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1. Introduction

Let be a set of primes and a partial ordering of so that p p is false
for every prime p in p, nd a z b, b c implies a z c. For convenience, we
write q p if either q or else q z p is flse. A z-segment is nonempty
subset of defined by the following property: if q belongs to 6 nd p q,
then p too belongs to . The group G is clled a-closed for a set of primes, if
products of a-elements of G re a-elements. A torsion group is termed (, z)-
dispersed if it is -closed for every z-segment of (cf. [1, Definition, p. 620]).
Further we sy that group G possesses -minimal prime p if p belongs to, if G contains elements of order p and if p is minimal among the G-relevant
primes in relative to the ordering .

Suppose that G is finite group nd that the set G of ll -elements of G
is (, z)-dispersed subgroup of G. Evidently G is characteristic sub-
group of G and G possesses the following properties:

1. If x is a p-element of G with p e and if y is a q-element of G with q ,
then for almost every positive integer i the order of x( o y is divisible by primes r
with r p only.

2. Every -subgroup of G is , z )-dispersed.

It is our obiective to investigate whether these properties of torsion group
G re sufficient to show that G is (, z)-dispersed subgroup of G. In the
cse that G is finite we cn give positive nswer. But if G is only supposed
to stisfy the local double chain condition for subgroups, .which my or my
not be equivalent to local finiteness, we hve to impose dditionlpossibly
superfluousconditions, because our method does not go through otherwise.

2. Results
For the terminology used in the statement of our results the reader is re-

ferred to Section .3.

THEOREM. If r is a partial ordering of the set of primes, and if the group G
satisfies the double chain condition locally, then the following properties of G
are equivalent:

1. G is a , )-dispersed subgroup of G.
() 2. If p , then p-factors of G are locally finite.
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(b) G is a locally finite and , a)-dispersed subgroup of G.

1. If p e , then p-factors of G are locally finite.
2. If p and q are different primes with p and q p, and if a is a
p-element and b a q-element of G, then for almost every positive integer i the(c) order of a(i)

o b is divisible by primes r with r a p only.
3. Infinite factors F of G which can be generated by finitely many O-ele-
ments possess a-minimal primes.

1. p-factors of G are locally finite and (, a)-dispersed.
2. If p and q are primes with p e and q , and if a is a p-element and

(d)
b is a q-element of G, then for almost every positive integer i the order of
a() b is divisible by primes r with r a p only.
3. Infinite factors F of G which can be generated by finitely many O-ele-
ments possess a-minimal primes.

From the theorem we shall derive two corollaries.

COROLLARY 1. If a is a partial ordering of the set of primes, and if the group
G is locally finite, then the following properties are equivalent:

(a) G is a , a)-dispersed subgroup of G.

If p and q are different primes with p and q p, and if a is a p-element
(b) and b a q-element of G, then for almost every positive integer i the order of

a()
o b is divisible by primes r with r a p only.

1. O-subgroups of G are , a)-dispersed.
2. If p and q are primes with p e and q , and if a is a p-element and
b a q-element of G, then for almost every positive integer i the order of a() o b
is divisible by primes r with r a p only.

It is an immediate consequence of our theorem that the properties (a) and
(b) are equivalent and that (a) implies (c). The proof of the fact that (c)
implies (a) will be carried out in Section 5.

If r is the set of primes which are orders of the elements in the group H,
then we term v cH the characteristic of H.

COROLLARY 2. If the finite group G contains a nilpotent Hall-subgroup H of
characteristic v and if for every primary element x H and every primary vr-ele-
ment y of G the element x(i) y equals 1 for almost every positive integer i, then
H< G.

One easily derives Corollary 2 from Corollary 1. If r is the trivial ordering
of the set r of primes, that is q e p for all p and q belong-
ing to r, then every prime of r is r-minimal, and a finite r-group is nilpotent
if, and only if, it is (v, r)-dispersed. If G contains a nilpotent Hall-subgroup
of characteristic r, then applying a theorem of Wielandt ([3, Satz, S. 407])
every r-subgroup of G is nilpotent. It follows from this remark and the com-
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mutator condition of Corollary 2 that G satisfies the-condition (c) of Corollary
1. Hence H is normal in G.

3. Definitions and notations

o(x) order of the group element x.
If is a set of primes, then x is termed a -element if o(x) is finite and

divisible by primes in only.
A is termed a -group, if all elements of A are -elements.

’ set of all primes not in .
The element x is called primary, if o(x) is a prime power.
p is termed a G-relevant prime of the group G, if there are elements of order

pinG.
G set of all -elements of the group G.
Factor of a group G epimorphic image of a subgroup of G.
N(A, G) normalizer of the subgroup A of G in G.
A <:l G means A is a normal subgroup of G.
A <:1 <3 G means A is a subnormal subgroup of G, i.e. there exist finitely many

subgroups A (i) with

A A(0) <l <:1A(k) <:l A(k -t- 1) <l <:l A(n) G.

Sylow subgroup of G maximal p-subgroup of G for p a prime.
G satisfies the double chain condition means that G satisfies the maximum

and minimum condition for its subgroups.
G satisfies the double chain condition locally means that finitely generated

subgroups of G satisfy the double chain condition.
-1 -1 X(0) (i+) (i)xoy x y xy, oy y,x oy xo(x oy).

4. Reduction lemmas
LEMMA 1. Let G be a group all of whose p-Sylow subgroups are finite. If

every proper subgroup of G is p-closed, and if G contains no normal p-subgroup
different from 1, then different p-Sylow subgroups of G have trivial intersection.

Proof. Assume by way of contradiction the existence of two different
p-Sylow subgroups A and C of G with non-trivial intersection. Fix A and
consider the set of the intersections of A with all p-Sylow subgroups of G
different from A. Because of the finiteness of A there is a maximal sub-
group D I in It). Hence there exists a p-Sylow subgroup B of G with A
B, A n B D and therefore A D B. It follows from a well known prop-
erty of finite p-groups, that proper subgroups of p-subgroups of G are prop-
erly contained in their normalizers. Therefore

D AnN(D,G) and D c::BnN(D,G).

Consequently there are elements a e A n N(D, G) and b e B n N(D, G) which
are not contained in D. From D 1 and the fact that there is no normal
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p-subgroup of G different from 1 it follows that N(D, G) is a proper subgroup of
G. Hence N(D, G) is p-closed. It follows that Dla, b} is a p-group with
D c Dla, b}. Hence there is a p-Sylow subgroup T of G with D{a, b} T
and D T n A. From the maximality of D we deduce T A. But then
b would be an element of A contradicting the choice of b. This contradiction
follows from our assumption of the existence of two different p-Sylow sub-
groups with non-trivial intersection, Q.E.D.

LEMMA 2. Let r be a set of primes and A a maximal r-subgroup of a group G.
If A A 1 for A A, and if b is an element of G such that there exists an
element a 1 of A with a() b I for almost every positive integer i, then b is
contained in the normalizer of A.

Proof.. Assume that A is a maximal r-subgroup of a group G and that the
elements a and b are related in such a fashion as required in the lemma. If
b were not contained in N(A, G), then, because of leN(A, G)and
a() b b e N(A, G), there would exist an integer m >_ 0 with

d a(m)
o b N(A, G) and a d N(A, G).

Hence the element ad would be contained in N(A, G). Since A is a maximal
r-subgroup of G, the r-element ad is contained in N(A, G) if and only if a
is contained in A. Therefore

1 a A

and it follows that d N(A, G) from the condition of the lemma for the inter-
section of different conjugate subgroups of A. But this contradicts the choice
of d N(A, G). Thus the lemma is proved.

LEMMA 3. The p-Sylow subgroup S of G is a normal subgroup of G if and
only if S is a subnormal subgroup of G.

Note. The p-Sylow subgroup S of G is certainly subnormal in G whenever
there exists a normal subgroup T of G which normalizes S and a normal sub-
group P of G such that ST P and PIT is a finite p-group. For in this case
S is a normal subgroup of ST and ST/T is a subnormal subgroup of PIT so
that ST is a subnormal subgroup of P--this is the soc. normalizer property
enjoyed by many classes of more or less nilpotent groups, in particular the
finite p-groups. Hence S <:l <:IG by transitivity of subnormality.

Proof. Obviously it suffices to prove the sufficiency of the condition. If S
is subnormal in G, then there exist finitely many subgroups S(i)of G,
i 0, 1, ..., n, satisfying S S(0), G S(n) and S(i) <3 S(i 1).
Assume, that S is a normal subgroup of S(i). Since S is a p-Sylow subgroup
of G, it is a p-Sylow subgroup of S(i). Consequently S is a characteristic
subgroup of the normal subgroup S(i) of S(i 1) and as such S is a normal
subgroup of S(i 1). Hence the validity of the lemma follows by induction.
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5. Proof of the theorem
For the proof of our theorem we may assume that the group G under con-

sideration satisfies the double chain condition for all subgroups, because in the
case that G satisfies the double chain condition locally we can test the validity
of any of the conditions (a)-(d) in the finitely generated subgroups of G.
The fact that G satisfies the double chain condition implies that G is a torsion
group all of whose subgroups are finitely generated. Therefore all locally
finite groups occurring in the proof are finite. It is quite obvious that the
properties (a)-(d) of a group are inherited by its factors.

Property (a) implies (b). Assume that this were false. Then, there exists
among the groups with double chain condition a group G which possesses
property (a) although G, is not finite. Because of the minimum condition
there exists a minimal subgroup M of G, which does not possess property (b).
Because of the maximum condition there exists an epimorphic image W of M
with the following properties"

()
(2)

The subgroup W, of W is not finite.
If F is a proper factor of W, then F, is a finite subgroup of F.

From (2) one easily deduces

(3) W,- W.

If W were a primary group it would be finite by (a, 2) and (3).
tradicts 1 ). Hence

This con-

(4) there are at least two W-relevant primes.

Since W W is (, a)-dispersed by (a, 1 ), it follows that W is not simple
by (4). Hence there exists a normal subgroup K of W with 1 c K c W.
Because of (2) and (3) the proper factors K and W/K are finite. Therefore
W is finite too. This contradicts (1) and it follows that (b) is a consequence
of (a).

Property (b) implies (c). From (b) it follows that F is a finite subgroup
of every factor F of G. Hence (c, 1 follows trivially from (b).

If a is a p-element with p e , then a is contained in the finite and (, a)-
dispersed 0-subgroup G of G. Denote by the set of all primes r e with
r a p. Because of the (, a)-dispersion of G the set G of all -elements of G
is a characteristic subgroup of G, since it is characteristic in G, and p is a
a-minimal prime of GIGs. Therefore the set H of all p-elements of G/G,
is a characteristic subgroup of G/G since it is characteristic in G/G.
Since H is a finite p-group, the terminal member of the lower central
series equals 1. Since a is a p-element of G we have age e H,. Hence, if b
is an arbitrary element of G there is a positive integer m, with a(m)

o b e G,,
because H < G/G,. Thus it is clear that (b) implies (c, 2).
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Condition (c, 3) is satisfied vacuously, since a factor of G generated by
O-elements is finite by (b).

Property (c) implies (d). Clearly (d, 2) and (d, 3) are immediate con-
sequences of (c, 2) and (c, 3).
Assume that the group G satisfies condition (c), but does not satisfy (d, 1 ).

Then there exists a o-factor U of G, which is not finite and (, a)-dispersed.
Because of the double chain condition there exists a factor W of U with the
following properties"

()
(2)
(3)

W is a 0-group and satisfies the condition (c).
W does not satisfy (d, 1 ).
Proper factors of W satisfy (d, 1 ).

Assume there exists a normal r-subgroup R 1 of W with r e . Then
(c, 1) yields the finiteness of R and from (1) and (3) follows the finiteness
of W/R. Thus W is finite. If p is an arbitrary a-minimal prime of W,
and if a is a p-element and b an arbitrary q-element of W with q p, then
all but a finite number of elements a(’) b equal 1 by (c, 2). Application of
[2, Korollar 5, S. 242] yields that the set Wp of all p-elements of W is a charac-
teristic subgroup of W. This is true for every a-minimal prime of the finite
group W. Combining this result with property (3) we see that W satisfies
condition (d, 1 which contradicts (2). Hence

(4) there is no normal r-subgroup of W different from 1 with r e .
By 1 and the maximum condition W can be generated by a finite number

of o-elements. Hence there is a a-minimal prime p of W by (c, 3).
Now, applying Lemma 1, it follows by (c, 1), (3) and (4) that

(5) different p-Sylow subgroups of W have trivial intersection.

From (5), (c, 2) and Lemma 2 we deduce that the subgroup T of W
generated by all pr-elements of W is contained in the normalizer of a p-Sylow
subgroup A of W. Of course A is different from 1, because p is a W-reievant
prime of W, and T is normal in W. From the construction of T it is clear
that WIT is a p-group. From property (c, 1) follows the finiteness of WIT.
Hence application of Lemma 3 yields A <:l W contradicting (4) and from this
contradiction it follows that (d) is a consequence of (c).

Property (d) implies (a). Obviously (d, 1) implies (a, 2). Assume that
there is a group G which meets the requirements of (d), but not those of (a).
Then G is not a subgroup of G by (d, 1). From the double chain condition
follows the existence of a factor W of G with the following properties"

()
(2)

W is not 0-closed.
Proper factors of W are 0-closed.

From (1) we deduce the existence of two 0-elements the product of which
is no 0-element. Because of (2) the group W is generated by these elements.
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Hence

(3) W is generated by a finite number of 0-elements.
From (d, 3) and (3) follows the existence of a a-minimal prime p of W.

Assume that W contains a normal p-subgroup K 1 of W. Then by (2)
the group W/K is O-closed. Hence (W/K) W/K and because of p e

follows the 0-closure of W contradicting (1). Thus we have derived:

(4) There is no normal p-subgroup of W different from 1.

Now, applying Lemma 1, it follows by (d, 1 ), (2), (4) and the a-minimality
of p that

(5) different p-Sylow subgroups of W have trivial intersection.

From (5), (d, 2) and Lemma 2 we deduce that the characteristic subgroup
T of W, generated by all 0’-elements of W, is contained in the normalizer of a
p-Sylow subgroup A 1 of W. From (d, 1) and the construction of T
it follows that W/T is a finite and (, a)-dispersed -group. Since p is a
a-minimal prime of W it is a-minimal in WIT too, and the p-elements of
W/T form a finite normal subgroup of WIT which contains AT/T. Now
application of Lemma 3 yields A <:1 W which contradicts property (4). This
proves that (d) implies (a).
Thus we have completed the proof of the equivalence of the properties

(a), (b), (c) and (d) for groups with double chain condition, whereof follows
the validity of the theorem from what we had remarked at the beginning of
the proof.

Proof of Corollary 1. It remains only to prove that property (c) of Corollary
I implies (a). We may confine ourselves to prove this for finite groups, since
(a) is a local property.

If (a) were not a consequence of (c), then among the finite groups satisfying
(c), but not (a) there is a group G of minimal order with the following prop-
erties"

(1) G is not a subgroup of G.

For otherwise G, would be (, z)-dispersed by (c, 1 and (a) would be a
consequence of (c).

(2) If U is a proper subgroup of G, then U is a characteristic subgroup
of U.

This follows immediately from the minimality of G, and the fact that (c)
is inherited by subgroups.

(3) There is no normal O-subgroup of G different from 1.

For, if K 1 is a normal 0-subgroup of G, then G/K satisfies condition
(c, 2). If U/K is a 0-subgroup of G/K, then U is a 0-subgroup of G. From
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(c, 1) it follows that U is (, z)-dispersed and so is U/K as an epimorphic
image of U. Hence G/K satisfies condition (c, 1) as well. From the mini-
reality of GandK 1 we deduce that (G/K) is a subgroup of G/K. Since K
is a -group, we have (G/K) G,/K. Therefore G is a subgroup of G
contradicting property (1). Thus (3) is valid.

Let K be a proper normal subgroup of G. From (2) it follows that K is a
characteristic subgroup of K and therefore normal in G. But there exists no
normal 0-subgroup of G different from 1 by (3), hence K 1, and we have
derived

(4) every proper normal subgroup of G is a ’-group.
Because of (1) the set G is different from 1. Hence there are primes in, which are the orders of elements of G. Since G is finite, we can find a

-minimal prime with this property. Denote that prime by p.
Now, applying Lemma 1 wededuce from (c, 1 ), (2), (3) andthe z-minimality

of p that

(5) different p-Sylow subgroups of G have trivial intersection.

If A is a p-Sylow subgroup of G, then A 1, because p was chosen to be a
prime dividing the order of G. Applying Lemma 2 we deduce from (c, 2),
(5) and the z-minimality of p, that the characteristic subgroup T of G
generated by all ’-elements of G .is contained in the normalizer of A in G.
By (3) we have N(A, G) c G and applying (4) we get that T is a normal
’-Hall-subgroup of G. Now a theorem of Schur [4, Theorem 25, S. 162]
yields the existence of a subgroup V of G with TV G and V n T 1.
From the construction of T it follows that V is a -group, which contains a
p-Sylow subgroup of G. Since p-Sylow subgroups of finite groups are con-
jugate we can assume A _c V. From (c, 1 we have that V is (p, )-dispersed
and from the g-minimality of p follows A <:l V. Then 1 A < TV G, a
contradiction which proves the corollary.
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