
A CHARACTERIZATION OF

BY

KENNETtt YANOSKO

Yamaki [6], [7] has characterized the simple groups having the centralizer
of an involution isomorphic to the centralizer of a transvection in S (2).
His result is that such a simple group must be isomorphic to S, (2), A, or
A. But a Sylow 2-subgroup of S (2) contans three central involutions
whose centralizers are nonisomorphic. The purpose of this paper is to prove
the following result.

THEOREM. Let to be an involution in the center o$ a Sylow 2-subroup o]
S6 (2) such that to is not a transvection. Let Ho be the centralizer of to in S,(2).
Let G be a finite simple group containing an involution such that Ca(t) Ho.
Then G --- S (2).

The notation we use is standard. For example:

{x, y,
(x, y, --’)
[, y]

ci.(x)
0, (G)
(X, 2’)

The set of elements x, y,
The group generated by x, y,
x-Xy-lxy
y-xy
x is conjugate to y in H
The set of elements of H which are conjugate to in H.
The largest normal odd order subgroup of G.
The set of odd order subgroups normalized by X which intersect
X trivially.

1. Preliminary lemmas

Let Go be a group generated by the set of elements

{m,wJ l_<i_< 9,1_<j_ 3}

with the following relations (for brevity we shall write u. u u.)"

(1.1) u 1 forl_< i_< 9

[u,uj] 1 for4_ i,j_ 9
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U6
U7

U9

U5 U5 U5
U6 U6 U6
U47 U57 7
U568 US U8

U9 U469 U789

w1 1 forl _j_ 3

(w) (w) (wl ws) 1

) (. u) ( u) 1Wl 1

Ul

U9

U2 Ul

UZ Ul U4

U5 U4 U5

U4 U7 Ua
U6 U9

U9 8

The tables indicate the result of conjugation of the element on the left by the
element at the top.
We then have the following [6], [7]"

Go S, (2),

To (u[ 1 _< i _< 9) is a Sylow 2-subgroup of Go,

Z(To) (u u),

Cao (u) (To, w, wa), Cao (m) (To, w, wa), Cao (u) (To,

Our theorem may be restated as follows:

THEOREM. Let G be a finite simple group containing an involution such that
H Ca (t) is isomorphic to one of

(a) Co (u)
(b) o(u).

Then G --. S, (2).

In the proof we will identify the elements of H with the elements of Ca0 (u)
or Ca0 (us), and the relations (1.1) between elements of Ca0 (us) or Ca0 (u6)
are assumed to hold in H. In particular, we have us or u, and
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T 1 1 _< _< 9 is a Sylow 2-subgroup of H. We begin with a detailed
study of important subgroups of T.

LE 1.1. (i) () ,,
(ii) S (u4, us, u6, uT, us, ug) is the unique elementary abelian subgroup

of T of order 26.
(iii) There are eight subgroups lying between S and T"

X

K, (S, u,)
K (S,
K8 (S,
K4 (S, u8)
K5 (S, ua)
L (S, u u)
L. (S, u, ua)
L (S, u)

Izl

2
2

z(x) X

(iv) T contains exactly eight self-centralizing elementary abelian subgroups
of order 25.

X Nr(X)

T
T

Lt
L
L
<ult <_ i _< 8>
(ult _< i _< 8>

Proof. (i), (ii), (iii), are in [6]. (iv) is easily computed from the rela-
tions between the u’s. We observe in addition that S, L,, L, La are weakly
closed in T, since ech is isomorphic to no other subgroup of T.
Lemmas 1.2 through 1.5 correspond to Yamaki’s Lemmas 2 through 5

in [6].

If two elements of S are conjugate in G then they are conjugate

Proof. This will follow from Lemma 2 in [6] once we determine that T is a
Sylow 2-subgroup of G.

LEMMA 1.3. No(T) T. In particular T is a Sylow 2-subgroup of G.
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Proof. Na(T) normalizes Z (T) and permutes the subgroups {K[ 1 _< i

_
5},

and hence the subgroups {K 1 _< i _< 5}. Since us8 appears in exactly two of
the subgroups K, us in exactly three, and u8 in none, it follows that Na(T)
centralizes Z (T). Hence Na(T) N,(T) T.

LEMA 1.4. No two of us, us, u are conjugate in G.

LEMMA 1.5. Let 9 Na(S)/S. Then
(i) 19/0,()1 23, 23.3, 2’.3.5, 2’.3.7, 23.3.5, or 2’.3.5.7.
(ii) 10.,(9)1 3,0_<k_<4.

Proof. With respect to the basis

the action of u. and Ul on S is given by

1
1

1
1

and

1
1

Hence the proof of Yamaki’s Lemma 5 gives 9/0,(9) --. Ds, PGL,(q),
L,(q), or AT, and since 191 G/(2) we have (i). Now u u, in Na(S)
so we get

Since C(u,) n 0,()1 1, 3, or 3 for i 1, 2, and since III[GL (2)[
wegetlO.,(9) 3, 0 _< k _< 4. Note that ifuuinNa(S) then
]0, (gZ)] 1 or 3’.
We now prove a few more miscellaneous lemmas which will apply to both

cases (a) and (b)

LEMMA 1.6. (i) U " U and u

(ii) u4 us8 and u u.

Proof. (i) Assumeu uwherexeNa(S) andu u4 or us. Then
L
_

Ca(u). Let To be a Sylow 2-subgroup of Ca(u) containing L. Then
there exists y Ca(u) such that L To. By weak closure, S"u S and
Lu Lx. Thus xy permutes the groups Kx, K, K,. Now u e K and
K but u4 K and us Ks only. Sznce u4 u this is impossible.

(ii) This may be proved in the same way as (i).

LEMMA 1.7. The following mappings are automorphisms"



(i)

(ii)

(iii)
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Proof. We check that each of these mappings is consistent with the
defining relations (1.1).

Lx 1.8. Assume that H is contained in a subgroup GI of G such that
G --- S (2) and such that uo u and u4 ,o us ,o u

Then o (S, 2’) is trivial.

Proof. Let K be an odd order subgroup of G normalized by S. Then by
the theorem of Brauer and Wielandt [5] we have

K C(u)C (u)C (u) C(u)C (us)C (u,,s).

Since either H Ca(m) or H Ca (u) it follows that K

_
G. By the

structure of S,(2) (see [7, Lemma 13]) we must have K {1}. Thus
Ha (S, 2’) is trivial.

2. The case H Co0(u)
In this section we let H (u, w, wa I1 _< i _< 9) with the relations (1.1)

and assume that H is the centralizer of u in a simple group G.
H has 13 classes of involutions:

Table 1

[eI,(x) fl S I-(--I 3-I---ITI---I 4- 12[]---2]--’-IT] 0

Now IN.(S) S we write

n(s) No(S)" No(S) n Ca(s)[ n s[.
The following table gives the possible values of n (u) corresponding to the
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possibilities given in Lemma 1.5 and subject to the restriction 1 <_ n (s) < 63"

2
2.3

2.3.5
2.3.7
2.3-.5

2.32.5.7

Table II

o,,()
1 3 3 38 34

1 3 9 27
1 3 9 27
5 15 45
7 21
15 45

LEMMA 2.1. It is false that u5 u9 uso.

Proof. Assume m u0 us and assume u u5 where x eN (S). Then
K is 2-subgroup of H, so there exists y e H such that K T. Thus
K Kfor 1 i 5, ndsinceugKwemusthveuK. Hence
i 1 or 2. If i 1 then xy carries the coset {ug, u49, ueg, u4a9} of K in
Z (K) onto u, u4, ue, u4e}. By assumption u9 u9 u4. By Lemmas

and then1.4 nd 1.6 we must hveu u, u m This contradicts
Lemm 1.6 since us us. Similarly if i 2 then

is the coset
{u, u, u, u4o}

of K in Z (K2) This time uoo must be u4 so that 4ee 4 Since 4e 4
this contradicts Lemm 1.6, nd the lemm is proven.

LMMX 2.2. n (u) 0 (3).

Proof. By Tble I, if n(u) 0(3) then u contradicting
Lemm 2.1.

follows from Tble H that n (u) 1, 5, or 7.

LEMMX 2.3. n (Ue) 1.

Proof. Assume n (u) 1. Then Ne (S) N(S) nd so there is no
fusion in G between H-classes of S. Now by transfer theorem of Thompson
[3, Lemm 5.38], u9 is conjugate in G to n element of L2. But every involu-
tio of L2 is conjugate i H to element of S, nd so UlO is conjugate in G to
n element of S. In prticulr, M, Sylow 2-subgroup of Ce(Ulo), is not
Sylow subgroup of C (ulo).
mMizing M3.

ctu(u) I’l M8

u5

{us}

Hence there exists an element x . G\H nor-

Table III
ue use

{u} {u}

U4

’tt4

U4

U46 U46}
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Now if x normalizes any one of the sets {us}, {m, u45}, {u4e, ue} then x e H.
So x must fuse these sets with the three sets

ct. (ul) n Ma, cI. (ul) n M3, ct. (u19) n M3.

But then x normalizes both {m} and {us} so that x e H, a contradiction.

LEMMA 2.4. n (u) 5.

Proof. Let n (u) 5. By Table I, either u u or u u. Assume
u u. Then there exists a 2-element x e GH normalizing K and inducing
an automorphism of order 2 on Z (K) and centralizing u. Since

ct (u) n Z (K) u, u, u}

we have u u. Then x centralizes u u.u.u. Lemma 1.6
shows that u u and so, since x normalizes K, u u. Then we get
u u, u u, and u u Since u .u and u u we have
u u, u u, u u, u u. By Lemma 1.6 u is not conjugate to
u, u, or u, and by hypothesis is not conjugate to u. Now

is,

and] cta (u), S n (u) divides No (S)/S 2. 3.5. We must huve, there-
fore, that u ms. By Lemmas 1.4 and 1.6, u is not conjugate to u, u,
or u. If u u then by Table I,

n(u) 3 + 6 + 4 13 2a.3.5,
a contradiction. Hence

Na(S) Na(S) , Ca(u) n(u) 3.

But Na(S)/S PGL(5) by Lemma 1.5 and thus has no subgroup of index 3.
Therefore u u. Similarly we can show u u, and therefore n (u) 5.

LEMMA 2.5. There exists an element w e G whose action on L is the same as

that of w.
Proof. By Lemmas 2.4 and 1.6 and Table I we have u u. There exists

weGsuchthutu mandL L. ThenK KaandK K. It
follows that m u and m,u and hence u u Now since

and since Na(S)/S L (7) has no subgroup of index 3, u must be conjugate
to one or more of the elements u, u, u,u, ms. But n (u) cia (u) n S
must be a divisor of Ne (S)/S[, so by Table I the only possibility is n (u) 7;
that is, u u or u u. Since the automorphism a of H in Lemma 1.7
interchanges ct,(m) and ct,(m), we can assume, without loss of generality,
that u m. Since Z (K) Z (Ka) we have

u7 Z (K) ci (u) {u, u, u}.
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We have from above that u u. If u us we can replace w by wu
Hence we may assume u u. Similarly

u’ e Z (K) n cta (m) {, u, u}.

If u u we can replace w by wu; and hence we may assume u
Finally,

If uso mu,so thenu uu ms. Since u m uu, this is impossible.
Hence uso u, and thus u u. Now the action of w on S is completely
deterned. In particular we have

5 4 U0 56 46 49 U59 459 48.

The H-class of involutions of KS and K,S are

19 U1469 149 69 U169 159 14569 1459}
and

Since u u u9 u we must hveu und hence u u or u u.
But the utomorphim of H in Lemm 1.7 interchanges cl (ux) nd cl(u)
so, without loss of generality, we myumeu u. Then

Now is complemented in T by u, , m), so by theorem of Gschtz
[1], is complemented inN(). Wemy ssume that w es in complement
of , nd since C() we hve w 1. Now if u replace
by w, if u replace by us, nd if u replace by
Then we get u u2, nd it is still true that w 1. Hence lso
The lemm is complete.

L2.6. Le w be the e[ee defined iL2.5. Then we may

(ii) (w) 1,

Proof. (i) (w)eC(Lx) m, , . ence wu 3 or
If Jwu 6then

We cn replace by, nd hence () 1.

(ii) (w)4e C(M) M. Hence w 4 or 8. sume ww 8.
Then
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Now iw, wsl 16 so there exists y such that w, ws
_ . Let

(ww) rs where r (u u, s S. Then (r) rs where r 1, since
(rs) 1. Hence r u, and we have

(re

Thus (wwa) u and so (wwa) u. Now in the dihedral group (w, wa) we
have wa uw and so

UgW
1245W3 W3 9 q U6.

However,

a comriction. Therefore, (ww)= 1.
(ifi) (w,w) eea(s) S. Hencew,w 3or]w,w 6. Assume

ww] 6. Then

Now in the dihral group (w, w) we have w (w w)aw and so w is con-
jugate to one of the elements u4w, ms w, or u4s w. But

(u4w)’ u4

and
(u4aew)" ue9 u a ua.

On the other hand, by (i), w m m a m, a contradiction. Therefore,
(w w)= 1, and the lemma is proven.

Since w satisfies the same relations (1.1) as w, we have proved:

LEMMA 2.7. Let G (H, w). Then G S (2).

Now dnce Na (S) G, all fusion of involutions occurs in G. In order to
prove that G G, we wish to show that G contains the centralizer of each
of its involution.

LEMMA 2.8. Ca (ue

Proof. Let x e Co (u) and assume that u T. Then

uu {u, m, u, u., u4., uun, u}.

The only possibility is u u and hence ue. By Glauberman’s Theorem
[2], we must have

u. c(C(u.)/o, (C(u.) ).

But S Ca(me) so by Lemma 1.8, we have m Z (Ca(u)). Hence

C(u)

and the lemma is proven.

LEMMA 2.9. Ca (rag) (S, u, w).
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Proof. K is a Sylow 2-subgroup of Ca(u); if not, then g Ca(u)\K
normalizes K and hence K. But then g e Ca(u)

_
G, a contradiction.

Conjugating by ww we get K is a Sylow 2-subgroup of C (u). Assume that
for some x Ca (u) we have u e K. Then

7 7216 U67 {! 7 678 U679 U479 7689 U4589

and the only possibility is u u7. Hence u u6, so by [2],

u co(co(u)/o, (Co(u) ),

and so as in Lemma 2.8 we get Co(u67) c_ Co(uT). Conjugating by wl w,
we get Co (u9) Co (us) and the lemma is proven.

LEMMA 2.10. Co (u6 (T, w,

Proof. Since (T, w, ws} Co, (u) it is sufficient to prove that Co (m) c_ GI
Assume that there exists g Co(u)\G. Then T is a Sylow 2-subgroup of
Co(u) and does not lie in G1. Let T be a Sylow 2-subgroup of Co(u6)
such that T, G, and IT, n G, lis maximal. Let xCo, (u)such that
(T G)

_
T, and let yeNr((TI G))\G. Let T. Then

GandlGl T Glismaximal. LetI G1. It isclear
that u I. We prove that u5 I" if u I then u e I and ug centralizes
since the centralizer of every conjugate of u in G lies in G, we get

_
G,

a contradiction. But now it follows that every involution of I is conjugate
to u" if iI such that

i ci (u) ct (u) ct (u)
then ueCa(i) c_ G, so that ue " n G I, a contradiction. Since the
conjugates of u in T are

we get that u is the only involution in I. Assume that I contains an element
rs of order 4 where r e (ul, u) and s e S. Then u6 (rs) r[r, s]. Since
Jr, s] e S we have that r is an involution in (u, ua) and so u Jr, s] e K for
some i. Since this is not the case, I must be elementary abelian, and thus
I (u). Now let z be the central involution in the dihedral group (us,
Since z centralizes u, z e G1. But the 2-group (I, z, u9) does not lie in G
and intersects G in (I, z). By maximality of n GI we get z e I and hence
z u. But in the group (u, u9) we have either u uz or u9 u5 z,
and so either u u or u9 u6. In either case we have a contradiction,
and the lemma is proven.
Now we can prove part (a) of the theorem. Since

Co (u,) Co, (u,) Co0 (u,)
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It follows from Yamaki’s Theorem [7] that G --- A12, AI, or Sv, (2). Since G
contains four classes of involutions, we must have G Sv, (2).

Or, more directly, since we have proven that G contains the centralizer of
each of its involutions, it follows (see [7, Lemma 20] that G G S6 (2).

3. The case H Co0(u)
In this section H (u, w 1 _< i <_ 9) with the relations (1.1) and H is

assumed to be the centralizer of us in a simple group G.
H has 21 classes of involutions"

de(x) f3 SI

Table IV

This time NH(S)[ 29. Again writing

No(S) N (S) n n sl
we get the possible values of n (us)"

2
23.3

23.3.5
23.3.7
23.3-.5

23.32.5.7

Table V

1 3

1 27
3
15
21
45

Here we are assuming that ul u2 in Na(S) so that by Lemma 1.5,
i0, (9)! 1 or 3a. We will not refer to Table V until after this fact is
established in Lemma 3.4.

LEMMA 3.1. Either us u4 or u u.

Proof. By a Transfer Theorem of Thompson [3], u9 is conjugate in G to
element of L, and hence to an element of S. Therefore, Ma is not a Sylow
2-subgroup of Ca (u ). Let x G\H, x Na(M ). We have"
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u
u6

u4

u$9

Ul

Ul

Ul$

Table VI

ct(v) f3 M,

We observe that I-I,o.(,)nM, Y 1 for v ul, ul, and u19. Hence if

cta(u) n M

_
et(u) u ct(u) u ct(u15) u ct(u19),

then II,oa(,)nM, Y us and so u u, a contradiction. Thus u, is
conjugate in G to one of u, m, u, u, u, u5. By Lemma 1.6, u u.
If u u the lemma is proven. Hence we assume u is conjugate to u for

Now Cz(u) K1, and there exists y G such that u u, and K
_

T.
Since u K, u (K)’ so/ is Ka, K, or K. Since by Lemmas 1.4 and
1.6, u -s u and u - u5 u, we must have u u. The lemma is
proved.

LEMMA 3.2. (i) U U and u m.

(ii) KxKa.

Proof. By Lemma 3.1, either ue u4e or u m. Suppose ue u4e.
Then there exists x G such that ue use and Ca(me) L T. Then
L L by weak closure and since ue (K) we have K K or K. Since
K1 -. K2 we have K K and thus u u4. Similarly, if u u4 there

and hence Kexists x e G such that m m, L1 L, Ka. It follows that
56 .
LEMMA 3.3.

as that of w.
There exists an element w G whose action in M is the same

Proof. By Lemma 3.2. there exists w G such that L[ L, u[ us,
and K Ka. If K K. we can replace w by wua, so that without loss of
generality we may assume K K, and hence U u. Now w normalizes
Z (L1) (u, u, u) and by Lemma 3.2 it follows that u’ u. Since w
permutes the self-centralizing elementary abelian subgroups of L of order
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2, namely, M1, M2, M3, M4, and since M3

_
K1, M4 __. K2, M2 C__ K3,

we must have M M, M M, and M M3. Thus

u i n i (u, u4, u,

and, since u u4 m, we have u u or u. The automorphism aa of H
in Lemma 1.7 interchang cig(u) and clg(u). Hence thout loss of
generality we may take u u. Then

U ((Mr n M2)Z (L)) n cia (u) { m, u4

If u is , m, or U246 then we may replace w by wu, w, or wu respec-
tively. Thus we may assume that u w2. Similarly

If u is ux or ut4 we may replace w by wua so we may assume that u is ux
or ux. If u ut then u ut und u uxa. Since ut utah, we
get u u ux2 u u, which is impossible by Lemma 1.6. Hence

and the 1emma is proven.U2 Ul

LEMMA 3.4. There exists a subgroup N of G conMining H such that
N Coo (m).

Proof. Let w be the element of Lemma 3.3 and let N (H, w}. Then
N normalizes Mx and by Lemma 3.3, the action of N on Mt is uniquely de-
termined. Since C(Mt) Cu(Mx) Mx, the structure of N/Mx is uni-
quely determined. Now Mx is complemented in T by the subgroup (u3, u,
us, Up) and so, by the theorem of Gaschfitz [1], Mx has a complement C N/Mx
in N. Since Mx is abelian, the action of C on Mx is uniquely determined, and
thus the multiplication table of N is uniquely determined. But in G0 we
have (Coo (ua), w2) Ca0 (u), and so by uniqueness N Coo (u).

Hencefoh, we let N (u, w, wa] 1 g i 9) with the relatio (1.1)
and takeH (u,wal i9). Wenowhave"

Table VII

U56 U46 U15

5 U4

U8 U9

U58 U49

U7

U78 U79

U678 U679

U59 U459 U48 U19

U67

c() n 1

3
3
1
6
6
4
12
12
12
4
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We now prove a series of lemmas concerning the fusion of N-classes of in-
volutions in G. Since we now have ul u2 in Na (S) we may apply the in-
formation in Table V. Since G is assumed to be simple, Glauberman’s
Theorem [2] implies that u6 much fuse with some other element of T, and
so by Lemma 1.2, Na(S) Nv(S). It follows that n(us6) 15, 21, 27, or 45

LEMMA 3.5. It is false that us

Proof. Assume u us uss. Then there exists x e G such that us u
and C (us)X L

_
T. Then L L and so x normalizes

Z (L.) <us, u, us>.
By assumption

eta (u6) n Z (L) {u,

and so u u and m u6. But then u u, a contradiction.

LEMMA 3.6. We may assume us u.

Proof. Since n(u) 15, 21, 27, or 45 it follows from Table VII and
Lemma 3.5 that u6 is conjugate to one of the elements u, us, or u.
Assume u ms. Then there exists x e G such that us u and C(ms)
/ T. Then K Ka, K, or K since u (K)’, and hence u u.
Then u5 u6, and, since us . us, we have a contradiction. Therefore,
u--u or u. Since the automorphism a in Lemma 1.7 interchanges ct
(u) and ct (u), we may assume u u.

LEMA 3.7. We may assume u us and u uss.

Proof. We first show that u is not conjugate to any of the elements
ms, u, u, or u6s. Assume u u and Cr (u)

___
T for some x e G and some

u e u4s, u7, u67, u6}.

Then C(u) K or K and since K1 K K aad K4 K in N we may
assume C.(u)’ K or K. Since uTs u578 u46 m6 by Lemma 3.6,
we must have u m. Then (uu)" u56. But since u uu for each
u e{ms, u, u6, us}, this is a contradiction. Now, by Table VII, the only
possibilities for the fusion of u are u6 us or u uas. Since the automor-
phism a in Lemma 1.7 interchanges ct (us) and et (us), but fixes ct (UT)
and et (u7), we may assume u6 u8. Finally, let x e G such that u u and
C(us) L

_
T. Then by weak closure L L2 and so x normalizes

Z(L2) nL (us). Hence" u6G8

LEMMA 3.8. Now n (u) 21, n (u) 7, and n (u) 7.

Proof. By Lemmas 3.6 and 3.7, we have u u ms, so by Table VII,
n(u) >__ 21. Now n(u) 27 only if u6 us and n(u) 45 only if
us us u,. But the proof of Lemma 3.6 yields u us and by Lemma
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3.7, uss us, and therefore n (uss) 21. Thus we have

n(u) <_ Na(S) Na(S) heN(m)! 7

and n(u) <_ Na(S)’Na(S) n C(u) 7.

Since us us we have by Table VII that n (us) 7, and we have n (m) 3
or 7. But by Lemma 1.5 we get Na(S)/S - L2(7), which has no subgroup
of index 3. Thus since S

_
Na (S) n Ca (u) we must have n (us) 7. The

lemma is proven.

LEMMA 3.9. The involutions of G are fused as follows:
(i) us u4s ul u8 u49 ua8 u79,

(ii) u us m,
(iii) u m u uT,
(iv) us7s UsT u u us ul UsT.

Proof. Statements (i) and (ii) follow from Table VII and Lemma 3.6,
3.7, and 3.8. Now by Lemma 3.7 there exists x e G such that u us and
Cr(us) L T. Thus L L2. If x normalizes K8 then us e {us, ussl
and so us e {u, u}. Since u4ss -. u8 this is impossible. Hence x does not

U46} and sonormalize K8 and we may assume K] Ka Then u8 e {u46,
u e {u4, u}. Thus u m and, because of Lemma 3.8, (iii) holds. Finally,
we have from Table VII that ct (us) n S 4. Since L (7) has no sub-
group of index 4 or 16, we must have u6 u9 us8, and thus (iv) holds.

Now we proceed as in Lemmas 2.5 and 2.6 to construct a subgroup of G
which is isomorphic to S (2).

LEMMA 3.10.
that of wl.

There exists an element w of G whose action on L is the same as

Proof. By Lemma 3.7 there is an element w e G normalizing L such that
u us and u us. Now u e {u, u4}, so by replacing .w by wua if neces-
sary we may assume u u. Similarly u[ e {u., u}; since w may be re-

K so u {u, u/.placed by wu2 we can assume u u. Now (K)
Since u4s u78 implies u u8 uss, we must have us u8. Also

By computing u9 and u9 we arrive at a contradiction unless u u9 Thus
the action of w on S is determined. Since w Ca(S) S and since S is
complemented in any 2-group containing it, we may assume w 1. Now we
get u2 e ua, u, ua8, users}, and by replacing w by wu, WUg, or wu we may

1, so u u2 and the lemma is proven.assume u. u. We still have w

LEMMA 3.11. (i) (WUl) 1.

(ii) (ww2)a= 1.
(iii) (ww )2 1.
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Proof. (i) (wu)Ca(L) (u,u,u). Henceiwul 3or6. As-
sume wu, 6. Then (wu,)e Ca (w, u,) so (,) u. Replace w by. Then Lemma 3.10 is still satisfied, and hence we may assume (wu) 1.

(ii) (ww) Ca(S) S. Henceww 3or6. Assumeww[ 6.
Th (ww) Ca (w, w) so (ww) u us, u}. Now in the dihedral
group (w, w) we have w w(ww). But wu u and w
wu m, whereas by (i) we must have w u u. This is a contra-
diction, and so (ww) 1.

(iii) (ww) C((u, m, u) ) (u, u, u). Hence 2or
4. Assume ]wwa{ 4, and thus

Then in the dihedral group (w, w) we have w w(ww), and we get w u
or w u. But in fact w ,u u, the lemma is proven.

Now since w satisfies the same rdations (1.1) as w we have proved:

L 3.12. Let G (N, w). Then G S (2).

LEMMA 3.13. Ca (u) Ca (u).

Proof. We will prove that K, is a Sylow 2-subgroup of Ca(u); then the
lemma follows by a proof exactly like that of Lemma 2.9. Assume K, is not
a Sylow subgroup of Ca(u) and let g Ca(u)K, such that K K,.
Then g normalizes (K,)’ and so ug {u,, u,,}. Then there exists g G such
that-"’ u, and so g G, Since

Ca, (u ) n Na (K, ) g,
we have a contradiction.

LMM 3.14. Ca() G,.

Proof. sume that Ca() G, and as in Lemma 2.10 construct a sub-
group T th I n G,. Again we have m I and u, u I. Since
the centralizer of every conjugate of u lies in G,, I contains no conjugate of
u. Similarly I contai no element of ct (u): for if u I and u" u
th n N then u G. But u" centrafizes u and m, and so by Lemma
3.13 it centralizes u,, which is impossible. Now it follows that all the involu-
tions of I must lie in

cI (m) u ci.() ci (m,).

in Lemma 2.10, I is elementary abefian. If I <m> then we may assume
that u, I, and it follows that I <, u,>. Again as in Lemma 2.10 we get
either u uaz or ug mz where z { 1}. The only possibilities are
u u, or ug ua,. The first case implies m, u,, and the second
u u,, both of which are impossible. Hence the lemma is proved.
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Now we may complete the proof of the theorem. We have

C(ue) C, () -- C0 (ue).

Since G has four classes of involutions, it follows from Ymki’s Theorem [7]
that G Se (2).
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