0, m*, w0), then m P (m) nd

(w0, w’0) D- X D"-.
D- D- w*By Theorem 1.4 there exist (z, z) X nd D such that

L (z) w0 L (z’) w0 nd Lx (w*) m*. Hence, L, (z, w*, )
since is one-one. Thus L is onto P (). In the cse P (m) is trivial, repet
the rment using ax in the k-h coordinate of .
We remark here that the L mps in the preceding corollary re homeomor-

phisms into the metric topology of M(H (D)). From this fct it cn be
shown that M(H (D))D contains homeomorphic copies of M (H (D) ),
k<n.

III. Anmlyfic structure over non-rlv]ml pmrts
In this section we show that in general there is analytic structure over non-

trivial prts in M(H (D)). In prticulr, it is shown that v is not one-one
over non-tribal prts in M (H (D)). This results in sheeting of nlytic
sets over these prts.

THEOREM 3.1. Le e M (H (D) ) and () (m, ..., m) where k of
the parts P (rex), P (m) are non-rivial. Then P ( contains a k-dimen-
sional analytic polydisc.

Proof. Let {((ax)x, (a)x, ..., (a)x)} nd suppose P(mx),
P (m), P (m) re non-trivial. Define

Lx (zx, z) (L,x (z), L(z)),

where Lx --> L as discussed in Theorem 1.4. By choosing an pproprite
subnet, there exists

L," D P ()

with L nlytic nd L, limx. We see that L is one-one by considering
the tensor lgebr @ H(D) on L, (D).

THEOREM 3.2. Let e M (H (D) and ( (rex, m m) where
each par P (m) is non4riviaI. Then if m ecl (a)} :_x, with each sequence
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(a).} interpolating, it follows that belongs to the closure of
((),, ..., ())},

where (l 1,) Z$- and Z+ denotes the set of all nonnegative integers.

Proof. Let
((,), ..., (,))} -.

Then ()x} m and m c1{().}7 with (a),} interpolating.
By Theorem 1.4 we can choose a subnet {(a)x} m such that
p((a)x, ()x) 0 for each k. Then

p(((a,)x, "", (a,)x), ((?,)x, "", (?)x)) maxp((a)x, (?)x) 0.

Hence, ((a)x, (a)x, (a,)x} by Corollary 1.3.
In order to show that is not one-one over (m, m, ..., m.) where at

least two parts P (m), P (m), P (m.) are non-trivial, we turn our atten-
tion to sets of the form

(("), ("), "",

where (l, l, ..., 1.)eZ$ and each sequence (a),}= is interpolating.
The following theorem is a higher dimensional analoe of Theorem 1.5.

THEORE 3.3. If {(a)} x is an interpolating sequence in D for each
k 1, n, then the closure of ( (a)r, (a), ..., (a,).) in i(U (D)
is homeomorphic to the Cech compactification of Z$.

Proof. It suces to show that disjoint subsets of

{((-), (-), "", (-.).)l
have disjoint closures in M(H (D’)). To show this let S be any subset of

((-), (-), ’",

By Theorem 1.6 there exist sequences {(f),}_x . H(D) such that
(f). (,) or each , ..., n .a ET- ff), (z)[ < or z n.
Now if " Z$ C is any bounded function, then

f(z, ..., z,) E,,.+,()(/) (z) (h).(z,)
belongs to H(D") since bounded pointwise convergence gives uniform con-
vergence on compact subsets of D’. But

f ( (-), ..., (,.)) , (, ..., ).
Therefore by a suitable choice of , f is 0 on S and 1 on the complement of S.
Hence, S and ((ax), (a,))}kS have disjoint closures in M (H(D)).
COROLLXRr 3.4. Let (m ..., m,) e M(H (D ) with at least two parts

P (mx), ..., P (m,) non-trivia and outside of D. Then is not one-one
over (m, ..., m,).
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Proof. Suppose P(ml) and P(ms) are non-trivial with ml e cl {al,
ms e cl {t} where both sequences are interpolating. Let {a} -+ ml with

e r and {tm} -- ms with 7 A. It suffices to show that {(, m)},
(k, 7) e 1 A, does not converge in M(H (Ds)). Since

el {a} tN, { }"Nel

by Theorem 1.5, and cl (a=, fl)}x (N X N) by Theorem 3.3, this
amounts to showing that (m,, m.)}, (X, )e r X A, does not converge in
(N X N). To see this it suffices to exhibit two subnets of (n,, m)} which

have disjoint closures in (N X N). For the subnets take

and
S {(nx, ms)" (X, )er A but nx > ms}

T {(nx,ms)" (X,,)el hbutnx <ms}.
Then T n S 0, and hence S and T have disjoint closures in fl(N X N).
But the limit of any converging subnet of {[a,,x, )} maps under r to
(ml, n).
Theorem 3.1 showed that we always have analytic structure over non-

trivial parts in M (H (D)). The preceding corollary shows that for parts
Q P (m) X P (m) of dimension k > 2, where at least two non-
trivial parts are outside of D, there are many analytic polydiscs P of dimension
k with (P) Q. It is a conjecture that these analytic polydiscs are actually
parts in M(H (D) ).
The following theorem will show that in general r is not one-one over one-

dimensional parts in M(H (D)).

THEOREM 3.5. Let M(H (D’) ) with belonging to the closure of the
sequence ( (al), ..., (a.))l = where at least one of the sequences /(a)}
is interpolating in D. Then P ( contains an n-dimensional analytic polydisc.

Let ((a)x, (a)x)} --* and suppose (a)t} = is inter-
Define Lx" D --* D bypolating.

Lx(Zl, z,) (L(,1)x(z), L(,)(z)

(zi +___()
1 -t- (ai)x zi

We can assume that r is such that

Lx ---. L D ---M (H (D" ).

Then L limx Lx is analytic with L (D’) c P () It is clear that L is
one-one in the first coordinate because the tensor algebra separates points in
this coordinate. Thus fix z w. Then it is easy to check that L() (w) is
interpolating and by Theorem 1.6, there exists a sequence {ft} in H (D)
such that

f (L(,o (w)) and ’_ f (z) < c,
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for all z e D. Define

Then h eH(D) and

Hence, L is one-one.
Suppose P() is trivial, e cl {}, and {x} . If {a} is any imer-

polating sequence, then (ax, x, x ,)
Let be any cluster poim of (a,, )}. Then the previous theorem
applies to show that P () contains a n-dimensionM polydisc. In particular,
the map

(z, z) limx (a, Lx (z), ..., L(z))

is one-one and (lim (ax, Lx (z,), ..., Lx (z.)) (, , , ..., ), where
ax} . Thus v is in general not one-one over one-dimensional parts in
M (H.(D))’, and in this particular example collapses an n-dimensional
analytic polydisc onto u one-dimensional analytic disc. In fact, since every
neighborhood of contains a disc whose hyperbolic radius can be made
arbitrarily large (see [11, p. 754]), it is not difficult to see that there is a
sheeting of n-dimensional analytic polydiscs over this one-dimensional part.

iV. Aotic stroctore over trivio] prt
In this section we give a condition for analicity in M (H. (D") which

permits the construction of a one-dimensional analytic disc whose projec-
tion under v is a point in M (H. (D))’.

TEoE 4.1. U {.} is a sequence in D and e, /2, then
every belonging to the closure of

belongs to a one-dimensional analytic disc.

Proof. Assume that the sequences
coordinate positions respectively. Let

convergeto. Since (z z, z z, is holomorphic onD
converges in M (H. (D)), to say . In [11] it is shown that such an angle of
approach to the ut circle requires that P () be non-trivial. Thus, there
exists an interpolating sequence .} such that e cl {}. Let

z A(z.z,)](z,, z.)
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and

Then
L(z) ((al),...,L(z),.",L(z),’.., (a.)).

[fo Lx (z)]’ (0) A’ (I x S) (L, (z)L, (z))’ (0)

A’ ([/x [)[ (/x + x)/212 (1

We proceed to show that this expression is bounded away from zero in-
dependent of X. We have L.,,(z) (z + (.)/(1 + if.z). Let .f,(z)

AoL.,,(z). Then

Thus
{’,(x)} --* and L,(x)-- Lt.

and
(z) -/(z) X o L, (z),

since {,} is interpolating. It follows that

f’(O)[ limxf:(O) > O.

Now choose a disc V {z" izl < e*} such that If’(z)! */2 andA f’
uforMy on V. Therefore, there exists M such that k M implies
f’(z) y: (z) < ,/4 rot an z w. It follows that Ida(z)! ,/4 for an
zeVand X M. Now consider

U {m’li(m) < e} wheree < e*.
In [10, p. 86] it is shown that {z" A (z) < e} c U is the union of pairwise
disjoint domains R1, R., Ra, with A mapping R biholomorphically onto
the disc of radius e about the origin. Also

R. c a(. ;,) {z’,(z, ,,) < ,}

where < ( v)/(1 ). Thus choosing < e* implies

But U is a neighborhood of . Therefore, for large ),, I/x [e U.
titular, i/x R(x). This means there exists zx D,. such hat

Then

In par-
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Now zx < e* nd x L,,x, (zx) gives

Therefore,
(] o L, (z))’ (0)

_
c* > 0

which means that L, is one-one in a neighborhood of the origin.

TI,oRE 4.2. Suppose x x,r b P (b and r is such that x ---+ .
Then ILx (z)} ---+ for all z e D. In particular, if b e 0 (Ho (D)) (ilov
boundary of H(D ) ), then e O (H (D ).

Proof. If/Lx(z)} - for some z eD, then {Lx(z)} - for all zeD\{0}.
Thus there exists f eH(D) such that {f (x)} --+ r and /f (Lx (1/2))1 --* s
where r s. Let

Then F eH(D) and F (fx)} --+ and F (Lx (1/2)) --+ . This contradicts
the fact that {Lx(z)} -- for 11 z eD. In [9, p. 179] it is shown that
# e 0 (H (D)) if and only if # (B) 0 for every Blaschke product B. From
the above construction, it is clear that (B) 0 for every Blschke product
B; hence, 0 (H (D)). Notice that this procedure also gives the result
that {#x} converges without taking subnet.
Theorems 4.1 and 4.2 show how to construct a one-dimensional analytic

disc in M(H (D) which maps under r to a point in M(H (D)) with a
trivial part. Moreover, we can choose this point to lie in the ilov boundary
O (M (H (D )" (O (H (D ) )’*.

V. A necessary condition

In the preceding sections we saw examples of analytic sets in M(H(D)
obtained as the limit of analytic mappings into D. We present here a
necessary condition for a point of M(H (D)) to belong to an analytic set
obtained in this manner. This is a modification of an argument employed
in both [10] and [11].
T,oR. Let F be any non-constant map from D into M (H (D’*) which

lies in the closure of the set of analytic maps from D’ into D’*. Then each point
in the range of F lies in the closure of the zero set of a function in H (D").

Proof. Let F (0) and {Fx} be a net of analytic maps from D into D
such that limx Fx F. Then F is analytic and hence F (D) c P (o). Since
F is non-constant, there exists f eH(D) such that )() 0 and )o F 0.
Let

U {eM(H,(D"))’[](#)[ < e,j 1, ...,/and]() 0},
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wheref eH(D). Then there exists r, 0 < r < 1, and net index ),o such that

Fx(D) U for all),> Xo
nd

D (z,, ..., zm)’! (z,,..., z,,,)[ < r}.

Choose (z,...,z)eDwithz 0 andof(z,...,z) 0.

and

Let

z__0 z_0)T(z) Z,zZ., ’zZ
V {z eD T(z) eD}.

Then V is an open connected subset of D with f o Fx o T converging uniformly
to ]o F o T on compact subsets of V. Then since ]o F o T has a zero at 0
and is not identically zero, it must be that f o Fx o T has a zero on V for all
sufficiently large indices X. The image of these zeros are zeros of f and they
lie in U which is a basic neighborhood of
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