A CHARACTERIZATION OF S,,(2)

BY
KENNETHE YANOSKO

Yamaki [6], [7] has characterized the simple groups having the centralizer
of an involution isomorphic to the centralizer of a transvection in S,,(2).
His result is that such a simple group must be isomorphic to S,,(2), A1, or
Ayi. But a Sylow 2-subgroup of S,,(2) contans three central involutions
whose centralizers are nonisomorphic. The purpose of this paper is to prove
the following result.

THEOREM. Let &, be an involution in the center of a Sylow 2-subroup of
Spe (2) such that & is not a transvection. Let H, be the centralizer of ty in Sp,(2).
Let G be a finite simple group containing an tnvolution t such that Ce(t) ~ H,.
Then G =~ Sy, (2).

The notation we use is standard. For example:

{x,y, --+} The set of elements x, y, -+
(, ¥, ---) The group generated by z, y, - - -

[z, y] x Y ey

Fod vy

T~gy z is conjugate to y in H

clg () The set of elements of H which are conjugate to « in H.

O» (@) The largest normal odd order subgroup of G.
Ue(X, 2’) The set of odd order subgroups normalized by X which intersect
X trivially.

1. Preliminary lemmas
Let Gy be a group generated by the set of elements
fu, 0|1 <i<9,1<5<3)
with the following relations (for brevity we shall write u;; = u; u;):
(1.1) ui=1 forl<i<9
[ui,uj] =1 fora <4,7<9
(um)2 = Uz
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U Uz Us
U4 U4 U4 Usp
Us Up Us Us
Ug Ug Ue Ug
Uy 7 Ust Uy
Us Uses Ug Us
Uy Uy Uaseo Uy

w?-——-l for1 <j;j<3

]
-

(wy we )s = (w2 ws )4 (w1 ws )2

I
[y

(w1 )’ = (weus)® = (ws up)’®

w We Ws

(1 - Uz (51
Us Ug U1 Ug
Us Uz - Uq
U Ur Us Uz
Us Us Us Us
Us Us Us Us
Uz Uy U Us
Us Us Ug Us
Uy Uy Us i

The tables indicate the result of conjugation of the element on the left by the
element at the top.
We then have the following [6], [7]:

Go =2 8, (2),
To = (u; | 1 £ 7 £ 9)is a Sylow 2-subgroup of Gy,
Z(To) = (us us),
Coy(us) = (To, wa, ws), Coy(us) = (To, wr, ws), Cay(uss) = (To, ws)
Our theorem may be restated as follows:

TrEOREM. Let G be a finite simple group containing an involution ¢ such that
H = Cq(t) is tsomorphic to one of

(@) Cay(us)

(b) Ca, (use)-
Then G ~ 8,,(2).

In the proof we will identify the elements of H with the elements of Cg, (us)
or Cg, (uss), and the relations (1.1) between elements of Cg, (us) or Ce, (uss)
are assumed to hold in H. In particular, we have ¢ = wus or { = s, and
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T = (ui|1 < 7 < 9) is a Sylow 2-subgroup of H. We begin with a detailed

study of important subgroups of T'.
Lemma 1.1. (1) Z(T) = (us, us),

T, = <u2 y Usy Us, Us, u78>, T” = <u5>.

@) S = (us, us, Us, ur, Us, us) s the unique elementary abelian subgroup

of T of order 2°.

(iii) There are eight subgroups lying between S and T':

X | X | Z(X) X’
K, = (8, w1) 27 (ua , us , g , Us) (ua , use)
Ks = (8, ui2) 27 (U , Us , Ug , Urse) (Uss 5 Use)
K3 = (8, us) 27 (ue , us , Ug , Us) (us , Use)
Ky = (8, uxn) 2 (us , us , Uar , Us) (us , Usaems)
Ks = (8, us) 2 (us , ue , Uz , Us) (us , ws)
Ly = (8, ur, us) 28 (Us , us , Us) (us , us , Ug)
Ly = (8, uz, us) 28 (us , ue , us) (us , Use , Um)
Ly = (8, us) 28 (us , us) (ua , us , Us , Uts)

Gv) T contains exactly eight self-centralizing elementary abelian subgroups

of order 2°:
X Nr(X)
M = (ui, uz, us, Us , Us) T
M = (us, s, Us , Us , Us) T
M3=(u1,u4,us,uo,up) Ll
My = (uiz, us, Us , Us , Urse) L,
My = (us, us , Us , Uz, Us) L,
Mo = (uss, us , Us , Uar , Us) L,
M7= (ua, us , Us , Us , Us) w1 <i1Z8)
Ms = (use, Usr , Us , Ug , Us) (|1 <4< 8)
Proof. (i), (ii), (iii), are in [6]. (iv) is easily computed from the rela-

tions between the u,’s. We observe in addition that S, L;, Ly, L; are weakly
closed in 7, since each is isomorphic to no other subgroup of T'.
Lemmas 1.2 through 1.5 correspond to Yamaki’s Lemmas 2 through 5

in [6].

Lemma 1.2. If two elements of S are conjugate in G then they are conjugate

in N¢(S).

Proof. This will follow from Lemma 2 in [6] once we determine that T is a

Sylow 2-subgroup of G.

Lemma 1.3. Neg(T) = T. In particular T is a Sylow 2-subgroup of G.
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Proof. Nq(T)normalizes Z (T') and permutes the subgroups { K; | 1<4< 5},
and hence the subgroups { K | 1 < 4 < 5}. Since ug appears in exactly two of
the subgroups K , us in exactly three, and us in none, it follows that N¢(T')
centralizes Z (T'). Hence Ng(T) = Nu(T) = T.

Lemma 14. No two of us, use, us are conjugate in G.

Lemma 1.5. Let W = Ng(S)/S. Then
(i) |90y @)| = 2%, 2°-3, 2°-3-5, 2°.3.7, 2°-8%.5, or 2°-3%-5.7.
() |Ox@)| =38,0<k<4

Proof. With respect to the basis
{Uarso , Userss , Us , Uses , Uaso , Uses)
the action of u, and u; on 8 is given by

1 1

and

1 1

Hence the proof of Yamaki’s Lemma 5 gives 91/0y (M) ~ Ds, PGL:(q),
L:(q), or A7, and since | 9| | | GL (2) I we have (). Now wy ~ upin N¢(S)
80 we get

|0y @) | = | C(w) n 0 @) )| Cus) n Op () ].

Since | C'(u:) n Oy ()| = 1, 3, or 8* for s = 1, 2, and since | 9| | | GLs (2) |
we get | Oy ()| = 3%, 0 < k < 4. Note that if u; ~ us in N¢(S) then
I 0y (fﬂ)l = 1or 33.

‘We now prove a few more miscellaneous lemmas which will apply to both
cases (a) and (b)

LeMMmA 1.6, (1) e » ug and us ~ us .
(i) us » use and us ~ ug .

Proof. (i) Assume uj = u where 2 e Ne(S) and v = us or us. Then
Li € C¢(u). Let Ty be a Sylow 2-subgroup of C¢(u) containing L. Then
there exists y € Cq(u) such that Ly € Ty. By weak closure, 8 = S and
L = L. Thus zy permutes the groups Ky, Ks, Ks. Now us e K; and
Ka but us e K1 and ug e K5 only. Since 4% = « this is impossible.

(ii) This may be proved in the same way as (i).

LemmA 1.7.  The following mappings are automorphisms:
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() o1:Cey(us) — Cg,(us) given by

ui—ui, 1 <18, up—> U, Wr— Wi, Ws— WsUs;
(i) on: Cg,(us) — Ca,(us) given by

W= U, Ui— Ui, 2159, W —wu;, Ws— Ws;
(i1) as: Cg,(uss) — Ca,(uss) given by

Uy — U, Ui— Ui, 2L1L59, wy— ws

(v) ou:Cg(us) — Co,(us) given by
ui—ui, 1157, us— uss, Up— Usp, W2—> Wz, Ws—> Wsls;
(v) a5 :Cay(us) — Ca, (us) given by
ui—ui, 10T, ug—Uss, Up—>Usg, Wo—> Wz, Ws—>WsUs.

Proof. We check that each of these mappings is consistent with the
defining relations (1.1).

Lemma 1.8. Assume that H is contained in a subgroup Gy of G such that
G122 8,,(2) and such that us ~a, us and U ~q, Uz ~ g, Uss -
Then We (S, 2') s trivial.

Proof. Let K be an odd order subgroup of G normalized by S. Then by
the theorem of Brauer and Wielandt [5] we have
K = Cx(us)Crx (us)Cx (uss) = Cx (tss)Cx (wrs)Cr (Uagrs).

Since either H = Cg(us) or H = Cgq(uss) it follows that K € G,. By the
structure of S,,(2) (see [7, Lemma 13]) we must have K = {1}. Thus
We (S, 2') is trivial.

2. The case H ~ Cg,(us)

In this section we let H = (uy, wy, ws |1 < ¢ < 9) with the relations (1.1)
and assume that H is the centralizer of u; in a simple group G.
H has 13 classes of involutions:

Table 1
z lus’u«‘uu ‘u4|u4e \V«s!usv Iuw Ium‘u«s lu1|uu |’uu

| elg(z) NS | 1} 3‘ 3 ‘ 6| 6 l 4] 4 \ 12‘12’ 12] OI 0 | 0

Now | Na(S)| = 2°-3. For seS we write
n(s) = | Na(S): No(8) n Ce(s)| = | cte(s) n 8.

The following table gives the possible values of n(us) corresponding to the



386 KENNETH YANOSKO

possibilities given in Lemma, 1.5 and subject to the restriction 1 < n(s) < 63:

Table 11

’ [ 02(0) |

l fﬂ,/Oz (91) | 1 3 32 33 34
28 — 1 3 9

28.3 1 3 9 2 —
28.3.5 5 15 45 —_ —
28.3.7 7 21 — - —
28.32.5 15 45 — — —
28.32.5.7 —_— _— — — —

Lemma 2.1. It is false that us ~ up ~ s .

Proof. Assume us ~ Uy ~ usy and assume u = us where x ¢ N¢(S). Then
Ki is a 2-subgroup of H, so there exists y ¢ H such that Ki¥ € T. Thus
K = K;for 1 < 1 < 5, and since u, ¢ K1 we must have us ¢ K. Hence
¢ = lor2 If<= 1then xy carries the coset {us, U, Uses, Usseo} Of K; in
Z (K1) onto {ugs, Uss , Us , Usg} . DBy assumption us ~ sy ~n Ussee . By Lemmasg
1.4 and 1.6 we must have uife = s, and then usd = 4. This contradicts
Lemma 1.6 since s ~a wsg. Similarly if ¢ = 2 then

]
{u9 y Udg 5, Uses » ’u4seo} v
is the coset

{’Ms, Us, Ug, u456}

of Kin Z (K»). This time ui%, must be ws 80 that 3% = usg. Since s ~u s
this contradicts Lemma 1.6, and the lemma is proven.

Lemma 2.2. n(us) &£ 0(3).

Proof. By Table I, if n(us) = 0(3) then us ~ uy ~ ug contradicting
Lemma 2.1,

It follows from Table II that n(us) = 1, 5, or 7.
LemMma 2.3, n(us) = 1.

Proof. Assume n(us) = 1. Then Ng(S) = Ng(S) and so there is no
fusion in G between H-classes of S. Now by a transfer theorem of Thompson
[3, Lemma, 5.38], u is conjugate in G to an element of L,. But every involu-
tion of L, is conjugate in H to an element of S, and 80 uy is conjugate in G to
an element of S. In particular, M;, a Sylow 2-subgroup of Cx(uy), is not a
Sylow subgroup of Cg(uw). Hence there exists an element z ¢ G\H nor-
malizing M.

Table III
u [ us | us ’ Use l ua | Uas

oty (u) N M, | {us} I {use} | {use} , {us , was} | {use , Usss}
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Now if  normalizes any one of the sets {us}, {us, Uss}, {Usg, Usse} then x e H.
So & must fuse these sets with the three sets

Cly(ul) nM; , clg(um) n M, , clg(um) nMs;.
But then z normalizes both {us} and {uss} so that x ¢ H, a contradiction.
LEmMA 2.4, n(us) # 5.

Proof. Let n(us) = 5. By Table I, either us ~ ug or ug ~ ugy. Assume
us ~ ug. Then there exists a 2-element z ¢ G\H normalizing K; and inducing
an automorphism of order 2 on Z (K;) and centralizing u,. Since

cle(us) N Z (K1) = {us, us, Uses}

we have us = uw. Then x centralizes uspe = Us Ui Up. Lemma 1.6
shows that us ~ ug and so, since  normalizes K1, u§ = us. Then we get
Uls = Ugp, Us = Usse, and Usg = Use. Since us ~g Uss and Ugy ~g Usy We have
Us ~ Ug , Ug ~ Uasg , Us ~ Usg , Usg ~ Usp. By Lemma 1.6 u, is not conjugate to
Ug , Usg 5 OT Usg , and by hypothesis is not conjugate to us. Now

I (Clg(%g) U clg(u49)) n SI = 18,

and | cte (us) n S| = n () divides | No(8)/8| = 2°-3-5. We must have, there-
fore, that us ~ ws. By Lemmas 1.4 and 1.6, us is not conjugate to us, us,
or us. If usse ~ w then by Table I,
n(us) = 3+ 6 +4 =13 1 2°-3-5,
a contradiction. Hence
| N6 (S) : Na(S) n Co(use) | = n(uss) = 3.

But N¢(S)/S >~ PGL;(5) by Lemma 1.5 and thus has no subgroup of index 3.
Therefore us ~ uy. Similarly we can show us ~ use , and therefore n (us) = 5.

LemMmA 2.5. There exists an element w ¢ G whose action on Ly vs the same as
that Of Ws .

Proof. By Lemmas 2.4 and 1.6 and Table I we have us ~ us. There exists
weG such that uf = usand LY = L. Then Ky = K;and Ky = K.. It
follows that us = w4 and ugs = wss, and hence us = us. Now since

| cta(ug)n S| = 3

and since N¢(S)/S =~ L, (7) has no subgroup of index 3, us must be conjugate
to one or more of the elements uy , Usy , Uso , Usss , Uss . Butn (ug) = | cle (ug) n S|
must be a divisor of | Ns(S)/8 |, 50 by Table I the only possibility is n (ug) = 7;
that is, ug ~ up Or ug ~ Use. Since the automorphism oy of H in Lemma 1.7
interchanges ctx (uy) and cla (us ), we can assume, without loss of generality,
that ug ~ uy. Since Z (K;)” = Z (K3) we have

ug € Z (K3) n cle(ug) = {us, Us, Uses) .
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We have from above that uy 5 us. If uy = uges we can replace w by wu,
Hence we may assume us = ug. Similarly

ug € Z (K1) ncla(ug) = {ug, s, Useo}.
If us = s we can replace w by wu, ; and hence we may assume ug = ug.
Finally,
Ursy € Z(Kz) ncle(ug) = {ue, Wrsy » u4se7so}.
If wrse = Uaserso then u7 = User ~guss. Since uy ~ g us ~ us , this is impossible.

Hence u7ss = urg, and thus u7 = wz. Now the action of w on S is completely
determined. In particular we have

Us ~ Us, Ug ™~ Uy, Use ™ Uag ~ Usg, Usg ™~ Usss ™~ Uss .
The H-classes of involutions of K;\S and K;3\S are
{ux » Urg y Usse ume}, {15, Urss , s , 'um} ’
{19 , Urde , Une , Unsen , Uaso , U1so , Unases , Undso}

and
{W,Wh"hm,%&e}"’uﬂ {uﬁ4,m45,m)u256}~uu)

{uwa, U458 » U24s68 5 Uaes , U2s , Uoses um,um} ~ Usy .

Since us * use * Usp * us we must have uz ~ use and hence ug ~ uy or us ~ Uz .
But the automorphism a; of H in Lemma 1.7 interchanges ¢tz (u,) and cta (uss)
80, without loss of generality, we may assume us ~ u;. Then

U1 € {Us, Uss , Uasg , Unase) -

Now S is complemented in T by (w1, us, us), 80 by a theorem of Gaschiitz
[1], S is complemented in N (S). We may assume that w lies in a complement
of 8, and since w’ ¢ C¢(S) = S wehave w’ = 1. Now if 4y = uss replace w
by wuz , if ur = wae replace w by wug , and if uy = uase replace w by wurs .
Then we get uf = uz, and it is still true that w* = 1. Hence also uf = u;.
The lemma is complete.

LeMma 2.6.  Let w be the element defined in Lemma 2.5. Then we may assume
(i) (ww) =1,
(i) (ows)' =1,
(i)  (ww)® = 1.

Proof. (1) (wus)®eCe(Ly) = (us, us, us). Hence Iwua| = 3 or 6.

If | wus| = 6 then
(wus)’ € (us , Us , us) N Cow, us) = (ue).
We can replace w by wus, and hence (wus)® = 1.
(i) (wws)*eCo(M1) =M,. Hence|wws| =4o0r8. Assume|wws|=S8.
Then
(wws)* € My n Co(w, ws) = (trus , Us)-
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Now | (w, ws)| = 16 so there exists yeG such that (w, ws)’ < T. Let
(wws)’ = rs where 7 € (uy, us), ¢ S. Then (rs)® = r’s’s where ©* = 1,
(rs)* > 1. Hence r* = us, and we have

(rs)' = (uas's)® = [fur, wal, [, slle T” = (us).

Thus (wws)* ~ usand 80 (wws)* = uws. Nowin the dihedral group (w, ws) we
have w; ~ U5 w3 and so

Unzes Ws ~ W3*"® = Uy ~g Us .
However,

ugwsa
(u1245 ws)“*? = Unser ~r U ~ Uso

a contradiction. Therefore, (wws)' = 1.
(iii) (wiw) €Ce(S) = S. Hence |wyw| = 3 or |wyw| = 6. Assume
|wiw| = 6. Then
(wyw) eS8 n Colwy, w) = (Ussr, Usso).

Now in the dihedral group (w;, w) we have w ~ (w;w)*w; and so w is con-
jugate to one of the elements wssr Wy, Usse Wi, OF Usserse 1. But

U0y

(wgrwn) = Uws ~g Us ~¢ U, (UsspW1)

ujw —
Vo= Ugey ~a U ~a Usp,

and
Uw
(Uaseres W1) ™" = Urieo ~& Ute ~ Usp -

On the other hand, by (i), w ~ us ~g us ~¢ us, a contradiction. Therefore,
(wy w)’= 1, and the lemma is proven.
Since w satisfies the same relations (1.1) as we, we have proved:

Levma 2.7. Let Gy = (H, w). Then Gy =~ S,,(2).

Now since N¢(S) G, all fusion of involutions occurs in G;y. In order to
prove that Gy = G, we wish to show that Gy contains the centralizer of each
of its involutions.

LemMA 2.8. Cq(uss) = (T, wy).
Proof. Let x € Co(uss) and assume that 4" ¢ T. Then
ug = useuﬁé{us, Uses , Us, Usey , Ussy, Userss uuso}-

The only possibility is s = us and hence us = 45. By Glauberman’s Theorem
[2], we must have
us € Co(Ce(use)/Ox (Co(uss))).

But 8 € Ce(uss) so by Lemma 1.8, we have ug e Z (Co(uss)). Hence
Co(use) & Coluss, us) & H,
and the lemma is proven.
Lemma 2.9. Co(use) = (S, w1, wy).
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Proof. K, is a Sylow 2-subgroup of Cg(us); if not, then geCg(us)\K1
normalizes K; and hence K;. But then geCq(u) S Gy, a contradiction.
Conjugating by wwy we get K; is a Sylow 2-subgroup of Cs (ugr). Assume that
for some z € C'¢(ug;) we have uge Ks. Then

U7 = Ug Ugr € {Uz , Uars , Usro , Uarg , Usso , Udsso)
and the only possibility is u7 = u;. Hence us = ug, so by [2],
us € Ca(Cq(uer) /0y (Co(ue))),

and so as in Lemma 2.8 we get Co(ugr) & Co(ur). Conjugating by wyw,
we get Co(us) & Co(us) and the lemma is proven.

Lemma 2.10. Cq(ug) = (T, w, ws).

Proof. Since (T, w, ws) = Clg, (us) it is sufficient to prove that Ce (us) S Gi.
Assume that there exists geCge(ug)\Gi. Then 77 is a Sylow 2-subgroup of
C¢(ug) and does not lie in G;. Let T; be a Sylow 2-subgroup of Cg(us)
such that T, $ Gy and |T1 n Gll is maximal. Let xeCg, (ug) such that
(Tl n Gl)x c T, and let yeNle((Tl n Gl)z)\Gl. Let T = T Then
T & Giand | T nGi| = | T1n G| is maximal. Let I = TnG. Itis clear
that ugeI. We prove that wus ¢ I: if us eI then uf el and uf centralizes i ;
since the centralizer of every conjugate of us in Gi lies in Gy, we get T Gy,
a contradiction. But now it follows that every involution of I is conjugate
to ug: if 7€l such that

teclg(us) U clg(uss) U cla (us)

then ueCq(é) S G, so that weT n Gy = I, a contradiction. Since the
conjugates of ug in T are

{ue y Us y Uses , Ug , Udeo , Utsy u456789}7

we get that u, is the only involution in I. Assume that I contains an element
rs of order 4 where 7 € (uy, us) and seS. Then ug = (rs)* = +*[r, s|. Since
[r, s] € S we have that r is an involution in (u;, us) and so ug = [r, s]e K i for
some 7. Since this is not the case, I must be elementary abelian, and thus
I = (ug). Now let z be the central involution in the dihedral group (us, uf).
Since #z centralizes us, ze¢ G1. But the 2-group (I, 2, u¥) does not lie in Gy
and intersects G1 in (I, z). By maximality of l Tnoy | we get z e I and hence
2z = ug. But in the group (us, u¥) we have either us ~ usz or ufy ~ us2,
and 8o either us ~ ugs Or Usy ~ Uss. In either case we have a contradiction,
and the lemma is proven.
Now we can prove part (a) of the theorem. Since

Cq(us) = Ca, (ug) > Ca, (us)
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It follows from Yamaki’s Theorem [7] that G ~ Ay, A, or S, (2). Since G
contains four classes of involutions, we must have G >~ S,,(2).

Or, more directly, since we have proven that Gy contains the centralizer of
each of its involutions, it follows (see [7, Lemma 20]) that G = Gy ~ S,,(2).

3. The case H ~ Cgq,(us)

In this section H = (u;, w3| 1 < 7 £ 9) with the relations (1.1) and H is
assumed to be the centralizer of uz in a simple group G.
H has 21 classes of involutions:

Table IV
z 1 Use | us ‘ Ug i us uss Us ‘ Ugs wr | um
leg@ NS | 1 | 1] 1| 2| 2 2 | 2 4] 4
Uy | Use l Uss | Wiso i Ugs ’ Ute l usto | Uer | Uem l w | ws | wwe
4 ' 4 ‘ 4 | 4 ‘ 4 , 8 I 8 4 4 , 0 0 0

This time | Nz (S)| = 2°. Again writing
n(s) = |Na(S) :N¢(8) n Ca(s)| = lclg(s) n S|

we get the possible values of 7 (us):

Table V
| 9/04(90) | . el
2 1 2

2.3 3 —

28.3.5 15 —
28.3.7 21 -
2.32.5 45 -
28.32.5.7 — -

Here we are assuming that 4y ~ uz in Ng(S) so that by Lemma 1.5,
|02: (91)[ = 1 or 3°. We will not refer to Table V until after this fact is
established in Lemma 3.4.

LeMMA 3.1.  Etther uss ~ Usg OF Us ~ U .

Proof. By a Transfer Theorem of Thompson [3], ui is conjugate in G to
element of L, and hence to an element of 8. Therefore, Ms is not a Sylow
2-subgroup of Cg(uw). Let e G\H, zeN¢(Ms). We have:



392 KENNETH YANOSKO

Table VI

v clg(v) n Ma
Us {us}
Ug {ue}
Use {uu}
Uy {ua , uas}
Uge {u“ ) utﬁo}
Uy {uﬁ ) u“9}
Uag {wao , ues}
Usy {uso ) uum}
Ussy {unso » 'usoo}
U {ur, wwe, Uise , Unese)
Uss {ws , wes , U1e , %rae}
Urg {u1s , Uise , Ures , Unase , Uises , Utes , Un4569 , Unsse}

We observe that [ [jecagwmnasy = 1 for v = i, uis, and up. Hence if
cle(ugs) n M3 © Cln(use) u Cln('bh) U Clﬂ(uls) u ch!(’“do)’

then [ ecigsenus ¥ = uss and 80 uis = uss, a contradiction. Thus wuss is
conjugate in G to one of us, Usg, Us , Usg , Use , Uy . By Lemma 1.6, ugs = us .
If ugs ~ wsg the lemma is proven. Hence we assume ug is conjugate to u for

we{Uy, Usp, Uso, Usso!-

Now Cr(u) = K, and there exists y @ such that 4’ = ug and K{ < T.
Since u ¢ K1, uss ¢ (K%)' so K¥is K5, Ku, or Ks. Since by Lemmas 1.4 and
1.6, uss * us and usg ~m wgs *~ Us, we must have u§ = us. The lemma is
proved.

LEmMMA 3.2. () use ~ wp and us ~ us.
(11) K1 ~ Ka .

Proof. By Lemma 3.1, either us ~ usp Or Us ~ us. Suppose uss ~ Usg .
Then there exists x € G such that ujs = uss and Cg(uyg)® = L S T. Then
L; = Ly by weak closure and since us ¢ (Ks)® we have K3 = Ky or K. Since
K, ~g K; we have K; ~ K; and thus us ~ us. Similarly, if 45 ~ u, there
exists ¢ G such that w3 = us, L1 = L;, and hence K = K;. It follows that
Use ™~ Uge »

LemmMA 3.3. There exists an element w e G whose action in My is the same
as that of w, .

Proof. By Lemma 3.2, there exists weG such that LY = L, us = us,
and KY = K;. If K5 = K, we can replace w by wus, so that without loss of
generality we may assume K3 = K;, and hence us5 = us. Now w normalizes
Z (L) = (us, us, ug) and by Lemma 3.2 it follows that ug = ug. Since w
permutes the self-centralizing elementary abelian subgroups of L, of order
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2°, namely, M1, M., M;, M,, and since M3 C Ky, Ms € K,, M. S K;,

we must have MY = My, My = M,,and My = M;. Thus
ugeMn‘lMs = (ul,m,us, ug>

and, since us ~ 44 ~g Uz, we have us ~ uy or 4. 'The automorphism o of H
in Lemma 1.7 interchanges ctz(u;) and clz(uis). Hence without loss of
generality we may take us ~ u;. Then

ur € (My n M)\Z (L1)) n clo(us) = {uz, Uss, Uz, Uase)-

If w7 18 uzs , Uass , OF Uzse then we may replace w by wuy , wug , or wuz respec-
tively. Thus we may assume that uf = w.. Similarly

w
uy € {Uy, Una, Utse , Unase} -

If ug i wise OF uss We may replace w by wus 80 we may assume that uy is u
or Uu. If uy = uw then uiz = w and ugs = Uws. Since U ~g Uns, We
geb Us ~ Uy ~g Ure ~ Ugs ~ & Usg , Which is impossible by Lemma 1.6. Hence
uy = w, and the lemma is proven.

LevmMa 3.4. There exists a subgroup N of G containing H such that
N~ CGo (uﬁ)

Proof. Let w be the element of Lemma 3.3 and let N = (H, w). Then
N normalizes M, and by Lemma 3.3, the action of N on M, is uniquely de-
termined. Since Cx (M) = Ca(My) = M;, the structure of N/M, is uni-
quely determined. Now M, is complemented in T by the subgroup (us, uz,
us , up) and 8o, by the theorem of Gaschiitz [1], M1 has a complement C >~ N /M,
in N. Since M, is abelian, the action of C on M, is uniquely determined, and
thus the multiplication table of N is uniquely determined. But in Gy we
have (Cg, (uss), we) =~ Cg, (us), and so by uniqueness N = Cg, (us).

Henceforth, we let N = (u;, wz, ws| 1 < ¢ < 9) with the relations (1.1)
and take H = (u;, ws|1 < ¢ < 9). We now have:

Table VII
x |etw(z) N S|
Use ~ Usg ~ Uts 3
Us ™~ Ug ~ Uy 3
Ug 1
Ug ~ Uy 6
Uss ~ Usg 6
ur 4
Urs ~ U7y 12
Ugr8 ~ UGT 12
Usy ~ Ussy ~ U ~ Uty 12
Ugr 4
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‘We now prove a series of lemmas concerning the fusion of N-classes of in-
volutions in G. Since we now have u; ~ us in Ng(S) we may apply the in-
formation in Table V. Since G is assumed to be simple, Glauberman’s
Theorem [2] implies that 4 much fuse with some other element of T, and
80 by Lemma 1.2, No(S) ## Ny (S). Itfollows thatn(uss) = 15,21, 27, or 45

Lemma 3.5. It is false that uss ~ us ~ Uss .

Proof. Assume uss ~ ug ~ uss. 'Then there exists z ¢ G such that us = use
and Cr (us)® = Ls € T. Then L7 = L, and so = normalizes

Z(Ly) = (us, us, Us).
By assumption
cte(use) N Z (Ly) = {use, Us, Uses, Uss , Uss},

and 50 us = us and ug = ug. But then ugs = us, a contradiction.
LEMMA 3.6. We may assume uss ~ Uz .

Proof. Since n(us) = 15, 21, 27, or 45 it follows from Table VII and
Lemma 3.5 that wg is conjugate to one of the elements wuz, us, Or Uy .
Assume uss ~ uss. Then there exists z ¢ G such that uss = us and Cr(ug)® =
KiCT. ThenK; = K;, K, or Ks since ug ¢ (K3)’, and hence us = us.
Then uiss = ue, and, since ws ~g uss, we have a contradiction. Therefore,
Upg ~ Ugy OT Ugry . Since the automorphism o4 in Lemma 1.7 interchanges cty
(un) and ety (ugn ), Wwe may assume uss ~ U .

Levmma 3.7. We may assume us ~ us and uss ~ Uss.

Proof. We first show that us is not conjugate to any of the elements
Wag , Uz , Ugy , O Ugrs . Assume u” = ug and Cr(u)® C T for some z € G and some

U € {Uss, Uz, UgT , Uets) .

Then Cr(u) = K; or K and since K3 ~ K» ~ K; and Ky ~ Ksin N we may
assume Cr(u)® = Kz or Ks. Since us ~ Uss ~ U ~ Usss by Lemma 3.6,
we must have us = us. Then (uus)® = uss. But since u ~g uus for each
we{ug, U7, Ugr, Ugrs}, this is a contradiction. Now, by Table VII, the only
possibilities for the fusion of wg are ug ~ ug or ug ~ uss. Since the automor-
phism o5 in Lemma 1.7 interchanges cly (us) and cly (uss), but fixes cly (ur)
and cly (usr ), we may assume ug ~ ug. Finally, let x ¢ G such that us = us and
Cr(us)® = L € T. Then by weak closure L; = L, and so z normalizes
Z(Is) n Ly = (us). Hence uls = uss .

LemMA 3.8. Now n(us) = 21, n(ug) = 7, and n(us) = 7.

Proof. By Lemmas 3.6 and 3.7, we have uss ~ uy ~ uss , 80 by Table VII,
n(uss) > 21. Now n(uss) = 27 only if usse ~ us and n(uss) = 45 only if
Usg ~ Usg ~ Ugrg . But the proof of Lemma 3.6 yields uss ~ uss and by Lemma
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3.7, uss ~~ ug , and therefore n (uss) = 21. Thus we have
n(ug) < | Na(S) : No(S) n Culus)| = 7
and 7n(us) < | Ne(S):Ne(S) n Cwlus)| = 7.

Since us ~ ug we have by Table VII that n(us) = 7, and we have n(us) = 3
or 7. But by Lemma 1.5 we get N¢(S)/S =~ L;(7), which has no subgroup
of index 3. Thus since S & N¢(S) n Co(us) we must have n(us) = 7. The
lemma is proven.

LemwMa 3.9.  The involutions of G are fused as follows:
(1) use ~ Usp ~ Uss ~ Uss ~ Usg ~ Urg ~ Uns,

(i) ue ~ us ~ u,

(i) up ~ Us ~ ug ~ ur,

(V)  uers ~ Ugre ~ Use ~ Uasy ~ Usg ~ Up ~ Ug7 .

Proof. Statements (i) and (ii) follow from Table VII and Lemma 3.6,
3.7, and 3.8. Now by Lemma 3.7 there exists x ¢ G such that s = us and
Cr(ug)®* = L; € T. Thus Li = L,. If x normalizes K; then s e {uss, e}
and 80 Uies € {Us, Uss}. Since usws ~ g uss this is impossible. Hence z does not
normalize K; and we may assume Kz = K;. Then u7s € {us, s} and so
Uy € {us, uss}. Thus uy ~ us and, because of Lemma, 3.8, (iii) holds. Finally,
we have from Table VII that | ¢ty (uer) n S| = 4. Since Ly (7) has no sub-
group of index 4 or 16, we must have ug ~ sy ~ Ugs, and thus (iv) holds.

Now we proceed as in Lemmas 2.5 and 2.6 to construct a subgroup of G
which is isomorphic to S, (2).

LEMMA 3.10. There exists an element w of G whose action on L, is the same as
that of w; .

Proof. By Lemma 3.7 there is an element w ¢ G normalizing L. such that
us = ugand us = us. NOW Uy € {us, uss}, 80 by replacing w by wus if neces-
sary we may assume 47 = us. Similarly us e {ur, usr}; since w may be re-
placed by wus we can assume uy = w;. Now (K3)* = Kj 80 ulls € {wrs, Usis) .
Since ugs = uss implies ug = uss ~ use, we must have ug = uz. Also

w
Uy € {uo 5 Uasy y Urso u456789} .

By computing ugs and u7s we arrive at a contradiction unless uy = uy. Thus
the action of w on S is determined. Since w’ ¢ C¢(S) = 8 and since S is
complemented in any 2-group containing it, we may assume w’ = 1. Now we
get uy e {Us, Uss , Usts , Ussrs}, and by replacing w by wus , Wiy , OT Wikyze We may
assume uy = uz. We still have w* = 1,80 u§ = u; and the lemma is proven.

Lemma 3.11. (i)  (ww)® = 1.

(i) (wws)® = 1.
(i) (wws)® = 1.
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Proof. (i) (wu1)® e Ca(Ls) = (us, us, us). Hence Iwull = 3 or 6. As-
sume |wu1| = 6. Then (ww)® e Co(w, ) 80 (wu1)® = us. Replace w by
wus. Then Lemma 3.10 is still satisfied, and hence we may assume (wu;)® = 1.

(i) (wws)®eCe(S) = 8. Hence |'ww2| = 3 or 6. Assumelwwzl = 6.
Then (ww;)® ¢ Co(w, wy) 80 (ww:)® € {ussr, Usss , Ussers}. Now in the dihedral
group (w, wy) we have w ~ wy(wwe)’. But wausr ~ use and waen ~
W Usserse ~ Use , Whereas by (i) we must have w ~ w3 ~ uz. This is a contra-
diction, and so (ww,)® = 1.

(i) (wws)’ € Co((uz, us, -, us)) = (us, us, us). Hence | wws| = 2 or
4. Assume | wws| = 4, and thus

(ww8)2 € Co(w, ws) n (us, ug , ug) = (us , uss).

Then in the dihedral group (w, ws) we have ws ~ ws (wws)*, and we get ws ~ uss
or ws ~ ugy. Butin fact ws ~g uy ~ ug ; the lemma is proven.

Now since w satisfies the same relations (1.1) as wy we have proved:
LeMMA 3.12. Let Gy = (N, w). Then Gy~ S,,(2).
Lemma 3.13. Cq (u59) C Cq (’us)

Proof. We will prove that K, is a Sylow 2-subgroup of Cg(us); then the
lemma follows by a proof exactly like that of Lemma 2.9. Assume K is not
a Sylow subgroup of Cg(us) and let g e Cq(us)\K1 such that Ki = K;.
Then g normalizes (K1)’ and 80 u8s € {uss , usse}. Then there exists g; ¢ Gy such
that uf§' = use,andsogeG;. Since

Ce, (ug) n No(Ky) = Ky,
we have a contradiction.

LemMma 3.14. Co(us) € G,

Proof. Assume that Cg(ug) Q; G, and as in Lemma 2.10 construct a sub-
group T = T withI = T nG;. Again we have us ¢ I and us, uss ¢ I. Since
the centralizer of every conjugate of us lies in Gy, I contains no conjugate of
ugg. Similarly I contains no element of cly (ug): for if u ¢ I and u" = ugy
with n ¢ N then u%" ¢ Gi. But u§" centralizes us and ug, and so by Lemma,
3.13 it centralizes us , which is impossible. Now it follows that all the involu-
tions of I must lie in

ctr (ug) U cla(ur) U cla (uer).

As in Lemma 2.10, I is elementary abelian. If I 3 (ug) then we may assume
that u; € I, and it follows that I = (ug, uz). Again as in Lemma 2.10 we get
either us ~ usz or uy ~ usz where z ¢ I\{1}. The only possibilities are
Us ~ Ug; OF Ugy ~ User. The first case implies uss ~ user and the second
Usep ~ Us7, both of which are impossible. Hence the lemma is proved.
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Now we may complete the proof of the theorem. We have
Co(us) = Co, (us) =2 Ca, (us).

Since @ has four classes of involutions, it follows from Yamaki’s Theorem [7]
that G ~ S,,(2).
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