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Introduction
The martingale convergence theorems were first utilized by Doob [2, p. 343]

in giving a new proof of the Lebesgue differentiation theorem of functions of
bounded variation on a real line. Later Chow [1] gave a proof of the Lebesgue
differentiation theorem of interval functions of bounded variation by applying
convergence theorems of partially ordered martingales. In 1959, Ward’s
differentiation theorem [8, p. 137, p. 141], among other things, has been
generalized by Rutowitz [7] to cell functions by introducing the concept of
the p-bordering property. In this paper, by following Doob’s approach in
[3], we are able to obtain a convergence theorem (Theorem 1), which in-
cludes some martingale convergence theorems and extends a theorem of
Rutowitz [7, Theorem Ii] to the case of a non-atomic basis. Theorem 4
puts the above cited Ward’s theorem into martingale setting.

1. Definitions and notation

Suppose that (, fi, P) is a complete measure space with P(f) 1. A
stochastic basis (ff, A) is a net, where A is a directed set, fit is a sub-a-algebra
of ff for each e A, and ff fi;, if < i’. A stochastic process (x, lye, A)
is a triple, where (ff, A) is a stochastic basis and x is an ff-measurable
function. P* is the outer measure induced by P and the integral f x will
mean f x dP. For a set A, the ff-cover of A is denoted by A and the
if-cover by A*. A B will be the proper difference of sets A and B, and
I(A) the indicator (or characteristic) function of the set A. The function
x is sometimes written as x(). x q is the Lq-norm of x. For sets A
andB, AeffB, ifA BandAeY.

DEFINITION 1. A stochastic basis is said to satisfy the Vitali condition
Vq for 1 <_- q _<- , if for every c > 0, every set A and every net (K, A) of
ff-sets such that lira supa K A a.e., there exist > for any given , and
ff-sets L c K so that

(1.1) P*(A B) <
where B U L, and so that

(1.2) IIE I(L,) I(B)[I q < s.

The conditions V1 and V are called respectively the weak and the strong

Received March 18, 1964.

569



570 v.s. cIow

Vitali conditions. If A is a countable linearly ordered set, then any stochastic
basis (ff, A) satisfies V. The ordinary differentiation basis satisfies the
strong Vitali condition V (see [1] or [4, p. 209]; in [1]V has been denoted
by V0), and the strong differentiation basis has the property V1 (see [4, p.
21o]).
A stochastic basis is said to satisfy the Vitali condition V’q, if it satisfies

the conditions of Definition 1, replacing lim sup by ess lim sup and A by A*.
Both definitions of Vq and Vq* are due to Krickeberg [5], [6]. (He denotes
Vq and Vq* by Vq* and Vq .)

DEFINITION 2. Let b > 0, 1 =< q =< oo and W [supalx()l < b].
(x, ff, A) is said to satisfy the condition (A, b)q, if for every 0 e A there
exists 0 < c < oo such that for any given /tl,..., i in A( > ti0),
and L e W ff, there are >_ ti (i 1, 2, m) and ff,-measurable func-

" " y’ < c, Y" < c so that theretionsy’ y’(), y y (v) with [Iq l[
exist wa --< ru,. =<’" _-< w, r and ff,-measurable functions

Ifx x(),x x(r)satisfyingfori= 1,2, ,nandj n+ l, ,m
f!(1.3) x x(,) x. inW, x -< cin L, x >- -c in L.,

(1.4) x(i) _<_ y’+ x,
iAi i--A

where A [max_, z(n,) >= b] nd B. [min_ z(.) _-< -hi.
DEIIIIOl 3. A sochsio process (z, ,, A) is martingale, if z, is

inegmble, nd if for ’ <_ (z, ,,) z, .e., where (z ,’) is he
Rdon-Nikodym derivative of he integral of z, relative o

If (z,, ,, &) is martingale nd sup z II -< K < , hen he con-
dillon (A, b) is sfisfied for every b > 0, by aking n >- (i 1, 2,

y’ " " -b]m), y x(), , ,x min [x(r), b],x max [x(r),
and c > max [b, K].

2. Martingale convergence theorems
THEOREM 1. If 1 <-- q < oo, p- + q- 1 and (x, A) is a stochastic

process satisfying the Vitali condition Vq, then x converges a.e. where

supA ]X < b,

provided (A, b , is satisfied for some b > O.

Proof. Suppose that it is false and ti0 e X. Then there exist two real
numbers a < d and a set W with P*(W) > 0 such that

(2.1) sup]x[ < b, lim sup x > d > a > lim infa x
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on W. Put

(2.2) K W (x, > d).

Then lira sup K, W. By the Vitali condition V, for 1 > e > 0 there
exist i > 0 and Lie K, $,, i 1, n, such that

(2.3) P*(W- A) < e, l] ] I(n,) I(A)[14 < e,

where A O L. Put

(2.4) H, AW (x, < a).

By Vq again, for > , i I, n, there exist > and L e H, ,,
j n + 1, m, such that

(2.5) P*(AW- B) < e, + I(Li) I(B) [ < e,

where B O+ L. By the condition (A, b), there exist c, , y’, y x,
x and v.: (i 1, n, m; k 1, k) satisfying the conditions
in (A, b). For each i= 1,..-, n, let sbe the first k N k such that
x(v.) b if there is one, and s otherwise. Then for i 1,... n

() V’ + x,
(*<) (,=)

(2.)
d P(g) N ’+ .

(<) ()

Choose so large such ghag P(W W) < e for > . hen

s [2r(

< ce + cP( )
+ c(. < .

Hence

(2.7) x < 2ce.

Since q < =, we can assume that 0 is so large that P(W
for every > 0. Then

(2.8)

W) <
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PutD ULi(si < ).
w%0,

By (2.3),

Hence

SinceW,* (s )foreachiandDA

From (2.9), (2.7) and (2.6),

y’ < 2c.

(2.10) d P(L) <-_ 4c +
Similarly,

(2.11) a P(Lj) >-- --4ct + ,
n+l n-l-1

Ui--1TPut LI L1 and L L- for i 2,
and L L -r’,.+ for j n + 2, m.

t! l!L’ and z xj on each Lj. Then

(2.12)

Similarly,

zt fBW*

(2.13)
+

Hence

"4- Ct.

z" <= cP[ A B) W,*]

<- cP(A B)

<- P*(AW- B) -4- P*(A W) < 2s.

From (2.10)-(2.14), we have

(2.15) d P(L) aZ+i P(L) < 12 c.

Thus we completed the proof.

THEOREM 2. Let (, A) satisfy the Vitali condition Vq and (x, ff, A)
be a martingale with supa x [[ < , where p >-1 and p-+ q-= 1.
Then x converges a.e.

x’

_
z’ A-c ,P(L,) P(A) <__

W*

.., n and L.+I Ln+l
Define z’= x on each
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Proof. For p 1, it follows immediately from Theorem 4.2 of [1] that
lima x exists a.e., and for p > 1 states that lima x exists a.e. where both
lim supa x and lira infa x are finite. Hence we need only to prove that
under the conditions of Theorem 2, both lim supa x and lim infa x are finite

Assume that W (lira supa x ) and P*(W) > a > O.
Vq, for any 0 < K < , e > 0, and t0 e A, there exist 1, 2,
ff sets L [x() > K] such that > o and

(2.16) P(A) > a, II ’ I(L) I(A) , < e,

whereA L. Take > (i= 1,2,...,m). Then

Hence we arrive at a contradiction and P(W) O. Similarly,

P(lim infa x ) 0.

From the previous proofs, immediately we have

COROLLARY 1. Both Theorems 1 and 2 hold, if we replace Vq by V’q, sup by
ess sup and convergence by essential convergence.

Corollary 1 completes a theorem due to Krickeberg [5, Theorem 3.5] on
essential convergence of martingales of decreasing stochastic basis.

Added in proof. In a recent paper of K. Krickeberg and C. Pauc (Bull.
Soc. Math. France, vol. 91 (1963), pp. 455-543), the essential convengence
part of Corollary 1 was proved by a different method.

3. A convergence theorem for martingales
generated by cell functions

Let be a family of if-sets with positive measures. Each element in is
called a cell. Two cells are said to be non-overlapping, if their intersection
is a null set. A partition of a set X t2 is a sequence of non-overlapping
ceils I with (JI X and any cell meets at most a finite number of I.
For a family 9 of ceils, each cell in 9 is called a 9-cell. A (9) will be the
union of all 9-cells, 9 the family of cells which are finite unions of 9-cells,
and for a set X, 9X is the family of all 9-cells which are subsets of X. A com-
plex is a finite family .of non-overlapping cells. For a complex , define
P() P(A ()). For two families 9 and C of cells, if 9 c , we say
that C refines 9, or C is 9-fine, denoted by 9 < . For two complexes
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and b, b is said to be a bordering complex of , if every ,-cell is con-
tained in some E%ell and no E-cell is included in E. For a cell I, a parti-
tion of I is said to be p-bordering (p > 1), if for each cell J e and each
complex : c J with A (,) J, there exists a bordering complex of

with c nJ and P(b) <= pP(). will be said to have the p-bor-
dering property, if to every cell I and every complex of subcells of I,
there corresponds a -fine p-bordering partition of I.
Assume that the family A of all partitions k of 2 forms a directed set with

respect to the order > (refinement). For each k e A, let fix be the a-algebra
generated by the k-cells.

THEOREM 3. Let (xx, fix, A) be a martingale and have the p-bordering
property with 1 < p < oo. Let B be an xo-cell, W [supx>xo xxl < b] for
0 < b < , and c 2pb. For any given )1, M,..., ),, ..., ), in

A(x > x0)

and ffx-sets L c BW;* there exists > , i 1, 2, m in A such that

(3.1) fL x(h) <- cP[L(x(v) >= b)] + fL x()(,), i= 1,..., n

fx(k) --cP[L(x(v) <- --b)] + f x()(v),__>
(3.2) ’[(,)>-bl

where

(3.3)

j=n+l,...,m,

x,

(3.4)
’) c

if w el e v, IW ,
i= 1,...,n; j n+ 1,...,m,

if e l e v, IW ,
i= 1,... ,n; j n + 1, ,m.

Proof. We can and will assume that each L is an ffx-cell. Let ’ be a
partition of 2 such that v’ > k, i 1,... n,..., m. Let v’B.
Then is a complex and L e for each i 1, m. By the p-bordering
property of g, there exists a -fine, p-bordering partition of B. Put

n ’(-- B) u.
Then, neA and > ’ > , i= 1,..., m.
let [IIIeL,IW ]. If3 ,then

[ I() I<bl Ix(/) I<b]

[ x(’)

ZL i[x()<b]

For each i 1,... n,
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If A() L, then since L c W;*

f,. x(,) <_ >_ + <_cP(L) cP[L(x(n) b)] cP[L(x(n) b)]

cP[L(x() <- b)]-b f x(’)()
[()_--b]

cP[L(x() >= b)] -t- f X()().
[x()<b]

Now assume that and L. Since A() Let and
c L, by the p-bordering property of , there exists a complex L

such that every -cell is contained in some -cell, IW for every -cell
I, and P() <- pP(). Hence

(i) (i b) (i b)-A (,i)

<-: bP(3) + b[P(,) P(3)] _-< 2bP(3) _-< cP().
Therefore

f x(X)= f x(v)= f x() + f(:) -A()

<= cP() W f x()
-,()

<-_ cP[A()(I x(n) >- b)] + cP[A()( x(n) < b)]- f[L--()] [1() I<b]

<-_ cP[L(I x(v) < b)]-[- / X() ().

Since by (3.4)

fL x<’ (7) cP[L(x(v) --b)],
[() _-bl

f x(h) cP[L(x(v) b)] + f x((V).

Silarly we can prove (3.2).

THEORE 4. Let (xx, fix, A) be a martingale satisfying the weak Vitali
condition V and have the p-bordering property with 1 < p < . Then
xx converges a.e. where sup [xx[ < .

Proof. Theorem 3 states that (xx, fix, A) satisfies the condition (A, b),
for every b > 0. Therefore, Theorem 4 follows from Theorem 1 immedi-
ately.
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Theorem 3 includes Theorem II of Rutowit’ [7], which in turn (See [7,
p. 29]) includes a theorem of Ward [8, p. 141].
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