ON ANALYTIC STRUCTURE IN THE MAXIMAL IDEAL SPACE OFH ..(D")

BY
WaYNE CUTRER!

Let H.,(D™) denote the complex Banach algebra of bounded holomorphic
functions on the open unit polydisc

D = (G, o) et 2] <o < 1)

The map (21, <+, 2.) = f(z1, **+, 2,) imbeds D" as an open subset of the
maximal ideal space of H.(D"); so we let M (H.(D")) denote the closure of
D" in this space. By an analytic map into M (H,(D")) we mean a function

F:D" > MH.D")

such that f o F is analytic in D™ for every f in H,,(D"), where f is the Gélfand
extension of f to M (H,(D")). The image of F is called an analytic set in
M (H,(D")). If F is one-one, then F (D) is a m-dimensional analytic poly-
dise.

In this paper we construct various dimensional analytic polydiscs in
M (H,(D")) as limits of analytic maps into D" and compare these in a natural
way with the analytic structure in M (H, (D))", the n-fold Cartesian product
of M(Ho(D)). We also show that only points belonging to the closure of
zero sets of functions in H,(D") can belong to analytic sets obtained in this
manner.

The maximal ideal space of the algebra H,, (D) has been extensively studied,
beginning with I. J. Schark [13], and continuing with D. Newman [12],
A. Gleason and H. Whitney [5], L. Carleson (3, 4], A. Kerr-Lawson [11],
K. Hoffman [8, 10], and others. In the paper of I. J. Schark, it was shown
that there exist non-trivial analytic mappings from D into M (H(D))\D.
Angus Kerr-Lawson [11] extended the Schark idea and showed that “non-
tangential” and “oricycular” points in M (H, (D)) lie in non-trivial analytic
sets. By an algebraic argument, K. Hoffman [8] showed that each non-trivial
Gleason part in M (H., (D)) is a 1-dimensional analytic disc. Shortly there-
after Professor Hoffman [10] gave a ‘“‘geometric” method for obtaining the
coordinate maps for the analytic dises in M (Ho(D)).

The natural inductive vehicle for generalization to higher dimensional
polydises is the topological tensor product ®» H. (D), where ®y is the
completion of the algebraic tensor product ®" in the uniform norm. How-
ever, it is now well known (see [1]) that @y H,(D) = H,(D"). Hence,
the lifting of 1-dimensional results becomes more than routine.
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l. Preliminaries

M (Ho(D")) is a compact Hausdorff space with topology as follows: a net
{0a} converges to ¢ if and only if ¢. (f) converges to ¢o(f) for all f in H,, (D").
If o e M(H,(D")), then the Gleason part containing ¢, denoted P (¢), is
defined as

Po) = {y e M(Ho(D")) : ple,¥) < 1
where

ple,¥) = sup {|f@)| : fe Ho(D™), |f| £ 1,(e) = 0}

is the pseudo-hyperbolic distance from ¢ to ¥. This defines an equivalence
relation on M (H,(D")). Parts are important in the investigation of analytic
structure since any analytic set through ¢ is contained in the Gleason part
P(p) (see [2, p. 130]).

Using the Schwarz inequality it is easy to show that p restricted to D™ has
the following useful formula.

Another application of the Schwarz inequality, in combination with the
preceding lemma, gives a generalization of Pick’s theorem to higher dimensions
(see [7, p. 239]).

Trrorem 1.2 (Pick). If f e Ho(D") with | f| < 1, then
P(f(zl’ 7zn)7f('w1a ’wn)) < P((Zl, e ,Z,.), (wl, 7wn))
forall (21, -+, 2n), (Wi, -, w,) e D"

We shall often use the resulting corollary.

Lemma 1.1, For (21, -+, 2a), (w1, +++,w,) eD",

rk — Wk
1 — Z,we

p((21y o+ yzn), (Wi, ~+ v ,wn)) = maXlSkSn{

CoroLLARY 1.3. Let {a} and {B\} be nets in D" indexed by the same set and
converging in M (Ho(D")) to ¢ and ¢ respectively. If p(an, Br) — 0, then
¢ =19.

Proof. |f(en) — FB)| < 20(f(an), F(B)).

In [10] the problem of determining which subsets of M (H, (D)) support
analytic structure is shown to be directly related to the concept of an interpo-
lating sequence. A countable subset, {a,}1, of D is called an interpolating
sequence if there exists & > 0 such that

ar — Qp

1 = = Hk#fn P(akyan) >0
- O Op

k#n

for all k. In particular, an interpolating sequence is a Blaschke sequence
(See [9, p. 197].)
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TueoreMm 1.4 (Hoffman [10]). For a e D, let Lo(z) = (¢ + a)/ (1 + az).
As a net {a} in D converges to a point ¢ in M (Ho(D)) the corresponding
maps La, converge in M (H,(D))® to a map L,, which is analytic, and maps
D onto the part P (p). P (¢) is non-trivial if and only if ¢ belongs to the clos-
ure of an interpolating sequence. In this case L, vs one-one and p(z, w) =
p(Ly(2), Ly(w)). Finallyifo ¢ M(Ho(D)) is a point of a non-trivial part
and S and T are subsets of D such that ¢ is an accumulation point of both, then

inf [p(s,t) : seS,teT] = 0.

We shall need the following results on interpolating sequences. The first is
a special case of a more general result on Banach algebras (see [9, p. 205]). A
more direct proof is indicated in [10, p. 89].

THEOREM 1.5. LetS = {a,}T C D be an interpolating sequence for H (D).
Then the closure of S in M (H,(D)) is homeomorphic to the Cech compactifi-
cation of the natural numbers.

Tarorem 1.6 (Hayman [6]). Let {as}T be an interpolating sequence for
Ho (D). Then there exists a sequence of functions {f}1 in H.,(D) and a con-
stant ¢ > O such that fi(a.) = 87 (Kronecker delta) and D_ju|fi(e)| < ¢
forall zeD.

By ®x H.(D) we denote the smallest closed subalgebra of H.(D")
which containg all functions of the form F (21, -+, 2,) = f(z;) for some j
and some choice of fin H,, (D). Since the maximal ideal space of ® x Ho, (D) is
M (H., (D))", there is a natural continuous map

m: MH.D")) = MH.D))

defined by = (¢) = ¢ restricted to @1 Hw(D). It is easy to see that parts
in M(H,(D))" are products of parts from M (H,(D)), and if ¢ eP(p),
then = (¢) e P(w(¢)). We shall use the = map to relate M (H.(D")) and
MHoD))"

Il. Analytic Structure over D" X M (H(D)) X D"

Following the lead of Hoffman, it is natural to search for analytic maps into
M (H,(D")) as limits of analytic maps into D". Since the family of analytic
functions on D" is closed under bounded pointwise convergence, the set of all
analytic maps from D" into M (H.(D")) is a closed subset of M (H.(D"))"";
therefore, any map obtained as a limit of such mappings is analytic.

In this section we completely settle the question of analytic structure over
D' X M (H,(D)) X D"™*,1 < k < n, with the aid of the following theorem.

THEOREM 2.1. 7 is one-one over D' X M (H.(D)) X D"™*,1 < k < n.
Proof. Let e M (H,(D™)) and

7(p) = (20,m,2)eD"™ X M(H.(D)) X D"*
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Let {an} — m. It suffices to show that
{0, o, 21’))} —>¢.
Let { (20, a;, 20)}, j € A, be a converging subnet of { (%0, ox, 20)} and choose
{(@1)i, (we)i, -+ (wa)i)}, 7eB,

converging to ¢. By considering the product ordering on @ = A X B, we
can assume that we have a common indexing set. Then { (wx)s} — m and
{as} — m for 6eQ. Let fe Ho(D") with || f]] £ 1, and assume that € > 0.
Then there exists § e 2 such that § > § implies

p(((wi)s, + -+, (Wi-1)s), 20) < £/6,
p((Wis)s, ++ 5 Waks), 20) < /6,
lf(zy (wk)5, z(;) - m(f(zoy : 7z(l)))| < 8/6’

and
| m(f e, 5 20)) — flzo, n,20) | < /3.

It follows that for & > é,

[fC@n)s, -+, @a)s) — f (20, s, 20) |
< 20(f((wa)s, -+ 5 Wa)s), f(oo, @a)s,20)) + 2¢/3
< 20((@s, vy @ia)s, (Wiga)s, =<5 (Wads), (20, 20)) + 2¢/3
<e

by Theorem 1.2. Thus each converging subnet of { (20, an, 2)} converges
to ¢; therefore, ,
{ (ZO: Qan, 20)} -,

and = is one-one over D** X M (Ho(D)) X D"*.
CoRrOLLARY 2.2. Each feH,(D") has a bounded continuous extension to
D' X M(Ho(D)) X D*™*.
CoroLLARY 2.3. Letpe M (H,(D")) and
7(¢) = (20, m, 2) eD"" X M(Ho(D)) X D"

Then P(¢) s an n-dimensional ((n — 1)-dimensional) analytic polydisc
whenever P (m) is non-trivial (trivial).

Proof. Assume P (m) is non-trivial and let {ea} ~»m. Then
{ (20, 0, 20)} =0
by Theorem 2.1. Define I : D¥* X D X D" - D" by
In(z, w, 2') = (L (2), Lay (W), Ly (2')),
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where
L,G): D' —->D"' and L, ('):D"*—D"*

are defined in each coordinate by the maps of Theorem 1.4. Since = is one-
one over

D" X M (H,(D)) X D",
it follows that Ly — L,: D" — M (H,(D")), where L, is analytic,
L,(D" < P(p),

and L, is one-one since ®y H, (D) separates points on L,(D"). If ¢ eP (o)
and 7(¥) = (wo, m*, wo), then m* ¢ P (m) and

(wo, wo) e D¥™ X D"*,

By Theorem 1.4 there exist (2, /) eD*" X D" and w*eD such that
L, (2) = wo, Ly (') = wo and La, (w*) — m™*. Hence, L, (2, w*, #) = ¢
since 7 is one-one. Thus L, is onto P (¢). Inthe case P (m) is trivial, repeat
the argument using o, in the k-th coordinate of Ly .

We remark here that the L, maps in the preceding corollary are homeomor-
phisms into the metric topology of M (H,(D")). From this fact it can be
shown that M (H,(D"))\D" contains homeomorphic copies of M (H,(D")),

kE<n
lll. Analytic structure over non-trivial parts

In this section we show that in general there is analytic structure over non-
trivial parts in M (H,,(D))". In particular, it is shown that = is not one-one
over non-trivial parts in M (H,(D))". This results in a sheeting of analytic
sets over these parts.

Tueorem 3.1. Let e M (H,,(D")) and w(p) = (my, «++, m,) where k of
the parts P (my), - -+, P(m,) are non-trivial. Then P (¢) contains a k-dimen-
stonal analytic polydisc.

Proof. Let {((au)x, (aah, -+, (@ah)} — ¢ and suppose P (m),
P(my), -+, P(m) are non-trivial. Define

L)\(zlx ttty zk) = (L(am (21), R L(ak)x(zk))’

where L a;), — Lmn; a8 discussed in Theorem 1.4. By choosing an appropriate
subnet, there exists

L,: D" — P(p)

with L, analytic and L, = lim\ Lx. We see that L, is one-one by considering
the tensor algebra ®3 H,(D) on L, (D").

TaeoreM 3.2. Letpe M (Ho(D")) and w(p) = (m1, ma, -+, m,) where
each part P (my) s non-trivial. Then if my € el { (@ )n} ne1 , With each sequence
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{ ()}t interpolating, it follows that ¢ belongs to the closure of
{ ((al)ll P (an)lz)}’

where (I, -+, 1,) e Z¥ and Z,. denotes the set of all nonnegative integers.
Proof. Let
{ (('Yl))‘ y "ty ('Yn))‘)} —> .

Then {(vin} — mu and mgecl {(ox).}T with {(a)a}T interpolating.
By Theorem 1.4 we can choose a subnet {(axh} — mi such that
p(laxh, (vun) — 0 for each k. Then

p(((ah, «=+y (@), ((yuhn, +5 (van)) = maxkp((ah, (ve)h) — 0.

Hence, { (i), (2, -+, (@an} = ¢ by Corollary 1.3.

In order to show that = is not one-one over (m;, ma, -+, m,) where at
least two parts P (my), P (ms), + -+, P (m,) are non-trivial, we turn our atten-
tion to sets of the form

{ ((al)ll ’ (0‘2)12 y "0 (a")ln)}

where (i, L2, -+, l.) eZ} and each sequence { (ai).}n=1 is interpolating.
The following theorem is a higher dimensional analogue of Theorem 1.5.

TueoreEM 3.3. If {(o)i}i=1 s an interpolating sequence in D for each
k=1, ---,n,then the closure of { ((1)1, , (@)1, "+, (on)1,)} tn M (H,(D™))
18 homeomorphic to the Cech compactification of Z% .

Proof. It suffices to show that disjoint subsets of

{ ((al)h ’ (a2)12 y Tty (Oln)l,,)}
have disjoint closures in M (H,(D")). To show this let S be any subset of

{ ((0(1)11 ’ (a2)12 y " (Oln)l,,)}-

By Theorem 1.6 there exist sequences {(fi)n}ne1 in Hwo(D) such that
(fi)n(e;) = 87 foreach k = 1, -+-, n and Zﬁ_ll (fk),,(z)l < ¢ for all zeD.
Now if u: Z} — C is any bounded function, then

fla, vy 2m) = 2w u @) -+ Gadia(ea)

belongs to H,(D") since bounded pointwise convergence gives uniform con-
vergence on compact subsets of D". But

f((al)lu ) (Oln)l,,) = pull, -, L)

Therefore by a suitable choice of , fi8 0 on S and 1 on the complement of S.
Hence, S and { ((e1)s,, * -, (@n)1,)}\S have disjoint closures in M (H,(D")).

CoroLLARY 3.4. Let (my, *++, my) e M (Ho (D))" with ot least two parts
P(m), --+, P(m,) non-trivial and outside of D. Then w s not one-one
over (my, «++ , My).
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Proof. Suppose P(m;) and P(m:) are non-trivial with m;eecl {an}7 ,
ma ecl {B,}7 where both sequences are interpolating. Let {ay,} — m; with
Nel and {Bm,} — me with yeA. It suffices to show that { (o, Bm,)},
(\, v) eI’ X A, does not converge in M (H.,(D*)). Since

ol {an)T = BN, cl{B.T =B8N

by Theorem 1.5, and cl { (@, Bm)}xxr = B(N X N) by Theorem 3.3, this
amounts to showing that { (mx, m,)}, (\, v) ¢eT' X A, does not converge in
B(N X N). To see this it suffices to exhibit two subnets of { (n , m,)} which
have disjoint closures in 8(N X N). For the subnets take

S ={(m,my): (\ v)el X Abutm > m,}
and

T = {(m,my): \v)el X Abutma < m,}.

Then T n S = @, and hence S and T have disjoint closures in B(N X N).
But the limit of any converging subnet of { [on,, Bm,)} maps under = to
(ml ’ mfﬁ)

Theorem 3.1 showed that we always have analytic structure over non-
trivial parts in M (H.,(D))". The preceding corollary shows that for parts
Q = P(my) X +++ X P(m,) of dimension k > 2, where at least two non-
trivial parts are outside of D, there are many analytic polydiscs P of dimension
kwith #(P) = Q. TItis a conjecture that these analytic polydiscs are actually
parts in M (H,(D™)).

The following theorem will show that in general = is not one-one over one-
dimensional parts in M (H., (D))",

Tueorem 3.5. Let ¢ e M (H,(D")) with ¢ belonging to the closure of the
sequence { ((a1)1, -+, (o)1)} 7=1 where at least one of the sequences { (o)1} 1m1
18 interpolating in D. Then P (¢) contains an n-dimensional analytic polydisc.

Proof. Let {((oa)r, *++, (aal)} — ¢ and suppose {(o1)i}7~1 is inter-
polating. Define L, : D" — D" by

L)\(zl, ) zn) = (L(al))\(zl)7 e ?L(an))\(zn))
=<zl+(at_1)>l zn+(an))\>.
1+ (aha 1 + (an)r2a
We can assume that T is such that

In = L, : D" »M (Ho(D")).

Then L, = lim, I, is analytic with L,(D™) € P(e) It is clear that L, is
one-one in the first coordinate because the tensor algebra separates points in
this coordinate. Thus fix zz = w. Then it is easy to check that L), (w) is
interpolating and by Theorem 1.6, there exists a sequence {fi}7 in H (D)
such that

i, w)) =87 and 2 ia|fil)] <e
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for all ze D. Define
hk(zh cee ,2,,) = Efl(zl) <‘z—k'-:‘(a‘—k‘)—>

1 - (ak)z 2k
Then h; e H, (D™) and

hk(L(a1)x(w)) te ’L(ak))\(zk‘)7 ey L(an)x(z")) = L(ak)l(ﬁ) — ‘(ak))‘ = %
1 — (o) Lapya(2e)

Hence, L, is one-one.

Suppose P(y) is trivial, ¢ ecl {8x}1, and {A} — ¢¥. If {an}7 is any inter-
polating sequence, then {(ax,B8x,B: - -+, B} is a subnet of {(am,Bm, "+, Bm)}1.
Let ® be any cluster point of { (@m ,Bm, *** ,8m)}. Then the previous theorem
applies to show that P (®) contains a n-dimensional polydise. In particular,
the map

(22, +++, 22) — limy (o, Lﬁx(z2)’ ooy Ly (2a))

is one-one and  (limx (o, Lg, (22), -+ +, L, (24)) = (o, ¥, ¥, -++, ¥), where
{on} — ¢. Thus 7 is in general not one-one over one-dimensional parts in
M(H,(D))", and in this particular example = collapses an n-dimensional
analytic polydisc onto a one-dimensional analytic disc. In fact, since every
neighborhood of ¢ contains a disc whose hyperbolic radius can be made
arbitrarily large (see [11, p. 754]), it is not difficult to see that there is a
sheeting of n-dimensional analytic polydises over this one-dimensional part.

IV. Analytic structure over trivial parts

In this section we give a condition for analyticity in M (H.(D")) which
permits the construction of a one-dimensional analytic disc whose projec-
tion under 7 is a point in M (H,(D))".

TeEOREM 4.1. If {B.}T s a sequence in D and B, — €”, 0 = ==n/2, then
every ¢ belonging to the closure of

{((al)h ey By e :El; Y (an)l)}olo-l
belongs to a one-dimensional analytic disc.

Proof. Assume that the sequences {8;}T and {fi}7 are in the w and v
coordinate positions respectively. Let

{((al))w ey By "'75)\) ) (an))\)}

converge to¢. Since (21, - -+ ,2n) — 24 2, i8 holomorphic on D", {8 B = | B Iz}
converges in M (H. (D)), to say . In [11] it is shown that such an angle of
approach to the unit circle requires that P (¢) be non-trivial. Thus, there
exists an interpolating sequence {'y,,}io such that ¢ ecl {v,}7. Let

]

'y” 7" _ o = »
A(Z) = H1|’Y |1 — 'y” ’ f(zla ’zn) A(zuzv)




ANALYTIC STRUCTURE IN A MAXIMAL IDEAL SPACE 431

and
LM(z) = ((al)"n ) me(z), Y L&m(Z), ttty (an)m)'
[foLn(2)) (0) = A’ (| 81 |") (s, (2) L3, (2))' (0)
= A" (BB + B)/22( — |8/

We proceed to show that this expression is bounded away from zero in-
dependent of \. We have L, ,(2) = (¢ 4+ v.)/(1 4 Fn2). Let fu(2) =

AoL, (2). Then

Then

{’Yn()\)} — ¢ and L'/u()\) — Ly.
Thus

A@) = @) = Ao Ly (),

and

720 = @ = |4 @) | = Tl Gn = %)/ A = T0m)|
= Hk#np(')’n, 'Yk) =0
since {v,}1 is interpolating. It follows that

|7©0)] = |limfr(0)] >8> 0.

Now choose a dise V = {z:|z| < £*} such that | f(2)| > /2 and f\ — f'
uniformly on V. Therefore, there exists N\o such that N > )\ implies
|f/(2) — fx(2)| < 8/4 for all ze V. Tt follows that |fa(e)| > 8/4 for all
zeV and A > N. Now consider

U={m:|Am)| < e wheree < &

In [10, p. 86] it is shown that {2 : |A ®) | < &} € U is the union of pairwise
disjoint domains Ry, R:, Rs, + ++ with A mapping R, biholomorphically onto
the disc of radius & about the origin. Also

R, C A(yn;n) = {2:p(2 va) <n}
where n < (6 — 9)/(1 — &9). Thus choosing n < ¢* implies
R, C A ;e*) = In,(Des).

But U is a neighborhood of y. Therefore, for large A, Iﬁxlz ¢U. In par-
ticular, | Bx|* € Raay . This means there exists 2\ € D.» such that

Ly, (&) = l B ‘2'

Then
(o) | = |4 a | Ao tme D s gy
[1 4+ vayan 2
It follows that

o ’ |1+ Yaur Iz.f.ﬂx + B _ 2
| (foIn(2))(0) | = T T P & 2 2(1 = | &)
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Now |a| < &* and | B |* = Ly, () gives

PRNINEIPPY *
1— |8 S 14 [ vaen lzx|>1"€.
1 - l'Yn(X)l - 1- Tn\) - 2

Therefore,
| FoLe@))Y 0)| 2 ¢* >0

which means that L, is one-one in a neighborhood of the origin.

THEOREM 4.2. Suppose {Ahrer — ¢ = P(¥) and T 4s such that {B} — ¢.
Then {Lg, (2)} — ¢ for all zeD. In particular, if ¢ ed(H,D)) (Silov
boundary of He(D)), then ¢ €0 (Ho(D)).

Proof. 1If {Ls, (2)} - ¢ for some z ¢ D, then {L;z, (2)} + ¢ for all z ¢ D\{0}.
Thus there exists fe H,(D) such that {f(B\)} — r and {f(Lz (3))} — s
where r # s. Let

F(z) = f(2).

Then F e Ho(D) and {F (8\)} — 7 and {F (Ls, (%))} — 5. This contradicts
the fact that {Ls, (2)} — ¢ for all zeD. In [9, p. 179] it is shown that
Y ed(Ho(D)) if and only if ¢ (B) # 0 for every Blaschke product B. From
the above construction, it is clear that ¢ (B) # 0 for every Blaschke product
B; hence, ¢ ¢ d(H,(D)). Notice that this procedure also gives the result
that {B\} converges without taking a subnet.

Theorems 4.1 and 4.2 show how to construct a one-dimensional analytic
disc in M (H.(D")) which maps under = to a point in M (H, (D))" with a
trivial part. Moreover, we can choose this point to lie in the Silov boundary
O(M(Hs(D))") = @Hx(D)))"

V. A necessary condition

In the preceding sections we saw examples of analytic sets in M (H.,(D"))
obtained as the limit of analytic mappings into D". We present here a
necessary condition for a point of M (H.(D")) to belong to an analytic set
obtained in this manner. This is a modification of an argument employed
in both [10] and [11].

TuroreEM. Let F be any non-constant map from D™ into M (H,(D")) which
lies in the closure of the set of analytic maps from D™ into D*. Then each point
in the range of F lies in the closure of the zero set of a function in H,(D"™).

Proof. Let ¢ = F(0) and {F\} be a net of analytic maps from D™ into D"
such that lim\ F, = F. Then F is analytic and hence F (D™) C P(p). Since
F is non-constant, there exists f ¢ H,, (D") such that f(¢) = 0 and fo F # 0.
Let

U= {¢eM(H°°(D”)) . lj:(‘l’)l < €’j = 1’ e ,la'ndfj(‘f’) = 0}’
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where f; e H,,(D"). Then there exists r,0 < r < 1, and net index )\ such that

DY) c U forallx >N
and
D:‘"= {(21’ ""zm):l (zl,"',zm)l <1'}.

Choose (21, -+ ,2%) e Dy with 2 =< 0OandfoF (21, - -+ ,20) = 0. Let
T(z) = (%iozg: cee ’?'(,zfn>

21 21

and
V = {ze¢D: T(z) eDDy}.

Then V is an open connected subset of D with fo Fyo T converging uniformly
to foFoT on compact subsets of V. Then since fo FoT has a zero at 0
and is not identically zero, it must be that fo Fyo T has a zero on V for all
sufficiently large indices . The image of these zeros are zeros of f and they
lie in U which is a basic neighborhood of ¢.
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