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1. Introduction

In previous pper [7], the uthor considered generalized differential
system that ws equivalent to type of linear vector Riemnn-Stieltjes in-
tegral equation, nd which included s special cses the real scalar generalized
second-order differential equations occurring in the works of Sz.-Ngy,
([10] nd [9, pp. 247-254]), nd Feller [3], nd lso certain systems with
"interface" conditions ssocited with the ccessory differential equations for
simple integral non-prmetric variational problem. The considered systems,
however, did not include such modified ccessory systems for vritionl
problems of Lgrange or Bolz type. Moreover, the treatment of [7] ws
limited to first order systems of order 2n, in which the component vector d-
mitring possible discontinuities ws of dimension n. The present pper dels
with u generalized differential system whose form is inclusive enough to remove
these two limitations. Moreover, ttention is focused on the central role
played by non-linear mtrix integral equation of Volterr type, which will
be referred to s "Riccti mtrix integral equation" in view of its intimate
relution to the Riccti mtrix differential equation. Finally, for generality,
nd Mso for ppliction in the "control formulation" of certain variational
problems, the results re presented in form which for uccessory systems under
classical variational ssumptions, (see, for example, [1, 39, 81]), would be in
terms of canonical variables, but which far exceeds this particular instance.
The basic relationships between the considered generalized matrix dif-

ferentiul system and certain functionals re derived in 2, while 3 is con-
cerned with properties of such system and its udjoint. The fundamental
connections between such systems and Riccti mutrix integral equations re
presented in 4. The important instance of self-adjoint systems is treated in
5, with prticular attention to the interrelations between criteri of non-
oscillation, the existence of solutions of associated Riccati mtrix integral
equations, and the positive definiteness of certain hermitin functionls.
In 6 some of the results of 5 are pplied to special sclr integral equation,
concerning which Cameron [2] initiully rised question of solvability that
was answered by Woodward [11]. Finslly, in 7 there are presented two
theorems that extend earlier results of Hestenes [3], Bliss [2, 87] nd the
uthor [6] on ccessory systems for variational problems of Bolz type.
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Matrix notation is used throughout; in particular, matrices of one column
are termed vectors, and for a vector (y,), (a 1, n), the norm Y [is
given by (I yl 12 -t- + Y )lI. The n X n identity matrix is denoted by
E, or merely by E when there is no ambiguity, and 0 is used indiscriminately
for the zero matrix of any dimensions; the conjugate transpose of a matrix M
is designated by M*. If M is an n X m matrix the symbol M is used for
the supremum of[My[ on the unit sphere {Yll Y 1} of complexm-space.
The relations M >_ N, (M > N), are used to signify that M and N are
hermitian matrices of the same dimensions and M N is a non-negative
(positive) definite matrix. If an hermitian matrix function M(x), a <_ x <_ b,
is such that M(s) M(t) >_ 0, (<_ 0), for a _< s <

_
b, then M(x) is

termed non-increasing (non-decreasing) hermitian on [a, b]. A matrix func-
tion is termed continuous, integrable, etc., when each element of the matrix
possesses the specified property.

If a matrix function M(x) is a.c., (absolutely continuous), on [a, b] then
M’(x) signifies the matrix of derivatives at values where these derivatives
exist, and zero elsewhere. Similarly, if M(x) is (Lebesgue) integrable on
[a, b] then fa M(x) dx denotes the matrix of integrals of respective elements of
M(x). For a given interval [a, b] the symbols h, hk,,3and ?I are
used to denote the class of h / matrix functions on [a, b] which are respec-
tively continuous, (Lebesgue) integrable, (Lebesgue) measurable and essen-
tially bounded, of bounded variation, and absolutely continuous; for brevity,
we write , h, ,h and 9.Ih for 1, hl, , hl and .I1, respectively.
If M(x) e tk S(x) rh, and T(x) then f S[dM]T denotes the
r X s matrix with elements given by the Riemann-Stielties integrals

f S.(x)T(x)dM.(x),
a----1 -----1

and f [dM]T aud a S[dM] designate fa E[dM]T and f S[dM]E, respec-
tively.

2. Generalized linear differential systems
Throughout most of the present section it will be supposed that A(x),

B(x), C(x), D(x), M(x) are matrix functions satisfying on a fixed interval
[a, b] the condition

(,) A enn, Begum, C.mn, Demm, Meffmn.

For c e [a, b], and (U, V) e nk =k, the integral operator f(c, x U, V) is
defined on [a, b] by

(2.1) t(c, x U, V) [C(t)U(t) D(t)V(t)] dt-k- [dM(t)]g(t);

for brevity, 2(x U, V) is written for (a, x U, V).
Corresponding to the system treated in [7], we shall consider here the
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generalized matrix differential system

dV- [CU- DV] dx- [dM]U O,
a<x<b.(2.2M)

L(x[ U, V) -U’ + AU + BV O,

By a solution of (2.2M) is meant a pair (U, V) e ?/nk X 3mk for some posi-
tive integer k, such that

A(xl U, V) =- V(x) 2(xl U V) V(a), a<_x<_b,

and L(x U, V) 0 a.e., (almost everywhere), on [a, b]. It is to be remarked
that the validity of the above equation is clearly equivalent to the existence
of a c e [a, b], and a constant m X / matrix V0 such that

v(x) e(c, x[ U, v) Vo, a<_x<_b.

For the special case of/ 1, in which (2.1) and (2.2) reduce to vector rela-
tions, corresponding small letters’ for U, V will be used. In particular, for
frequent reference we exhibit the generalized vector differential system

dv- [Cu- Dr] dx- [dM]u O,
a<x<b.(2.2)

L(x u v) --u’ -+- Au + By O,

If u0 and v0 are given vectors of respective dimensions n and m, and c [a, b],
there is a unique solution of (2.2) such that u(a) u0, v(a) v0. This
result is a consequence of Theorem 2.3 below. It could also be derived from
the existence of a unique solution of a Riemann-Stieltjes integral equation
similar to that used by the author in [7, 2]. Specifically, if Ul(x) is the
solution of the differential system U’I A(x)UI, U(c) E,, and V(x) is
the solution of the system V --D(x)V1, V(c) E,, then (u, v) is the
solution of (2.2) satisfying u(c) Uo, v(c) Vo, if and only if u(x)
Ul(x)u(x), v(x) V(x)v(x), where u(x) is the (unique) solution of the
integral equation

(2.3) u(x) Uo + aB(t) dt Vo -- B(t) [dM(s)] u(s) dt,

v(x) Vo + f [dM(s)]u(s), and B(x), Ml(x) are defined as

() vi-()(z)v(), () i-c’g + vi- [d] g.

The symbol [a, b] will denote the class of vector functions v for
which there exists a corresponding e such that L(xlv, ) 0 a.e. on
[a, b], and the fact that i" is such an associated vector function will be indicated
by v e ". The subcluss of on which (a) 0 v(b) will be denoted by
0 [a, b], with similar meaning for Correspondingly,
[a, b] will designate the class of vector functions p for which there is a
corresponding e such thut
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Ln(x p r) --p’ + D*(x)p + B*(x)r 0 a.e. on [a, b],

and [a, b] the subclass ofn on which p(a) 0 p(b), with similar
meanings for p e r’ and p r". Finally, for (, ) 9.1 X : and
(p, ) X we define I[n, f; p, o-] I[n, r; p, a, b] as

l"b
(2.4) zI,, ]o + + ]a  *I MI ,,
in terms of which we have the following functional result.

THEOREM 2.1. If (U, V)e X , then the following two conditions are
equivalent:

(2.5) I[u, v; p, (r] 0 for p o.(r;
(2.6) there exist a constant vector " and a Vo e !3, such that

B[v-- Vo] 0 a.e., and A(xlu, v0) / on [a,b].

If (u, v) e 9m and satisfies (2.6), then for o e’ we have

I [u, v; p, r] (p*’Vo dx - p* dvo) 0%0 Ia O,

SO that condition (2.5) holds. Conversely, if (u, v) e X and (2.5) is
satisfied, for w(x) ft(x u, v) we have that w 33,, and for o e"z,

(2.7) 0 (o*’v dx nt- p *dw) p*w] a + p*’[V W] dx

fa O*’[V W] dx.

Now if Y(x) is the solution of Y’ D*(x)Y, Y(a) E, then
(o, z) e 1 ?( with Lez(xlo, z) 0 and o(b) 0, if and only if

(2.8) p(x) Y(x)Y-(t)B*(t)z(t) dt, a

_
x

_
b,

and consequently p e’ if and only if e , p satisfies (2.8), and

(2.9) 0 Y-(t)B*(t)a(t) dt.

The vector function f v w is such that f , and from (2.7), (2.8), and
(2.9) it follows that if p e:then

g(x) -Y*-l(x) Y*(t)D(t)f(t) dt - f(x)

is such that g e and

(2.10) r*Bg dx 0 if re and r* BY*- dx O.
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Condition (2.10) implies that there exists a constant m-dimensional vector X
such that

B(x)g(x) B(x)Y*-I(x)X a.e. on [a, b].

Consequently, if h(x) g(x) Y*-I(x)X, then h :, Bh 0 a.e. on [a, b],
and

(2.11) f(x) Y*-l(x)Y*(t)D(t)f(t) dt h(x) + Y*-I(x)X, a

_
x

_
b.

That is, f is determined as the solution of the Volterra vector integral equation
(2.11) with kernel Y*-(x)Y*(t)D(t) Y*-l(x)Y*’(t), a

_ _
x

_
b. It

may be verified directly that the resolveut kernel for this equation is -D(t),
a_ t_ x_ b, andhence

f(z) h(z) + g*-(z)x + D()[h(t) + Y*-()Xl d, <_ z <_ b.

As DY*- -[Y*-]’ a.e. i follows ha v w f satisfies

y*-(v(x) w(x) h(x) + D(t)h(t) dt + , where’), a)X.

Consequently, if Vo is defined as

Vo(X) w(x) + D(t)h(t) dt -- % a

_
x

_
b,

then Vo ,, B[v v0] 0 a.e., and

Vo(X) a(x u, v) + D(t)h(t) dt + " a(x u, v h) - , a(x u, vo) + ".

THEOREM 2.2. If U I, there exists a v such that u, v) is a solution of (2.2)
if and only if there exists a vl such that u ’v and I[u, Vl p, ] 0 for
p e ’o".

If (v, ) e X : and (o, ) e ?I X :, then

(2.12)

and consequently if u e ’v and o e r: then

I[u, v; p, r] [(z- M*p)*B(v- Mu) -Jl-o*(C- DM
(2.13)

MA MBM)v dx

For brevity, let fi(x),/(x), ((x),/(x) be defined on [a, b] as

A-BM, [ B,
(2.14)

C- DM-- MA MBM, D D- MB,
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and denote by , o,, the above defined classes ,, o, 5D#, 5Dr when
A, B, C, D are replaced respectively by d, , O, D. It follows readily that
n’orn if and only if - Mnissuchthatne orne ";
correspondingly, p e #" or o ’ if and only if M*o is such that
pe’eorpe’e. Moreover, ifue’v then , u, v- Mu is
such that e’ and (2.5) holds if and only if

(2.15) [a, 9;p,] [e*+ *Ogldx 0 fore :a.

Also, an integration by parts of f [dM(t)]U(t) in (2.1) provides the follow-
ing precise derivative result, which is basic for future discussion.

THEOREM 2.3. A pair u, v) is a solution of (2.2) if and only ff ,
u, v Mu is such that , O) e X and is a solution of the vector ordinary

differential system

’- (x)a + (x) o,
a<x<b.(2.16)

-’ + 2(x) + $(x)O 0,

It is to be emphasized that in order for the system (2.16) to be well defined
and have integrable coefficients given by (2.14) it is not necessary that M(x)
be of bounded variation on [a, b]. In particular, (2.16) has integrable coeffi-
cients if A, B, C, D satisfy the conditions of (), while it is supposed merely
that M(x)

3. Ad]oin ssCems
For A, B, C, D and M matrix functions satisfying hypothesis () the

generalized vector differential system

dz- [C*y- A’z] dx- [dM*]y 0,
(3.1) ag x b,

Ln(xl y, z) -y’ + D*y + B*z O,

is termed "adjoint to (2.2)". Corresponding to the notation of 2, the oper-
ators and An are defined as

In particular, (a.1) is obgained from (2.2) upon replacing A, B, , D, M by
D*, B*, *, A*, M*, respeeively, so hag (2.2) is also adoin go (a.1) in he
sense ghus defined. Moreover, under ghis subsgigugion ghe classes , 0 are
ingerehanged wih ghe respeegive classes ,, while for
and (o, e X ghe funegional
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is such that (I[p, (r; 7, ’])* I[7, i’; p, ]. Consequently, results for (3.1)
corresponding to those of Theorems 2.1, 2.2, 2.3 for (2.2) may be stated as
follows in terms of the functional I[7, ’; p, ] defined by (2.3).

THEOREM 3.1. If (y, Z) , X , then the following two conditions are
equivalent"

o.(3.3) 117, ; y, z] 0 for 7 ;
(3.4) there exist a constant vector " and a Zo e !, such that

B*[z--z0]- 0 a.e., and A(xly, zo " on [a,b].

THEOREM 3.2. If y e I, there exists a z such that (y, z) is a solution of (3.1)
if and only if there exists a zl such that y e n:zl and I[7, ; Y, zl] 0 for

THEOREM 3.3. A pair (y, z) is a solution of (3.1) if and only if (, )
(y, z M’y) is such that (, 2) t X I, and is a solution of the vector ordinary
differential system

’ *(x)$ + i*(x) 0,
(3.5) a<x<b.

-’ + D*(x) + *(x) o,
As (3.5) is adjoint to (2.16), the following result for solutions of (2.2) and

(3.1) is a direct consequence of the corresponding result for ordinary differ-
ential systems.

COROLLARY. If (U, V) and (y, z) are solutions of (2.2) and (3.1), respec-
tively, then z*u y*v is constant on [a, b].

The result of the following theorem is of basic importance for the study of
solutions of (2.2) and (3.1).

THEOREM 3.4. Suppose that (7, ) % X : (p, () t, X and there
exist U, V) e np X mp Y, Z) e I,q ,q and h e e Iq such that
7 Uh and p Yk. Then for a

_
c < d

_
b the value of the functional

(3.6) I[7, r; o, c, d] f z*Br - p*CT] dx - p*[dM]7

is equal to each of the following expressions"
d

f {(a Zk)*B( Vh) [L,(x p, z)]*Vh

+ t*Z*(L(x] U, V)h L(xlT, ))

(3.7) + *(Z*U- Y*V)h’} dx

*Y*[d/(x U, V)lh + k*Y*Vh
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d

(o Zk) *B( Vh) I*Z*L(x v, )

+ (/*[Ln(x Y, Z)]* [Lc(xlp, z)]*) Vh

+ tc*’(Y*V- Z*U)h} dx

*Izx( g, zl h+ *z*h I.
The fact that 117, ; p, z c, d] is given by (3.7) may be established by direct

comparison of the involved integrand functions. In turn, the fact that (3.6)
is also equal to (3.8) may be deduced from the preceding result applied to the
adjoint functional I[p, (r; 7, 1 c, d] and the fact that

.r[, ; p, c, d] (r,[p, ; , Ic, d])*.
Of particular significance are the following results which are direct conse-

quences of the above general results for the special instance of h and/ arbi-
trary constant vector functions.

COROLLARY. If U, V)p X ,, (Y, Z)e ?I,q 9q, while
L(x U, V) 0 and L(x Y, Z) 0 a.e. on [a, b], then for a

_ _
b,

(3.9) I[U, V; Y, Z [a, t] Y*[dA(x U, V)] - Y*Vlt,

)*(3.o) Y*V z*u I’a Y*[d/(x U, V)]- U*[d/(xl Y,Z)]

zt. A iccati matrix integral equation

In view of Theorems 2.3 and 3.3, results concerning solutions of (2.2) or
(3.1) are equivalent to corresponding results for the respective systems (2.16)
and (3.5). Entirely analogous to the consideration for the special case
n m, (see, for example, Reid [8; II]), one may show that there exists a
I?V e lm which is a solution of the Riccati matrix differential equation

(4.1) /[l?d] I?V’- /?(x, l?d) 0,

where

(4.2) (x, $) (x) $I(x) -/)(x)Y-
if and only if there exists a solution (, l?) of the differential system

’- (x) + (x) 0,
(4.3)

--’ -t- .I(x) -/(x)l? 0,

with (x) non-singular on [a, b] and I?V(x) ?(x)-(x) on this interval.
The general Riccati equation of the form (4.1) has been considered by J. J.
Levin [5], and the reader is referred to his bibliography for references to other
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studies of related problems, especially of the form (4.1) with n 1, m > 1.
In accord with the remark following the statement of Theorem 2.3, it is to

be noted that the validity of the above comments does not depend upon
M(x) being of bounded variation, and these comments are true under the
following weaker assumption"

(,#o) Aenn, Begum, Cemn, Demm,

Now for 2T_,/, ,/ related to A, B, C, D, M by (2.14), and

(4.4) F(x, W) C(x) WA(x) D(z)W- WB(x)W,

it may be verified directly that if W and I are m X n matrices satisfying

(4.5) I?V(x) W(x) M(x), a <_ x <_ b,

then (x, W) =- F(x, W), and hence tV(x) is the solution of the differential
system

(4.6) /[] 0, rY(s) ,
on a subinterval containing x s if and only if W I?V -+- M is the solution of
the Riccati matrix integral equation

(4.7) W(x) F(t, W(t) dt M(x) + v, x X.

In particular, for X a subinterval containing x s of sufficiently smM1 length
there is a unique solution of (4.7) on X, and in the following discussion many
criteria involve the existence of a solution of an equation of the form (4.7) on
the entire given interval [a, b].

THEOREM 4.1. If hypothesis o) holds, and s [a, hi, then an m X n matrix
is such that (4.7) has a solution on [a, b] if and only if the solution (, r) of

(4.3) determined by the initial conditions (s) E (s) g, is such that
(x) is non-singular on [a, b], and in this case

W(x) M(x) + z(x)-l(x).

If M(x)e3, then an equivalent condition is that the solution (U, V) of
(2.2M) determined by U(s) E V(s) M(s) -4- 2 is such that U(x) isnon-
singular on [a, b], and in this case

W(x) v(x)v-(x).
If I?-0(x) is a solution of/[Vt;0] 0 on a subinterval X, and s e X, let

(x) O(x, 10), q(x) =/(,
be defined as the solutions of the matrix differential systems

O’ + (b + 0)0 O, O()
(4.8)

/-’ +/-(d + rYo) o, /(s)
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and define the n X m matrix )(z, s[ W0) by

(4.9) )(x, s W0) /(t, s Wo)(t)O(t, s Wo) dt, x e X.

As in the case n m, (see Reid [8]), it may be shown that W(x) is a solution
of (4.1) on X if and only if the constant m X n matrix 1 l?d(s) l?d0(s)
is such that the n X n matrix E + )(x, s[ VV0)F is non-singular on X, and
in this case

(4.10) ]?V(x)

Now for ) an n X m matrix and r an m X n matrix the identity
(E + r6)r r(E + )r) implies that the m X m matrix Em + P is
non-singular if and only if the n X n matrix E + )r is non-singular, and
r[E + )r]- [E + rO]-r. Consequently, the non-singularity of the
n X n matrix E -+- )(x, s W0)F on X is equivalent to the non-singularity
of the m X m matrix Em -t- I’)(x, s W0) on this interval, and an alternate
form for W(x) is

(4.11) VV(x) Wo(X)
From (2.14) it follows that if W, Wo are related to respective matrices I?V, l?d0

by (4.5) then

D+ I?Vo D+ WoB, fi + Wo A + UWo,

W(
and in view of the above remarks we have the following theorem, which ex-
tends to systems (2.2) a result of Reid [8].

THEOREM 4.2. Suppose that hypothesis o) holds, s e [a, b], and W Wo(x)
is a solution of (4.7) for , o on a subinterval X of [a, b] containing x s.

If G(x) G(x, s Wo), H(x) H(x, s Wo), and O(x, s lWo) are gefinedby
the differential systems and integral relation

a’ + (D + WoB)G O, G(s) E,

(4.12) H’ + H(A + SWo) O, U(s) E,

O(x,s[ Wo) H(t, s Wo)B(t)G(t, s lWo) dt, x e X,

then W(x) is a solution of (4.7) on X if and only if F o is such that
E, -t- O(x, s Wo)F is non-singular on X, and in this case

W(x) Wo(x) + G(x, s Wo)r[E + O(x, s lWo)r]-H(x, s Wo),

Wo(x) + G(x, s lWo)[E + tO(x, s lWo)]-rS(x,

Correspondingly, the results of Lemmas 2.2, 2.3 and 2.4 of Reid [8] are ex-
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tensible to (2.2). In particular, if (U, V) is a solution of (2.2) with U non-
singular on a subinterval X and W VU-, then for s e X and

K(x, s lW) H-l(x, s lW)O(x, s W),

L(x, s lW) W(x)K(x, s lW + G(x, s lW),
the solution of (2.2) satisfying u(s) 0, v(s) is given by

(u, v) (K(x, s IW) L(x,

Similar to the special case of n m, M(x) 0, as treated in [8, III], two
distinct points s and on [a, b] are termed (mutually) conjqgate with respect to
(2.2) if there exists a solution (u, v) of this system with u 0 on the sub-
interval with endpoints s and t, while u(s) 0 u(t). The system (2.2)
is said to be non-oscillatory on a subinterval provided no two distinct points
of this subinterval are coniugate. Moreover, for a non-degenerate subinterval
X the order of bnormlity of (2.2) is defined as the dimension of the linear
spce A[X] of m-dimensional vector functions v(x) which are solutions of
v’ - Dv 0 and satisfy By 0 a.e. on X; clearly, v e A[X] if and only if
(u, v) (0, v(x)) is a solution of (2.2) onX. If (2.2) has order of ab-
normality equal to d on a subinterval X with endpoints s and t, then there
exists an m X d matrix A(s) such that the solution (U, V) of (2.2) with
U(s) 0, V(s) A(s) has U 0 on X and the column vectors of V(x)
form a basis for A[X,]. Moreover, if W is a solution of (4.7) which exists on
X,, then as in Lemma 3.4 of Reid [8] it may be shown that the column vectors
of G(x, s lW)A(s) form a basis for A[X,] so that )(x, s[W)A(s) =-- 0 for
x e X, and the (n W d) X m matrix

o(t,  lw)

has rank less than m if and only if is conjugate to s with respect to (2.2). It
is to be noted that if n + d < m, then is conjugate to s.

5. Self-adjoint systems
In this section we shall consider generalized differential systems (2.2) and

Riccati matrix integral equations (4.7) for which n m, and the coefficient
matrices satisfy on [a, b] the following conditions:

(5.1) A*(x) =- D(x), B(x) B*(x), C(x) C*(x), M(x) M*(x).
The symbols (5.1; ) and (5.1; 0) will denote the hypothesis that (5.1)
holds, together with the respective condition @ or @0. In particular, (5.1)
implies that F(x, W) defined by (4.4) is now

F(x, W) C(x) WA(x) A*(x)W- WB(x)W,

so that [F(x, W) ]* F(x, W*). Hence if (5.1; 0) holds and for,P 0 the
Riccati matrix integral equation
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(5.2:s) W(x)- f F(t, W(t) dt M(x) +
has a solution W Wo(x) on a subinterval X containing x s then
W W(x) is the solution of (5.2" s) on X for I, in particular, if is
hermitian then the solution W(x) of (5.2:s) is hermitian throughout its
interval of existence. Moreover, (5.1" 0) implies that the classes , 0, ,
0 are equal to the respective classes n,, n,, and the ordinary
differential system (2.16) is identical with its adjoint (3.5). In case the
stronger condition (5.1:) holds, then the functional I[v, ’; p, o] defined by
(2.4) is hermitian on X , so that I[v, ’] I[v, ; v, ] is real-valued on .
By +[0] we shall denote the condition that I[v, ] is positive definite on 0;
that is, 117, i’] _> 0 for v 0:, and the equality sign holds only if v --- 0 and
B" 0 a.e. on [a, b]. The basic criterion concerning non-oscillation of (2.2)
on a compact interval [a, b] is embodied in the following result, which extends
Theorem 3.1 of Reid [7].

THEOREM 5.1. If condition 5.1:) is satisfied, then +[o] holds if and
only if B(x) >_ 0 a.e. on [a, b], together with one of the following:

(i) (2.2) is non-oscillatory on [a, b];
(ii) there exists a solution (U, V) of (2.2M) with U(x) non-singular and

U*V V*U =- 0 on [a, b];
(iii) there exists an hermitian n X n constant matrix , such that (5.2:a) has

a solution W(x) on [a, b];
(iv) there exists a non-increasing hermitian matrix (x) on [a, b] such that

on this interval there is a solution W(x) of

(5.3) W(x) F(t, W(t)) dt M(x) -b (x).

For a system (2.2) the condition (5.1:) implies that +[0] is equivalent
to the corresponding condition for the related ordinary differential system
(2.16), and thus from the result of Theorem 5.1 of Reid [8] applied to (2.16)
we have that +[0] holds if and only if B(x) >_ 0 a.e. on [a, b], together with
either (i) or (ii) of Theorem 5.1. On the other hand, from Theorem 4.1 it
follows that the existence of a solution (U, V) of (2.2) with U non-singular
and U*V V*U =- 0 on [a, b] is equivalent to the existence of a constant
matrix ,I such that (5.2:a) has a solution W(x) on [a, b]. Finally, (iii) im-
plies (iv) with (x) , whereas if B(x) >_ 0 a.e. on [a, b] and (iv) holds
then the established results applied to (2.2) with M(x) replaced by
M(x) - (x) imply that

f [r*Br + n*Cn] dx + n* [d{M(x) + (x) }]7

is positive definite on o and consequently, since (x) is non-increasing her-
mitian, that I[n, is positive definite on o.
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In particular, the basic relation in the proof that the positive definiteness
of I[7, ’] I[7, ’; 7, ’] on 0 is implied by B(x) >_ 0 a.e. and condition (ii) for
the related system (4.3) becomes the following result when translated into a
condition on I[7, ’]. This result is a direct consequence of Theorem 3.4, and
is presented here for specific later use.

LEMM_ 5.1. If (5.1" @) is satisfied, and (U, V) is a solution of (2.2) for
which U*V V*U 0 on [a, b], while 7 ’ is such that there exists an h %
satisfying 7(x) U(x)h(x) on a subinterval [c, d], then

(5.4)
[*B - 7"C7] dx + 7" [dM]7

(r- Vh)*B(r Vh) dx q- h*U*Vh

Application of Lemma 5.1 of Reid [8] to the system (2.16) yields the follow-
ing result for (2.2).

THEOREM 5.2. If condition (5.1"@) is satisfied, and g+[0] holds, then for
7 " there exists a solution (u, v) of (2.2) such that u(a) 7(a), u(b) 7(b)
and I[7, ] >_ I[u, v], with equality if and only if 7 =- u and B[ v] 0 a.e. on
[a, b].

THEOREM 5.3. If condition 5.1: @ is satisfied, and I[7, ] >_ 0 on o, then
either there exists a solution (u, v) of (2.2) with u 0 on [a, b] and
u(a) 0 u(b), or there exists a > 0 such that if II(x) is an n X n nan-de-
creasing hermitian matrix function which is not constant on [a, b] then

30(5.5) I[r/, ’1 >_ (/V[a, b" HI) 7*[dII]r for e ",

where V[a, b" II] is the supreuuu of ’=1 II(t) II(t,,_l) for all partitions
a to< < t, bof[a,b].

If I[7, ’] _> 0 on 0 then for e > 0 the functional I[n, ’] q- e fln dx is
positive definite on 0, and therefore B(x) >_ 0 a.e. on [a, b] by a result of
Theorem 5.1. Consequently, from Theorem 5.1 it follows that if I[, ’] _> 0
on o, and I[7, ] is not positive definite on o, then (2.2) is oscillatory on
[a, b]; that is, there exists a solution (Uo, v0) of (2.2) and xx, x. such that
a <_ xl < x <_ b, Uo(Xl) 0 Uo(X), and Uo(X) 0 on [x, x]. Let
(70, ’o) (u0, Vo) on [x, x], (70, ’o) 0 on [a, x) and (x, b]. Then

0.70 ’o, nd with the aid of Lemma 5.1 it follows that 117o, ’0] 0. As
the non-negativeness of I[7, ] on 0 implies the "Schwarz inequality"

0I[7o ’o 7, ]] _< I[n, ’]I[70 ’0] 0 for 7 e ’, it then follows from Theorem
2.2 that there exists a solution (u, v) of (2.2) such that u -= o oa [a, b]. On
the other hand, if I[n, ] is positive definite on 0 and (U, V) is a solution of

0.(2.2.) satisfying conditions (ii) of Theorem 5.1, then for 7 e the vector
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function h(x) U-l(x)n(x) belongs to 1, h(a) 0 h(b), and with the
aid of Lemma 5.1 it follows that for e 0:.,

I[n, r] r*Br dx, where r(x) r(x) g(x)h(x) on [a, b].

Since L(x y, ) 0 and L(x U, V) 0 imply that Uh’ B-, it follows
that

h(x) u-l(t)B(t)r(t) dt,

and, in view of B(x) >_ 0 a.e., for arbitrary vectors we have

*h(x),

_
[fb*U-1BU*-ldtl.[fb-*B dtl.

This inequality, combined with au analogous one for the iaterval [a, x],
implies

h(x)l <_ 1/2 Ko r*Br dx, where o supll=l U-IBU*- dx .
Consequently, for v 0:,
(5.6) n(x)l

_
1/2 0 r*Br dx, where sup[ g-(x)l on [a, b],

and for H(x) non-decreasing hermitian n X n matrix on [a, b],

v*[dIIlv

_
1/2 0 K Via, b" HI r*Br dx,

so that (5.5) holds wigh 2/(o ).
COROLLARY. Suppose that condition (5.1:) holds, and II(x) is a non-de-

creasing hermitian matrix which is not constant on [a, b]. If the subclass o
of o on which *[dII] 1 is non-empty, and the infimum M of I[, ]
on 3 is finite, then for h M there exists a solution (u, v) of the boundary

dA(x u, v) + X[dII]u 0,

(5.7) L(x u, v) --u’ -t- Au + By O, a <_ x <_ b,

u(a) 0 u(b),

with u( x) 0 on [a, b].

The corollury follows immediately from the application of Theorem 5.3 to
the functional I[y, ’] f *[dII]. By definition, a value k is a normal
proper value of (5.7) if there exists a corresponding solution (u, v) of this
system with u 0 on [a, b]. Under the hypotheses of the corollary it may be

value problem
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established readily that all normal proper values are real, and that the value
Xl of the corollary is the smallest normal proper value.

Under the weakened assumption (5.1:0), in view of Theorem 4.1 the
application of Theorem 5.1 to (2.16) yields that 117, i’] is positive definite on
0 if and only if B(x) -- B*(x)

_
0 a.e. on [a, b] and either (iii) or (iv) of

Theorem 5.1 holds. Consequently, for Riccati matrix integral equations one
has the following comparison theorem.

THEOREM 5.4. Suppose that (5.1:0) holds, B(x) >_ 0 a.e. on [a, b], and
that for each n X n constant hermitian matrix the solution of (5.2:a) fails to
exist throughout [a, b]. Then for (x) an arbitrary monotone non-increasing
hermitian matrix function on [a, b] the solution of (5.3) fails to exist throughout
[a, b].

A more precise result on the solvability of the Riccati matrix integral equa-
tion is afforded by the study of the functional

(5.8) J[, ] 7*(a) :(a) + 117, ],

where x is a given n n constant hermitiau matrix, and is restricted to the
class .0 consisting of those of ) satisfying (b) 0; +[,0] will denote
the condition that J[, ] is positive definite on *.
THEOREM 5.5. If condition (5.1:) is satisfied, then +[)*] holds if and

only if B(x) >_ 0 a.e. on [a, b], and one of the following conditions:
(i) if (U, V) is the solution of (2.2) satisfying U(a) E, V(a) x,

then U(x) is non-singular on [a, b];
(ii) the (necessarily hermitian) solution W(x) of

(5.9) W(x) F(t, W(t) dt M(x) M(a) -b x

exists on [a, b];
(iii) there exists an hermitian x0 such that x x0 >_ 0 and a non-increasing

hermitian (x such that

(5.10) W(x) F(t, W(t)) dt M(x) M(a) -b (x) --(a) -b xo

has a solution on [a, b].

As 0 c .0, it follows from Theorem 5.1 that +[.0] implies B(x) >_ 0
a.e. on [a, b]. If (U, V) is the solution of (2.2M) satisfying U(a) E,
V(a) x, and for a c on a, b] we have U(c) O, then ((x),(x))
(U(x), V(x)) on [a, c], (v(x), (x)) (0, 0) on (c, b] is such that v e .o:.
With the aid of Lemma 5.1 it then follows that J[v, ] 0, and hence n 0
and 0 by +[*], so that U is non-singular on [a, b].

Conversely, if U, V) is determined by the conditions of (i) then
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U*V V*U U*( a) V( a) V*( a) U( a) O,
and if U is non-singular on [a, b] then for v e the equation (x)
U(x)h(x) determines an h e such that h(b) O. Consequently, Lemma
5.1 implies that

J[,, r] (r Vh *B(r Vh dx,

and if B(x) 0 a.e. then J[, ] 0 for v e .0: and equality sign holds
only if 0 B( Vh) Uh’ a.e. on [a, b]. This latter condition implies that
h(x) h(b) 0, and hence 0 andB 0 a.e., thus completing the proof
that (i) and B(x) 0 a.e. on [a, b] imply +[*].

In turn, from Theorem 4.1 it follows that (i) is equivalent to (ii). In this
connection it is to be noted that if e then

(5.11) J[v, ] *(a)[x M(a)](a) + l[, ],
$0where v, My and e ". For brevity, the right-hand member

of (5.11) will be referred to as 2[, ]. Finally, condition (ii) implies (iii)
with x0 x, (x) 0, whereas if B(x) 0 a.e. on [a, b] and (iii) holds, then
the previously established results applied to (5.8) with x replaced by x0 and
M(x) replaced by M(x) + (x), imply

$(5.12) J[,, ] ,*(a)[x- x0],(a) Ja IdOl,,

with the equality sign holding only if v 0 and B 0 a.e., and since the
right-hand member of (5.12) is non-negative it follows that +[.0] is satis-
fied, and hence (ii) also holds.

Corresponding to the deduction of Theorem 5.4 from Theorem 5.1, under
the weakened assumption (5.1"0) one obtains the following comparison
theorem through the application of the criteria for the positive definiteness of
the functional (5.11) on .0.
THEOREM 5.6. Suppose that (5.1"0) holds, and B(x) 0 a.e. on [a, b].

If x is ch that the solution of (5.9) does not exist throughout [a, b], then for
arbitrary x0 x, and non-increasing hermitian (x) the solution of (5.10) does
not exist throughout [a, b]; equivalently, if x is such that the solution of (5.9) exists
on [a, b] then for arbitrary x0 x and non-decreasing hermitian (x) the solution

of (5.10) also exists on [a, b].

THEOREM 5.7. Suppose that condition (5.1"0) is satisfied, that B(x) 0
a.e. on [a, b] and there exists an e .o such that J[, ] < O. Then there
exist cstants such that if o is an hermitian constant matrix and (x is
an hermitian matrix function of class :n satisfying X X0 (a) and
the set {x (x)] > } has measure zero, then the solution of (5.10) does not
exist on [a, b].
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Let II(x) be a non-decreasing hermitian matrix function on [a, b] for which
there exist constants K,, (a 1, 2, 3, 4), such that tor arbitrary (x) e ,

(a) -*(a)[x M(a)l(a) ti*Cli dx
_
1 *[dII],

(5.13)
fa(b) B(x) I’1 12 dx <_

(c) N(x) ].] dx <_ 3

(d) If(a)12

_
, [dII]f.

For example, if

o Max[l, x M(a)l}, (x) Max[]B(x)], ]A(x)l, ]C(x)l},

and II(x) -(x)E, where -(0) O, -(x) ,o -k- f ,(s) ds on (a, b], then
the relations (5.13) hold with , 1, (a 1, 2, 3, 4). If )*(II) denotes
the subclass of ,o on which f n [dII] 1, then the hypotheses of the

J[v, ] ontheorem and condition (5.13a) imply that if M is the infimum of
*(H) then 0 < -- .
Now if o[, ] denotes the functional (5.11) with x replaced by xo, M(x)

replaced by Mo(x) M(x) (x), ando denotes the corresponding class
for o[, ], then for n e *(H)’ we huve that 0 , o is such
that o e o "o and

2o[o, o]

Since B(x) >__ 0 a.e. on [a, b], it follows that

)(

Moreover,

f.b 12

Consequently, if[ x xo + (a)

_
il, ](x) - ti a.e. on [a, b], and rela-

tions (5.13) hold, then in view of fa O*[dII] 1 we have

2o[o, o] < "*J[, ] + + [{ (- + ]J[v, ] + K1)} 112
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Since ),1 is the infimum ofJ[v, ] on )*(II), if and are chosen so that

+ 2[{( + x)} + ] < -x,
it follows that there exists an e .0. for which 20[0, 0] < 0. Indeed,
by an argument similar to that employed in the proof of the Corollary to
Theorem 5.3 one muy show that M is the smallest normal proper value
of the boundary value problem

d0- [0- *] dx + X[dH] 0,

(5.14) --4’+ +//) 0, a

_
x

_
b,

(b) 0, [x- M(a)]t(a) )(a) O,

and that if (4, O) is a corresponding solution with +t 0 on [a, b] then [4, ]
M f *[dII]. Consequently, in view of Theorem 4.1, and the result of
Theorem 5.6 applied to 20[0 0], it follows that the solution W(x) of (5.10)
does not exist throughout [a, b].

It is to be noted that Theorems 5.1, 5.2 permit the immediate extension to
systems (2.2) of the results of Reid [8, 5] on principal solutions.

6. A special scalar Riccati integral equation

For the scalar integral equation

(6.1) w(x) -+- w=(s) ds m(x), 0

_
x

_
1,

Cameron [2] posed the question as to whether or not it has a solution for
almost every choice of re(x) in the class a of functions continuous on [0, 1],
and which vanish at x 0, where "almost every" means all but a set of
Wiener measure zero. Woodward [11] answered this question in the negative,
by showing that if m e e and re(x) -+- 4x < 0.1 then (6.1) does not have a
solution on [0, 1]. We shall proceed to apply to this particular equation some
of the results of the preceding section. Firstly, if m0(x) e is such that the
solution of (6.1) does not exist on [0, 1] for m m0, then Theorem 5.6 implies
that for (x) real-valued monotone non-increasing with (0) 0, and
m m0 -f- , the solution of (6.1) does not exist on [0, 1].

In the notation of 5, if re(x) is real-valued then A(x) =- C(x) =- O,
B(x) 1, +I(x) ,(x), (x) -,(),

(6.2) ,7[, ] fo (I 12 m2(x) ) dx,

and * is the class of e I1 for which (1) 0 and there exists a e o such
that ’ m(x) -+- (x) a.e. on [0, 1]. If e " then

(6.3) 2[, 1 f (I +’ m m:() I ) dx,
J0
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and, in particular, if re(x) e 711 and m(0) 0 then

(6.3’) 3[, ?] f0 (I / m’(x) dx.

fo lAs the minimum of fl’ sdx on {[e dx 1} is equal to
r2/4, the smallest proper value of the boundary value problem u" -t- Xu O,
u’(0) 0, u(1) 0, it follows that if re(x) -rx, (r > r"/4), and ll(x) x,
0 <_ x <_ 1, then Xl -r + r/4. Moreover, inequalities (a), (b), (c) of
(5.13) hold with K1 r2, K, 1, 8 r, and requirement (d) may be neglected
when attention is limited to functions re(x) which vanish at x 0. From
Theorem 5.7 it then follows that if e ’ and (0) 0 then the solution of
the integral equation

(6.4) w(x)

does not exist on [0, 1] if

(x) <_ (4r v)/(4[(4r" 4r + r)1/2 -t- 2r]).

In particular, for r 4 the above bound reduces to 0.098, which is almost
identical with the bound 0.1 derived by Woodward [11].

Actually, with a little additional attention one may obtain a greatly im-
proved bound. For m(x) rx -+- (x), with
a.e. on [0, 1], one has

j[,

for arbitrary k > 0. Consequently, there exists an e *’ with J[n, 71 _< o
if

[- r

that is, if i _< (4r r") /(kr" + 4/k), and the optimal bound it _< (4r r2)/
(4r) is obtained for
(4r )/(4r) a.e., then the solution of the integral equation (6.4) does
not exist on [0, 1]. For r 4 this estimate provides the bound 14(x) -<
0.488, in place of the bound [(x) <- 0.1 of Woodward [11].

7. Further results on Riccati matrix integral equations

In this section there will be presented two theorems which extend to
generalized differential systems (2.2) results of Hestenes [3], Bliss [1, 87],
and Reid [6, 8-10] on accessory systems for variational problems of Bolza
type.

THEOnEM 7.1. If condition (5.1") is satisfied, then +[] holds if and
only if B(x) >_ 0 a.e. on In, b] and one of the following:
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there exists a solution (U, V) of (2.2M) such that U is non-singular and
U’V-- V*U =-Oon[a,b],while-U*(a)V(a) > OandU*(b)V(b) > 0;

(ii) there exists an hermitian matrix such that on [a, b] the integral equa-
tion 5.2: a) has a (necessarily hermitian) solution W(x) satisfying W(a) > 0
and W(b) > O.

As +[] implies +[0], it follows that B(x) >_ 0 a.e. on [a, b] is a con-
sequence of +[]. Moreover, for ,0 defined as in 5, +[] implies
@+[,0], and if (Ua, Va) is a solution of (2.2) such that V(a) 0, Ua(a)
non-singular, then Theorem 5.6 implies that Ua(x) is non-singular on [a, b].
Correspondingly, if (Ub, Vb) is a solution of (2.2) for which V(b) 0
and U(b) is non-singular, then U(x) is non-singular on [a, b]. Now
Ua* V V* U 0, U* V V* Ub 0, and the constant matrix P such
that U* V V* U P is nomsingular. Indeed, if P 0 then

(u(x), v(x)) (U(x), V(x))

is a solution of (2.2) such that U*(b)v(b) V*(b)u(b) 0, and as the
n 2n matrix U*(b) Va*(b) is of rank n and

U*(b)V,(b) V*(b)U,(b) 0

there exists a 0 such that

(Uo(X), Y0(X)) Ua(x)o, Va(x)o)

is a solution of (2.2) satisfying u0(b) u(b), v0(b) v(b), and thus
(u0(x), v0(x) --- (u(x), v(x) ). In particular, v(a) v0(a) 0 and v(b) 0,
so that I[u, v] u*v Ia 0. Hence +[] implies 0 u(x) Ub(x), so
that 0 and P is non-singular. If the values of Ua(a) and U,(b) are so
chosen that P -E, and U, V) U, - U, Va --[- V,), it may be verified
directly that U*V V*U =- O. Moreover, if c e [a, b] and U(c) 0,
then (v, ) U , Va ) on [a, c], (7, ’) U (, V () on (c, b], is such
that v e : i" and application of Lemma 5.1 to the individual intervals [a, c]
and [c, b], with the (U, V) of the lemma equal to (Ua, Va) and (U, Vb),
respectively, yields

I[n, ] Va(C)Ua(C) U(c)Yb(C),
-*Vo(c)U(c) + *u*(c)V(c) -*;

therefore, @+[] implies 0 and hence the non-singularity of U(c). More-
over,

U*(a)V(a) U*(a)Y(a) --[- U(a)V,(a) -E-t" U(a)V(a),
U*(D)V(b) U*a(b)Va(b) --[- U(b)Va(b) U*a(b)V,(b) + E,

and hence
*U*(a)V(a) -* I[U, , V ]

_
-*,

*U*(b)V(b) I[Ua, Va] + $ :,
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for arbitrary , so that -U*(a)V(a) > 0 and U*(b)V(b) > O.
Conversely, if B(x) _> 0 a.e. on [a, b] and (i) holds, then for 7 e: and h

defined by 7 Uh it follows from Lemma 5.1 that

I[7, ] ( Vh)*B(r Vh) dx + h*U*Vhlba,
(7.:)

>_ (r gh)*B(r- Vh) dx,

with the equality sign in (7.1) holding only if h(a) 0 h(b), that is, if
and only if 7 e 0:, in which case Theorem 5.1 implies that I[7, ] _> 0, with
equality only if 7 0 and B 0 a.e. on [a, b].

Finally, (ii) is equivalent to (i) in view of Theorem 4.1 and the fact that
if W(x) is a solution of (5.2:a) on [a, b], and (U, V) is a correspondirg solu-
tion of (2.2M) such that W VU-1, then U*V V*U =- U*[W W*]U.

Let 0a and 0b be n X ra and n X rb matrices with 0

_
ra

_
n, 0

_
r _< n,

it being understood that if either r 0 or r 0 the respective matrix
0a or 0 does not occur, and that if 0 < ra

_
n or 0 < r

_
n then the cor-

responding Oa or 0b has rank ra or r. For Ma and M given n X n hermitian
matrices we shall now consider the condition +[0] that the functional

(7.2) 7*(a)Ma T(a) - 7*(b)i7(b) + 117, ]

be positive definite on the class consisting of (7, ’) such that 7 e :i" and
7(a) 0, 0’ 7(b) 0. In particular, 0 0 if 0 0 En

if 0 and 0b are non-existent, and ) * if 0 En and Oa is non-existent.

THEOREM 7.2. If condition (5.1:@) is satisfied, then +[] holds if and
only if B x

_
0 a.e. on [a, b] and there exists an hermitian matrix such that

on [a, b] the integral equation (5.2:a) has a (necessarily hermitian) solution
W(x) for which there is an associated constant k satisfying

Me + ]0a O*a W(a) > O, M + kO O + W(b) > O.

Since +[e] implies +[0], condition 9+[e] implies that x b is not
conjugate to x a, and if the order of abnormality of (2.2) on [a, b] is equal
to d then independent solutions (u(J)(x), v(J)(x)), (j 1, 2n) of (2.2)
may be chosen so that u(")(x) =-- 0 on [a, b] for a n d - 1, ..., 2n,
and the 2n X (2n d) matrix

u) (a)
_() (i 1 n;j 1 2n-- d)
u (b)

is of rank 2n d. In view of Theorem 5.2, if 7 e’ there is a solution

" n--d
U
) " n--d(x).

of (2.2) such that

(u(a), u(b)) (7(a), 7(b)) and 117, ] >_ I[u, v,],
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with equality if and only if 7 u, 0 and B(" v,) 0 a.e. on [a, b]. As
in the special instance of the accessory system for a variational problem
of Bolza type, (see, for example, Reid [6, 9]), application of a theorem on pairs
of hermitian forms and Theorem 5.2 yields the result that there is a real
constant k such that the functional

(7.3) 7*(a) [M, --t- k O Oa ]7(a) -t- 7*(b)[M -t- ] 0 0’]7(b) -t- 117, ]

is positive definite on ). Conversely, if (7.3) is positive definite on then
couditioa +[)] holds, so that the considered problem is reduced to the
positive definiteness of (7.3) oa . Now (7.3) may also be written s a
functional 1017, i’] of the same form as 117, i’], with M(x) replaced by the M0(x)
defined as" M0(a) M(a) M, M0(x) M(x) on (a, b), M0(b)
M(b) M. It may be verified readily that if (U0, V0) is u solution of the
matrix system (2.2M) associated with 1017, ] then (U, V) defined as"

V(a) Vo(a) - [Ma + kOa O,]Uo(a),

V(x) =- Vo(x) on (a, b),

V(b) Vo(b) [i + kO O]Uo(b)
is a solution of the system (2.2) for the original 117, ], uad consequently
Theorem 7.2 follows from the result of Theorem 7.1 for the functional 1017, ].
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