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ON THE TENSOR PRODUCT OF A CLASS OF
NON-LOCALLY CONVEX TOPOLOGICAL
VECTOR SPACES

BY
W. DEEB AND R. KHALIL

0. Introduction

Let f be a real valued function defined on [0, co) which satisfies:
(1) f(x) = 0if and only if x = 0;
(i) f is increasing;
(i) f(x +y) < f(x) +f(p);
@iv) lim, , ,f(x) = 0.
It is clear that every such function is continuous. For every sequences
x = (x,) we define

0
Ixl;= 2 flx,l-
n=0

The space L(f) is the set of all real sequences x = (x,) such that |x|, < oo.
One can easily show that |x|, defines a metric on L(f).

It was shown in [1] that (L(f),| |,) is a complete metric space.

The space (L(f),| |;) is a topological vector space [1]. For more about
L(f) spaces we refer to [2], [3], [7]. The object of this paper is to characterize
the isometries of (L(f),| |;) and to define the projective tensor product of
L(f) with itself, proving some results on the tensor product.

Throughout this paper, N will denote the set of positive integers. If X and
Y are topological vector spaces, WL( X, Y)) will denote the weakly continuous
linear operators from X into Y, and B(X,Y) the continuous bilinear func-
tional on X X Y. The dual of a topological vector space X will be denoted
by X*.

1. Isometries of L( f)

A continuous linear operator F: L(f) — L(f) will be called an isometry if
|F(x)l,= |x|, forallx e L(f).

Let e; be the sequence with 1 at the ith-coordinate and zero elsewhere.
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THEOREM 1.1. Let F: L(f) — L(f) be an onto continuous linear operator.
Then F is an isometry if and only if there exists a permutation 7 of N such that
F(e;) = te, foralli e N.

Proof. 1f F(e;) = e, then for any x € L(f), x = L2 x,e; and
o0
lF(x)|f= Zf‘xﬂ(i)l = Eflxil = |x]y.
i=1 i=1

Thus F is an isometry.

For the converse, let F: L(f) — L(f) be an isometric onto operator. Fix
i € N and suppose that F(e;) = x = £%_,x,e,; then

|F(e)ly= led,=f(1) = Elflxnl-

Since F is onto, then for every m € N there exists x(m) € L(f), x(m) =
Y% _1x,(m), such that F(x(m)) = x,e,,. Since F is 1-1 and continuous we get

Fl(x)= f;:lF‘l(xmem) = i:‘,lx(m) € L(f).

Consequently F(Xx(m)) = x and L’x(m) = e,. Hence X{°x;(m) = 1, noting
that (e;) is a Schauler basis for L(f). Set y(m) = x,(m)e,. Then

£@) =f( i;lxi(m)) < £ it < 5 (),
- i;lflxml - ().

Consequently f|x,(m)| = 0 for all k # i, for all m, and hence x,(m) = 0 for
all k£ # i, and x(m) = y(m). Since x # 0, there exists some j such that
x; # 0. Since F(x(j)) = F(y(j)), we get x; = x;(j)x; and x;(j)x,, = 0 for
all m # j. Since x; # 0, it follows that x,(j) = 1. Consequently x,, = 0 for all
m # j, x = x;e;, and |x|, = f(|x;|) = 1. We claim that |x;| = 1. To see that,
assume if possible |x;| <1. So there exists a real number a such that
flx;a| < fla|. But F(ae;) = ax;e; and |ae,|, = |ax;e;|;. Thus fla| = flax,|,
which is a contradiction. Similarly, if |x;| > 1, there exists ana € (0,1) such
that f(a) < flax;|. But F(ae;) = ax;e;, so f(a) = flax,|, a contradiction.
Hence |x;| = 1. This completes the proof of the theorem.

DEFINITION 1.2. A sequence (a,,) is called a multiplier for L(f)if x - a =

(x,a,) € L(f) for all x = (x,) € L(f). We write M(L(f)) for the space of
all multipliers of L(f).
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THEOREM 1.3. M(L(f)) = I, the space of bounded sequences.

Proof. Let a € I® and x € L(f). If A is an upper bound for a, then we
can choose an integer A > A which is an upper bound for a. Consequently

Ia°x|f= %flanxnl
< Y fIAx,|

0
< %fﬁ\xnl

<AY f|x,| (by the subadditivity of f)
0

= 5\|x|f< 0.

Conversely. Let a € M(L(f)). If possible assume that a & [®. Thus there
exists a subsequence (a,,/) such that |a,,j| -> oo0. With no loss of generality we
assume a,; # 0 for all n;. Now, choose the subsequence (a,,jk) such that

Then the subsequence

y=§al e, €L(f),

nj
k
My

but a -y &€ L(f). This is a contradiction. Hence a € /.

2. Tensor product of L( f) spaces

Let L(f) ® L(f) be the algebraic tensor product of L( f) with itself. Every
element @ € L(f) ® L(f) has a representation ¢ = ¥7_,U, ® V,. The ele-
ment ¢ can be considered as a double sequence

o(i, ) = ¥ UOV0).

r=1

For ¢,y € L(f) ® L(f), define

d(9, ) = inf{ S0, |W,|,},

r=1
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where the infimum is taken over all representations of ¢ — ¢ in L(f) ® L(f).
One can easily check that d defines a metric on L(f) ® L(f), and we write
d(¢) for d(e,0). The space L(f) ® L(f) with the metric d is not complete.
We set L(f) ® L(f) for the completion.

THEOREM 2.1. The space L(f) ® L(f) is a topological vector space.

Proof. First we prove that d is a quasi-norm on L( f) ® L(f). That is,
(i) d(¢) = 0if and only if ¢ = 0,

(i) d(—¢)=d(ep),

(i) d(e +¢) <d(p)+d{).
However, these follows easily from the properties of the metric d and the
function f.

By Proposition 1 of [6, p. 38], it remains only to show:

i If a, —0,then d(a,-¢) > 0forall ¢ € L(f)® L(f).

(i) If d(¢,) — 0, then d(ag,) — O for all scalars a.

To prove (i), let ¢ = £7.,.U; ® V, € L(f) ® L(f). Then

m
0<d(a,p) < XUl Vi
i=1

and

m
0< lim d(a,p) < X lim |a,U],- |V]|,=0,
n— oo n

n=1

by Lemma 4 of [1].
Now, if

o0 o0
p=2XU®V, Z|l]ilf'|Vi|f<°°’
i=1 i=1

then define g,(i) = |a,Uj|,- | V|, The Lebesgue dominated convergence theo-
rem on N with the counting measure, applied to the sequence of functions g,,,
implies that

o0
0< lim d(a,) < ¥ lim|a,Uj,- |¥l,=0.
n— oo n

i=1

For (ii), let ¢, € L(f) ® L(f), and d(¢,) — 0. Let & be an integer such
that & > a. Then

0 < d(ag,) < d(ép,) < ad(p,) (by the subadditivity of f).

Hence d(ag,) — 0. This completes the proof of the theorem.
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It should be remarked, that the topological tensor product of topological
vector spaces is known only for the case of local convenity. The space L(f) is
not locally convex [7].

The dual of L(f) was studied in [2], and it is proved there that L(f)* can
be identified with /.

THEOREM 22. The space [L(f) ® L(f)]* can be identified with
WL(L(f), L(f)*).

Proof. Let B(L(f) X L(f)) be the space of continuous bilinear function-
als on L(f) X L(f). For each ¢ € B(L(f) X L(f)) define J e
WL(L(f), L(f)*) by Y(U)V) = ¥(U, V). Since  is separately continuous,
it follows that ¥ is weakly continuous. To see that this correspondence is onto,
let ¢ € WL(L(f), L(f)*). Then the bilinear map (U, V) = @U)V) is
separately continuous. Consequently [5 p. 171}, ¢ is continuous.

Now, we can identify B(L(f) X L(f)) with [L(f) X L(f)]* via the
correspondence

F: B(L(f) X L(f)) > [L(f) 8 L(NH]*, F¥)Ue U)=4(U,V).

One can easily check that F is 1-1 and onto. Consequently, [L(f) & L(f)]*
is identified with WL(L(f), L(f)*). The proof is complete.
Let K be the space of all functions ¢: N X N = R. Define

o 0 if(i, j)# (n,m)
enm(is J) = s N ,
1 lf(l,.])—(n,m)
Then every ¢ € K has a unique representation ¢ = %, ,.a,,e,,, and <p(z ])
. Set L(f X f) to be the subspace of K consisting of all ¢ = X, m@nme
for Wthh X, mfla,,| < oo.If we define

|(P|fx/ = Z faumls
n,m
then as in [1] and [7], one can prove:

THEOREM 2.3. The space (L(f X f),| |sxs) is a complete metric topo-
logical vector space.

Now we prove:

THEOREM 2.4. Let f satisfy the additional condition

f(xp) < f(x)f(») (x,y 20).
Then L(f) ® L(f) is isometrically isomorphic to L(f X f).
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First we prove the following:
LEMMA 2.5. Every ¢ € L(f) ® L(f) has a unique representation

¢ = Z ApmCnms

n,m

and the series converges in the topology of the metric d.

Proof. Let ¢ = U® V. Since (e;) is a Schauder basis for L(f), then
o0 o0
U= Y Ne;,, V=3 §ies
i=0 Jj=0

and
U= X AN V= X4
J J
Hence

o= 2Ne, ®e;=XN\Le,,.
L,
Set P,(U) = X/_o\e;, P (V) =X o§e;. Then

n,m
P — Z At£1e1®e‘1=q’—_})n(U)®I)m(I/)
i, j=0

=U® (V-P,(V))+(U-P,(U)) ®P,(V).
Thus

d(<P - X Age®e| < Uy V=P,V + U= P(U)l; [P (V).

i, j=0

Since (e;) is a Schauder basis for L(f) and |P,(V)|, < |V],, it follows that

lim d((p— Z Aigjeiébej)

n, m— oo i, j=0
< [Uldim|V = P, (V)| + | V| dim|U ~ P,(U)|,
= 0.

Hence the claim is true for every o = U® V € L(f) ® L(f), and conse-
quently for every ¢ = L7_ U, ® V, € L(f) ® L(f). This proves the lemma.
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Proof of the theorem Consider the map
F: L(fxf) = L(f) & L(f),
r,s r,s
F( E anmenm) = E anmen ® em'

n,m=0 n,m=0

Now,
r,s r,s r,s

(1) Y umum| = L N1uml = Llaumeals 1€nls
0 fxf 0 0

>d

r,s
Zanmen ® em)
0

On the other hand, let ¢ € L(f) ® L(f),

k s
p= YUV =X (I beoe,)
i=1

i=1‘k,m
=X (zxikgim)ek ® e,
k,m"* i
= Z bkmek ® €m>
k,m

where by, = Xi_1A £, By lemma 2.5, the last representation ¢ is indepen-
dent of the representation X;_,U; ® V..
For every ¢ > 0, one can choose a representation ¢ = X;_,U; ® V; such that

d(9) = X |Uls Vil —e.

i=1

The proof of this is similar to the case of Banach space tensor products [4, p.
227].
Set ¢ =X, ,.bimeim Then

|<P|/xf= kZ:.nflbkml
= kZm ;)‘iksim
< Z(Zma) - (Z801)

= 21Ul 1V
i

<d(p) +e.
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Since & was arbitrary, we get

) |Plyxs < d(g).

However, F(¢p) = ¢. Consequently, from (1) and (2) we get d(F(9)) = |@|;x;
and F is an isometric linear map, whose range contains a dense subspace of
L(f)® L(f). Thus F is isometric linear operator from L(fX f) onto
L(f) ® L(f). This completes the proof of the theorem.

As a consequence of this theorem we get:

THEOREM 2.6. Let f(xy) < f(x)f(y) (x, y = 0). Then
M(L(f) ® L(f)) =I*(N X N).

THEOREM 2.7. Let f(xy) < f(x)f(y) (x, ¥) = 0). Then
F: L(f) & L(f) ~ L(f) ® L(f)

is an isometric onto operator if and only if there exists a permutation w of N X N
such that F(e;;) = F(e,;)-

The proof follows from Theorem 2.4, together with Theorem 1.2 and
Theorem 1.1.

Closing Remarks (i) We were not able to prove Theorem 2.4 without

assuming f(xy) < f(x)f(y).

(ii)) It would be very interesting if one can define L(f X g) and prove that
L(f) X L(g)=L(fX3g).

(i) f(x) =x?,0<p <1is a class of functions which satisfy the condi-

tion f(xy) < f(x)f(»).
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