ON A CLASS OF BINOMIAL EXTENSIONS!

BY
P. M. Coun

1. Introduction

Let K be a field (not necessarily commutative) with a subfield k. Then
the left and right dimensions of the extension K/k need not be equal, as was
shown by an example, in [2], of an extension of right dimension two and left
dimension greater than two. It islikely that in this example the left dimension
is in fact infinite; this seems difficult to verify directly, but with a little more
trouble one can construct an extension which is easily seen to have right di-
mension two and infinite left dimension.”

The object of this note is to give such a construction and to show more
generally that for any finite n > 1 there exists an extension of right dimension
n and infinite left dimension. Moreover, the centre of the extension can be
almost any preassigned commutative field (see Theorem 5.1 for a precise state-
ment).

2. Pseudo-linear extensions

Let K be a field and k a subfield; then K may be viewed as right k-space or
as left k-space. We denote the corresponding dimensions by [K:k]z and
[K:k]. respectively. We shall say that K/k is finite of degree n if [K:k]z = n
is finite. An extension K/k is called pseudo-linear, if K is generated, as a ring,
by a single element a over k such that

(1) as = aoy + a (aek).
If we exclude the trivial case a ¢ k, when K = k, then the mappings
S:ta—a, D:o— a

are uniquely determined and it is easily seen that S is an endomorphism of k,
while D is an S-derivation. Moreover, since the kernel of S is an ideal of K
not containing 1, it must be zero, i.e., S is necessarily 2 monomorphism. Note
that a quadratic extension (i.e., of degree two) is always pseudo-linear [cf. (2)].

It follows from (1) that K is spanned by the powers of a, as right k-space.
If all these powers are linearly independent, then we just have the skew poly-
nomial ring kfa; S, D]. Clearly, this is not a field, so the powers of a cannot
all be right k-independent over k, i.e., a satisfies an equation with right co-
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efficients in k. As in the commutative case one sees that the monic poly-
nomial of least degree with a as zero is uniquely determined and if the degree
is m, then [K:k]z = n. The following formula for the left dimension of a
pseudo-linear extension generalizes Theorem 3 of [2].

TuroreEM 2.1. Let K/k be a pseudo-linear extension of degree n, with endo-
morphism S; then

(2) Kikle = 1+ ikl + ek + -+ + [e:k*)2 7
In particular
(3) [K:E]lL > [K:k]g

with equality if and only if S is an automorphism.

Proof. By hypothesis K contains an element a such that 1, a, --- ,a" "isa
right k-basis for K, and
aa = aaS + oD (aek).

Define Ky = k, Ki = aK;a+ k(i =1,2,---,n — 1); then
k=K, cKi ¢+ cKun1 =K,
and each K is clearly a right k-space. It is also a left k-space, because for
>0 aK; = aaK, ; + ak = aaSK,_y + aDK, 1 + ak C K;
if we assume that K;_, is a left k-space. Thus the result follows by induction.
Let (ua) be a left k°-basis for k; we assert that the set of elements
(4) GUR LR, o Uy g
where (\i_1, - -, No) ranges over all ¢-tuples (for fixed 7) is a left k-basis for
K; (mod K;1). For, given a ek, we have
= Do Uy = D Oy Usy Ung = e = D g Unps t Ung

hence

; i 8¢ gi—1 _ i gi—1
a’a = Z Aoy, ;oo ngUn;_y 0t Ung = Z Qng_yeehg AUN_y 0 U (mod Ki—l)

which shows that the elements (4) span K; (mod K;_,).
Conversely, if

D auf,_, - u, =0 (mod K;4)
then o .

Z a’1al;i—1“‘)\0 u‘gi—l o n =0 (mod Kiy);
hence ) -

Z a‘;i—l“"\o uii-l sy = 0.

Since the w’s are left k°-independent, we have

8% gi—1 8
DOy g Ungy Uy = 0 forall Mo,
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and since S is a monomorphism, we can cancel an application of S. Repeating
this process, we find after ¢ steps that ax;_,..., = 0 for all suffixes, hence the
elements (4) are left k-independent. This proves that the dimension of
K./K._, as left k-space is [k:£"]% , the number of elements (4), and now (2)
follows by addition. The rest follows because [k:k°], > 1, with equality if
and only if k* = .

3. A construction for binomial extensions of prime degree

A pseudo-linear extension K/k is said to be binomial if it has a generating
element a which satisfies a binomial equation over k:

(5) = N=0 (Nek).

We shall not write down the conditions for an arbitrary equation (5) to deter-
mine a binomial extension, but confine our attention to a special case which
will be used later.

We recall that if E is any field with endomorphism S and S-derivation D,
then the ring E{x; S, D] of skew polynomials, Z &'a; , with commutation rule

oar = zaS + oD

is an integral domain satisfying the right multiple condition of Ore [4], and
hence it can be embedded in a field. The least such field is determined up to
isomorphism and will be denoted by E(z; S, D).

THEOREM 3.1. Let p be a prime, E any field with an endomorphism S and
assume that E conlains a primitive p* root of 1, w say, which lies in the centre of
E and is left fixed by S.  Let D be an S-derivation of E such that

(6) DS = wSD

and put K = E(t; 8, D). Then S, D may be extended to K by putting

(7) 8 = wt, D= (1 — wit

and with these definitions

(8) ct = teS + ¢D forall ceK

Moreover, e = S is an endomorphism of E, and § = D" is a o-derivation, and if
k is the subfield of K generated by t* over E, then k = E({*; 0, 8), and K/k is a
binomial extension of degree p.

Proof. Since o = 1, we have po” " (wD) = 0; now E has primitive pth
roots of 1 and so cannot have characteristic p; hence we may divide by p and
conclude that wD = 0. This shows that w lies in the centre of K.

In order to show that S, D may be extended to E [¢; 8, D] so as to satisfy (7),
we need only verify (8) for monomials, by linearity. By (7),

("a2)S = "t" af,
(t"o)D = D pa D (1" a)S + " aD

- tn+1(1 _ w)(l + w4+ wn_l)aS —+ t".aD;
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hence (t"a)D = (1 — o™)t"™ &S + t"-aD. It follows that
t(t"a)S + (t"a)D = " aSe” + (1 — ") t"aS + t"aD

= "8 + {"aD

= t"at
which checks (8). Thus S is an endomorphism of E[t; S, D]; since it is one-
one, it can be extended to an endomorphism of the quotient field E(¢; S, D) = K
in a unique manner (cf. [6] for the commutative case). Likewise, D is an
S-derivation of E[t; S, D], which can be extended to K.

That ¢ = S” is an endomorphism, is clear. Note that so far we have not

used equation (6) or the fact that w is a primitive p* root of 1. These

facts will now be used in showing that 6 = D” is a o-derivation. For this
purpose we rewrite (8) as an operator equation

(9) R = LS + D.

Here R, L indicate right and left multiplication by ¢ respectively and S, D
indicate application of S, D to the coefficient in E. With this convention,
SL = LS, and DL = LD. Thus

R’ = (LS + D)" = 2. Lf«8, D)

where f:(S, D) represents the sum of all products with ¢ factors S and p — ¢
factors D. We get these terms by first writing down S°D”*, and then shifting
a factor S past a factor D, one at a time. By (6) each such interchange
amounts to multiplication by w, so that altogether we have

f(8,D) = 8D 1+ w+ & + -+ + )

(Cpi = pl/2lp — Y.
The coefficient on the right is zero unless 7 = 0 or p, therefore

(10) R? = LS + D".
In terms of the action on E this states that
at’ = tfac + ab (aeRE);

hence the subfield k generated by ¢* over E is actually of the form k(i”; o, 8).

In order to see under what conditions Theorem 3.1 is applicable, we take a
field F with an endomorphism S. Consider the ring R = Flx] of polynomials
in 2 over E (with commutation rule ax = za, a ¢ F), and put

fx) =1+z+2"+ -+ + 2"

Then fR is a two-sided ideal, and the quotient R/fR is again a field, provided
that f is irreducible over F. Clearly this is so if and only if F has charac-
teristic prime to p (possibly zero) and the equation
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has no solution 1 in F. Under these circumstances the quotient £ = R/fR
is again a field, an extension of F, and moreover S may be extended to E by
putting S = x; with this definition f(z) is left fixed, so that S is well defined
on E. Thus we can always adjoin a primitive p* root of 1 to F, unless one
is present already or F has characteristic p. In the latter case the con-
struction of Theorem 3.1 is modified as follows:

TurOREM 3.2. Let E be a field of characteristic p, with an endomorphism S
and S-deriation D such that

DS = SD.
If K = E(t; 8, D), S and D may be extended to K by putting
tS=1¢ th=0

and with these definitions (8) holds. Moreover, ¢ = S* is an endomorphism of
E and 8 = D" a o-derivation, and if k is the subfield of K generated by t* over E,
then k = E(1%; 0, 8) and K/k is again a binomial extension of degree p.

The first part of the proof is the same as for Theorem 3.1, taking w = 1.
To prove (10) we simply raise both sides of (9) to the p* power and note
that now all operators commute: (10) follows because we are in charac-
teristic p.

4. Construction of the example

We begin by constructing, for a given prime p and given commutative
field F (containing all p** roots of 1) an extension K /k of degree p and infinite
left dimension, with the centre of K equal to F. Later we shall see how to
modify the construction so as to obtain extensions of arbitrary (composite)
degree.

Let p be a prime and F a commutative field containing all p** roots of 1.
For F of characteristic p (or for p = 2) this is no restriction; when F has
characteristic prime to p, it means that F contains a pt root of 1 other than 1.
We denote this by w, and take w = 1 in case the characteristic of F is p.

Let A be the free associative algebra over F on a countable free generating
set B = {a, ba} where7 =0,1,2, --- /A =0, &1, £2, ---. We totally
order B by taking first a and then the b, in the lexicographical order of
suffixes. Let S be the endomorphism of A over F defined by

(11) aS = wa,  baS = bix.

Further, denote by U the set of basic products in B, relative to the ordering
just defined. Formally, these are just certain products of elements of B,
bracketed in a certain way (cf. [2]). Clearly U is again totally ordered, with
a as first element. We denote by U; the set of basic products #a.

It is clear from (11) that S is an order-preserving mapping of B into itself
(apart from the scalar factor w attached to a), so if [u] is a basic product then
[uS] is again basic, except for a factor o*. We now interpret the basic products
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in A as follows (ef. [2]). If ueB, then [u] = w;if [u] = [[v][w]] is basic of
length > 1, then w < v and v > a. In this case put

plw] — [w]lp] if w # a,
(12) [ollw]]l = {

le — awS] ifw = a.
It follows that the ascending monomials in the basic products

P = UrUs *** Uy (uiEU,uls"'Sur)
form a basis of A. We define the grade of p as

o(p) = 22 [(ws) — 1]
and in general for f = 2 poy (ap € F) put

v(f) = min {v(p) | &, # 0}.

It follows as in [2] that this defines a filtration on A, whose associated graded
ring gr (A) has the form R[a; S] (skew polynomial ring) where R = F(U,)
is the polynomial ring over F in the elements of U, as commuting indeter-
minates, with the endomorphism S induced from 4. Since R[a; S] is an Ore
domain, it follows from the embedding theorem in [1] that A can be embedded
in a valuated field V, and S extends to an endomorphism of V, again denoted
by S. Let D be the inner S-derivation induced by a, i.e.,

2D = za — a-28 forallzeV.
Then 28D = z8a — a-2S°, DS = xS-a8 — aS-xS’, whence
DS = wSD.

Denote by K the subfield of V generated by B over F, then K admits S and
D and its centre is F. Further, if & is the subfield of K generated by a” and
U, over F, then k again admits S and D. We shall show that [K:k]; = p,
[K:k]. = «. Since K/k is a pseudolinear extension, the first assertion will
follow if we can show that a ¢ k, and the second follows by Theorem 2.1 once
we have shown that [k:%°], = .

(i) 'The proof that a ¢ k is precisely as in [2] and will not be repeated here.

(i) To prove that [k:k"]. = o, it is enough to show that the elements
b are left k*-independent; in fact we shall show that they are left K*-in-
dependent. To see this we first observe that K* is the subfield of V generated
by a, ba (¢ > 0) over F. Now if there is a relation

(13) 2 aba=0 (cr € K¥)

with coefficients not all zero, say ¢, # 0, then we can express by in terms of a
and the by # by over F. Let W be the closed subfield of V' generated by a
and the b 5 by over F. The construction of V by the embedding theorem
shows that W is just the valuated field of fractions of the free associative
algebra on g and the bi, 5 by over F, using the same definitions (11) and (12).
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Thus there are no special relations in W, due to the presence of by in V.
Since a and the b, (including by) form a free generating set of A, it follows that
b ¢ W, and this contradicts the existence of a non-trivial relation (13).
Hence the b are left k°-independent and it follows that [k:k%], = .

5. Extensions of arbitrary degree

With the help of the example constructed in Section 4 it is easy to obtain
extensions of any finite degree and infinite left dimension.

Let » > 1 be given and let F be any field. If the characteristic of F is
prime to n, assume also that F contains a root of 2" = 1 other than 1. Then
it follows that F' contains a primitive p* root of 1, say w, where p | n. If the
characteristic of F divides n, we set w = 1. In either case, by the results of
Section 4, there exists an extension K/k in which K has centre F and
[K:k]R =P, [K:k][, = 0,

Now any permutation of the second suffix of the b is an automorphism of
A which extends to an outer automorphism of K, and it is clear that the group
of these automorphisms acts faithfully onk. Thusk has outer automorphisms
of any finite order. Write n = pn; and let a be any outer automorphism of
A of order n;. The fixed field k, then satisfies [k:kol: = [kikdz = m
(cf. [3] p. 163) and hence

[K:kolzg = pmi = n, [K:ikoly = oo.
This completes the proof of

TraEOREM 5.1. Let n be any integer greater than one, and F any field such that
if char F ¢s prime to n, then F contains a root of x* = 1 other than 1. Then there
exusts a skew field K with centre F, and a subfield k of K such that

[K:k]eg = n, [K:k]l. = .
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