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ON THE TENSOR PRODUCT OF A CLASS OF
NON-LOCALLY CONVEX TOPOLOGICAL

VECTOR SPACES

BY

W. DEEB AND R. KHALIL

O. Introduction

Let f be a real valued function defined on [0, o) which satisfies:
(i) f(x) 0 if and only if x 0;
(ii) f is increasing;
(iii) f(x + y) < f(x) + f(y);
(iv) lirnx_,o/f(x) O.
It is clear that every such function is continuous. For every sequences

x (xn) we define

Ixl- flx,,I.
n---0

The space L(f) is the set of all real sequences x (.Xn) such that
One can easily show that xl defines a metric on L(f).

It was shown in [1] that (L(f), ly) is a complete metric space.
The space (L(f), ly) is a topological vector space [1]. For more about

L(f) spaces we refer to [2], [3], [7]. The object of this paper is to characterize
the isometries of (L(f), I/) and to define the projective tensor product of
L(f) with itself, proving some results on the tensor product.

Throughout this paper, N will denote the set of positive integers. If X and
Y are topological vector spaces, WL(X, Y) will denote the weakly continuous
linear operators from X into Y, and B(X, Y) the continuous bilinear func-
tional on X Y. The dual of a topological vector space X will be denoted
by X*.

1. Isometries of L(f)

A continuous linear operator F: L(f) L(f) will be called an isometry if

IF(x)l:-- Ixl: for all x L(f).

Let e be the sequence with 1 at the th-coordinate and zero elsewhere.
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THEOREM 1.1. Let F: L(f) L(f) be an onto continuous linear operator.
Then F is an isometry if and only if there exists a permutation r of N such that
F(ei) +e,(i for all N.

Proof. If F(ei) e(i), then for any x
_

L(f), x Y’.=lxie and

If(x)l:-- flx<)l flxl Ixl:.
i--1 i=1

Thus F is an isometry.
For the converse, let F: L(f) - L(f) be an isometric onto operator. Fix
N and suppose that F(ei) x Z,,=lx,e,; then

IF(e,)l: levi: f(1) flx,,l.
n---1

Since F is onto, then for every rn N there exists x(m) L(f), x(m)
Y’.k%_lXk(m), such that F(x(m)) Xmem. Since F is 1-1 and continuous we get

F-I(x) _, F-l(xmem)= E x(m) L(f ).
m=l m=l

Consequently F(Ex(m)) x and Y’,x(m) ei. Hence Y’.xi(m) 1, noting
that (el) is a Schauler basis for L(f). Set y(m) xi(m)ei. Then

f(1) =f E x,(m) < E flx,(m)l < E Ix(m)ly
m----1 m=l m=l

E flx,,,l f(1).

Consequently flxk(m)l 0 for all k : i, for all m, and hence x(m) 0 for
all k : i, and x(m)= y(m). Since x : 0, there exists some j such that
xj : 0. Since F(x(j)) F(y(j)), we get xj xi(j)x and xj(j)x 0 for
all m j. Since x: : 0, it follows that xi(j) 1. Consequently xm 0 for all
m q= j, x x:e:, and Ixl:- f(Ix:l) 1. We claim that Ix:l 1. To see that,
assume if possible x:l < 1. So there exists a real number a such that

flxal < fla[. But F(aei)= axe and laeil laxel. Thus flal flaxl,
which is a contradiction. Similarly, if Ixl > 1, there exists an a (0,1) such
that f(a) < f[axj[. But F(aei)= axles, so f(a)--flax[, a contradiction.
Hence xl 1. This completes the proof of the theorem.

DEFINITION 1.2. A sequence (a,) is called a multiplier for L(f) if x a
(xna,) L(f) for all x (xn) L(f). We write M(L(f)) for the space of
all multipliers of L(f).
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THEOREM 1.3. M(L(f)) , the space of bounded sequences.

Proof Let a l and x L(f). If ) is an upper bound for a, then we
can choose an integer X > X which is an upper bound for a. Consequently

la" xl/-- ,fla,x,I
0

-<
0

-< EflXxl
0

_< XEflx,I (by the subadditivity of f)
0

Xlxl: <
Conversely. Let a e M(L(f)). If possible assume that a ff . Thus there
exists a subsequence (a such that a,,.I m. With no loss of generality we
assume a,, e 0 for all Now, choose the subsequence (a,,) such that

f
1 1

<2_a
nj

Then the subsequence

L(f)
k anjkenjk

but a.y q L(f). This is a contradiction. Hence a .
2. Tensor product of L(f) spaces

Let L(f) (R) L(f) be the algebraic tensor product of L(f) with itself. Every
element L(f) (R) L(f) has a representation ET__lUrn (R) V. The ele-
ment can be considered as a double sequence

n

q(i, j) E Ur(i)Vr(J)"
r=l

For , L(f) (R) L(f), define

d(q,k) inf IQrlf. lWrlf
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where the infimum is taken over all representations of q9 q in L(f) (R) L(f).
One can easily check that d defines a metric on L(f) (R) L(f), and we write
d(tp) for d(tp,0). The space L(f) (R) L(f) with the metric d is not complete.
We set L(f) (R) L(f) for the completion.

THEOREM 2.1. The space L(f ) L(f ) is a topological vector space.

Proof First we prove that d is a quasi-norm on L(f) L(f). That is,
(i) d(q) 0 if and only if q 0,
(ii) d(-q) d(tp),
(iii) d(q + q) < d() + d(q).

However, these follows easily from the properties of the metric d and the
function f.
By Proposition 1 of [6, p. 38], it remains only to show:
(i) If a 0, then d(a,,, q) - 0 for all tp L(f) L(f).
(ii) If d(q,) 0, then d(a%) - 0 for all scalars a.
To prove (i), let Eim__lU/(R) V/ L(f) L(f). Then

and

m

0 < lim d(a.p) < lim la,,U,l:-IV, Iz o,
n--}m n-----1 n

by Lemma 4 of [1].
Now, if

then define g,(i) la.U, Iz" IV, I/. The Lebesgue dominated convergence theo-
rem on N with the counting measure, applied to the sequence of functions gn,
implies that

0 < lim d(a,)< limla,El:" IV.l: o.
n-o i--1 n

For (ii), let %
that 8 > a. Then

L(f) L(f), and d(%) 0. Let 8 be an integer such

0 _< d(a%) _< d(t%) _< td(%) (by the subadditivity of f).

Hence d(a%) O. This completes the proof of the theorem.
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It should be remarked, that the topological tensor product of topological
vector spaces is known only for the case of local convenity. The space L(f) is
not locally convex [7].
The dual of L(f) was studied in [2], and it is proved there that L(f)* can

be identified with .
THEOREM 2.2. The space

WL(L(f), L(f)*).
[L(f) L(f)]* can be identified with

Proof Let B(L(f) x L(f)) be the space of continuous bilinear function-
als on L(f) x L(f),: For each q B(L(f) x L(f)) define
WL(L(f), L(f)*) by q(U)(V) (U, V). Since q is separately continuous,
it follows that q is weakly continuous. To see that this correspondence is onto,
let tp WL(L(f), L(f)*). Then the bilinear map tp(U, V) q(g)(v) is
separately continuous. Consequently [5 p. 171], tp is continuous.
Now, we can identify B(L(f)x L(f)) with [L(f)X L(f)l* via the

correspondence

F: B(L(f ) L(f )) [L(f) L(f)]*, F(+)(U (R) U) tp(U, V).

One can easily check that F is 1-1 and onto. Consequently, [L(f) L(f)]*
is identified with WL(L(f), L(f)*). The proof is complete.

Let K be the space of all functions p: N X N R. Define

e,m(i j) l O
t I

if (i, j) 4: (n, m)
if (i, j) (n, m)"

Then every q K has a unique representation q E a me and q(i, j)
aij. Set L(f f) to be the subspace of K consisting of all q0 E,,,ma,,me,,m

for which E,,,mfla,,ml < . If we define

Ilff= flanm[,
n,m

then as in [1] and [7], one can prove:

THEOREM 2.3. The space (L(f f ),
logical vector space.

I/x/) is a complete metric topo-

Now we prove:

THEOREM 2.4. Let f satisfy the additional condition

f(xy) < f(x)f(y) (x, y > 0).

Then L(f ) L(f) is isometrically isomorphic to L(f f ).
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First we prove the following:

LEMMA 2.5. Every q L(f) (R) L(f) has a unique representation

Z anmenm,
l,l m

and the series converges in the topology of the metric d.

Proof Let q U (R) V. Since (el) is a Schauder basis for L(f), then

U= E Xiei, V= E jej,
i=0 j--0

and

lUll= flXjl, Vlf fll.
J J

Hence

i,j

Set Pn(U) Ein=oiei, Pro(V) Ejm=ojej. Then

nrn kiJei (R) ej q) Pn(U) (R) Pro(V)
i,j=O

U (R) (V- Pro(V)) + (U- Pn(U)) (R) Pro(V).
Thus

d cp- iljei e lUll" IV-P(V)If + IU-P(U)lf. IPm(V)If.
i, "=

Since (ei) is a Schauder basis for L(f) and IPm(V)lf < VIf, it follows that

lira d j.ei (R) e,.

_< glmm g em(g)l + glzlipl U Pn(U)I
--0.

Hence the claim is true for every U (R) V L(f) (R) L(f), and conse-
quently for every W En=u (R) V L(f) (R) L(f). This proves the lemma.
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Proof of the theorem Consider the map

F: L(f f) -o L(f) L(f),

F anmenm anmen (R) em.
n, m--0 n, m=0

Now,

(1)
r, s r, $ r,

Eanmenml fla"ml Elanmenlf" [emlf
0 ff 0 0

On the other hand, let p L(f) (R) L(f),

q9 E Ui (R) Vi--’- E Xikimek (R) em
i=1 i=1 k,m

k,m(i Xik’im)ek (R) em

E bmek (R) em,

where bkm _=likim By lemma 2.5, the last representation p is indepen-
dent of the representation E._IU (R) V.
For every e > 0, one can choose a representation p E__ 1U (R) V such that

a() >_ Ulz. Vlz- .
i=1

The proof of this is similar to the case of Banach space tensor’products [4, p.
2271.

Set p Fk, mbkmekm. Then

_<a(r)
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Since e was arbitrary, we get

(2) IcPl// < d(q).

However, F(q) q. Consequently, from (1) and (2) we get d(F(cp))
and F is an isometric linear map, whose range contains a dense subspace of
L(f) L(f). Thus F is isometric linear operator from L(f f) onto
L(f) (R) L(f). This completes the proof of the theorem.
As a consequence of this theorem we get:

THEOIM 2.6. Let f(xy) < f(x)f(y) (x, y > 0). Then

M(L(f ) L(f )) I(N N).

THEOREM 2.7. Let f(xy) < f(x)f(y) (x, y) > 0). Then

F: L(f) 6 L(f) L(f) 6 L(f)
is an isometric onto operator if and only if there exists a permutation r ofN N
such that F(eij) F(e,ij)).

The proof follows from Theorem 2.4, together with Theorem 1.2 and
Theorem 1.1.

Closing Remarks (i) We were not able to prove Theorem 2.4 without
assuming f(xy) < f(x)f(y).

(ii) It would be very interesting if one can define L(f g) and prove that
L(f) L(g) L(f g).

(iii) f(x) xp, 0 < p < I is a class of functions which satisfy the condi-
tion f(xy) <_ f(x)f(y).
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