GENERALIZED LINEAR DIFFERENTIAL SYSTEMS AND RELATED
RICCATI MATRIX INTEGRAL EQUATIONS

BY
WiLriam T. REmp!

1. Introduction

In a previous paper [7], the author considered a generalized differential
system that was equivalent to a type of linear vector Riemann-Stieltjes in-
tegral equation, and which included as special cases the real scalar generalized
second-order differential equations occurring in the works of Sz.-Nagy,
([10] and [9, pp. 247-254]), and Feller [3], and also certain systems with
“interface” conditions associated with the accessory differential equations for a
simple integral non-parametric variational problem. The considered systems,
however, did not include such modified accessory systems for variational
problems of Lagrange or Bolza type. Moreover, the treatment of [7] was
limited to first order systems of order 2n, in which the component vector ad-
mitting possible discontinuities was of dimension n. The present paper deals
with a generalized differential system whose form is inclusive enough to remove
these two limitations. Moreover, attention is focused on the central role
played by a non-linear matrix integral equation of Volterra type, which will
be referred to as a “Riccati matrix integral equation” in view of its intimate
relation to the Riccati matrix differential equation. Finally, for generality,
and also for application in the “control formulation” of certain variational
problems, the results are presented in a form which for accessory systems under
classical variational assumptions, (see, for example, [1, §§39, 81]), would be in
terms of canonical variables, but which far exceeds this particular instance.

The basic relationships between the considered generalized matrix dif-
ferential system and certain functionals are derived in §2, while §3 is con-
cerned with properties of such a system and its adjoint. The fundamental
connections between such systems and Riccati matrix integral equations are
presented in §4. The important instance of self-adjoint systems is treated in
§5, with particular attention to the interrelations between criteria of non-
oscillation, the existence of solutions of associated Riccati matrix integral
equations, and the positive definiteness of certain hermitian functionals.
In §6 some of the results of §5 are applied to a special scalar integral equation,
concerning which Cameron [2] initially raised a question of solvability that
was answered by Woodward [11]. Finally, in §7 there are presented two
theorems that extend earlier results of Hestenes [3], Bliss [2, §87] and the
author [6] on accessory systems for variational problems of Bolza type.
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Matrix notation is used throughout; in particular, matrices of one column
are termed vectors, and for a vector (y«), (@ = 1, --+, n), the norm |y |is
givenby (|1 |+ -+ 4 | ¥a [)"%. Then X n identity matrix is denoted by
E, , or merely by E when there is no ambiguity, and 0 is used indiscriminately
for the zero matrix of any dimensions; the conjugate transpose of a matrix M
is designated by M*. If M is an n X m matrix the symbol | M | is used for
the supremum of | My | on the unit sphere {y | |y | = 1} of complex m-space.
The relations M > N, (M > N), are used to signify that M and N are
hermitian matrices of the same dimensions and M — N is a non-negative
(positive) definite matrix. If an hermitian matrix function M(x),a < z < b,
is such that M(s) — M(t) > 0, (£ 0),fora < s <t < b, then M(z) is
termed non-increasing (non-decreasing) hermitian on [a, b]. A matrix func-
tion is termed continuous, integrable, etc., when each element of the matrix
possesses the specified property.

If a matrix function M(z) is a.c., (absolutely continuous), on [a, b] then
M’'(x) signifies the matrix of derivatives at values where these derivatives
exist, and zero elsewhere. Similarly, if M(x) is (Lebesgue) integrable on
[a, b] then [2 M (x) dx denotes the matrix of integrals of respective elements of
M(z). TFor a given interval [a, b] the symbols Cux , U , Tix , BB and Ay are
used to denote the class of h X k matrix functions on [a, b] which are respec-
tively continuous, (Lebesgue) integrable, (Lebesgue) measurable and essen-
tially bounded, of bounded variation, and absolutely continuous; for brevity,
we write G, , & , &, BBy, and Ay, for Cr , L, Ln1 , BBt and W , respectively.
If M(x) e BB, S(x) eCy, and T(z) € Ci, then [b S[AM]T denotes the
r X s matrix with elements given by the Riemann-Stieltjes integrals

h k b
2 > [ Sul@)Taz) aMus(a),
a=1 =1 Ja
and [%[AM]T and [%S[dM] designate [& EJdM|T and [. S[dM]E; , respec-
tively.
2. Generalized linear differential systems

Throughout most of the present section it will be supposed that A(z),
B(z), C(x), D(x), M(x) are matrix functions satisfying on a fixed interval
[a, b] the condition

(@) Aegnn, Begnmy Cegmn’ Dégmm, MG%%mn.
For ce[a, b], and (U, V) e € X Lu, the integral operator Q(c, z | U, V) is
defined on [a, b] by

@1 26z U,7) = [ 1e@U® - DOV©a+ [ WO

for brevity, Q(z | U, V) is written for Q(a, z | U, V).
Corresponding to the system treated in [7], we shall consider here the
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generalized matrix differential system

dV — [CU — DV]dx — [dMU = 0,
(2.2x) ] , a<z<b.
Lz|U, V)= U+ AU + BV = 0,
By a solution of (2.2) is meant a pair (U, V) e %np X BB, for some posi-
tive integer k, such that

Az|U, V) =V(@) -z |U, V) =V(), a<z<d,

and L(z | U, V) = 0a.e., (almost everywhere), on [a, b]. It is to be remarked
that the validity of the above equation is clearly equivalent to the existence
of a ce[a, b], and a constant m X k matrix V, such that

V(z) — Qc,z|U, V) =V,, a<z<hb

For the special case of k¥ = 1, in which (2.1) and (2.2) reduce to vector rela-
tions, corresponding small letters for U, V will be used. In particular, for
frequent reference we exhibit the generalized vector differential system
dv — [Cu — Dv]dx — [dMu = 0,
(2.2) a<laz<b
L(z|u,v) = —u + Au + By = 0,

If uo and v, are given vectors of respective dimensions n and m, and c € [a, b],
there is a unique solution of (2.2) such that u(a) = wuo, v(a) = v,. This
result is a consequence of Theorem 2.3 below. It could also be derived from
the existence of a unique solution of a Riemann-Stieltjes integral equation
similar to that used by the author in [7, §2]. Specifically, if Ui(x) is the
solution of the differential system U; = A(z)Uy, Ui(c) = E,, and V() is
the solution of the system Vi = —D(2)Vy, Vi(¢c) = E,, then (u, v) is the
solution of (2.2) satisfying u(c) = w, v(c) = v, if and only if u(z) =
Ui(x)ur(z), v(x) = Vi(z)vi(x), where uy(x) is the (unique) solution of the
integral equation

03w =w+[[ BO@|n+ [ Bl<t>{ [ [dM1<s>1ul<s>} a,
vi(x) = v + fﬁ [dM1(s)]ui(s), and Bi(zx), M1(x) are defined as
Bi(a) = U @)B@)Va@), M) = [ Vi'cUydt + [ vi'laMl U,

The symbol D = Dla, b] will denote the class of vector functions 5 ¢ A, for
which there exists a corresponding ¢ ¢ €, such that L(x|n, {) = 0 a.e. on
[a, b], and the fact that ¢ is such an associated vector function will be indicated
by neD:¢. The subclass of © on which 9(a) = 0 = 5(b) will be denoted by
D’ = D"a, b], with similar meaning for n ¢ ©’:¢.  Correspondingly, Dy, =
Dy la, b] will designate the class of vector functions p e A, for which there is a
corresponding o e €, such that
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Li}(x l P 0') = "P’ + D*(x)p + B*(x)d =0 a.e.on [a) b])
and DY, = @;[a, b] the subclass of D, on which p(a) = 0 = p(b), with similar
meanings for peDyio and pe D% io. Finally, for (n, ¢) e X L and
(p,0) € U X ¥, we define I[n, ¢; p, 0] = Iln, {5p,0| @, b] as
b b
(24) I gpol= [ (FBr+piondo+ [ pflamin,

in terms of which we have the following functional result.

TaEOREM 2.1. If (u, v) €€, X L., then the following two conditions are
equivalent:

(2.5) Ifu, v;p, 0] = 0 for pe Dy ia;
(2.6) there exist a constant vector v and a vy € BBn such that
Blv —v)] =0 ae., and A(x|u,vm) =+ on [a,b].
If (u,v) e G, X ¥ and satisfies (2.6), then for p e D% :0 we have

b
Ilu,v;p,0] = f (p™vo dx + o* dve) = p*v0 |2 = 0,

so that condition (2.5) holds. Conversely, if (u, v) e €, X &, and (2.5) is
satisfied, for w(x) = Q(x | u, v) we have that w e 8B,, and for p ¢ @0*:0,

2.7) O—I(p*’vdx+p dw) = p*w| § —I—f v — w] dz

_[ o — wl

Now if Y(z) is the solution of Y’ = D*)Y, Y(a) = E., then
(py o) € Ay X &, with Lyp(z | p, o) = 0 and p(b) = 0, if and only if

b
(28) p@) = = Y@V OB W@ &, a<a<b
and consequently p e D} o if and only if o € €5, , p satisfies (2.8), and

b
(2.9) 0= [ YIOB W) .

The vector function f = » — w is such that f ¢ &, , and from (2.7), (2.8), and
(2.9) it follows that if p € D} 1o then

o@) = =7 [ 70D d + 2)
is such that g € €, and

b b
(2.10) [ Byiz = 0if ceGand [ o* BY* " do = 0.
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Condition (2.10) implies that there exists a constant m-dimensional vector A
such that

B(z)g(z) = B(z)Y* ()N a.e.on [a,b].

Consequently, if h(z) = g(z) — Y* 7 (2)\, then ke, , Bh = 0 a.e. on [a, b],
and

(211) f(z) — f V¥ 2)Y*@)D@)f(®) dt = h(z) + Y* @)\, a<z<b.
That is, f is determined as the solution of the Volterra vector integral equation
(2.11) with kernel Y* ™ (2)Y*()D(t) = Y* () Y*(t),a <t <2z <b. It

may be verified directly that the resolvent kernel for this equation is — D(t),
a <t <z < b, and hence

f2) = h@) + V@ + [ DOWE + Y ON @ a<z<h
As DY*™' = —[Y*7 a.e. it follows that » — w = f satisfies
o(@) = w(@) = @) + [ DI &+, wherey = P a)
Consequently, if v, is defined as
n(e) = w(@) + [ DO b+, a<z<b,
then vy e BB, , Blv — vg] = 0 a.e., and
vo(x) = Qx| u,v) +f:D(t)h(t) dt +v = Qx| w0 —h) +v = Uz |u,v) + 7.

TaEOREM 2.2. If u € U, there exists a v such that (u, v) is a solution of (2.2)
if and only if there exists a vy such that u e D:v, and Ifu, v1; p, ] = 0 for
pe @gk:”-

If (n,¢) e X & and (p, o) € A X &, , then
b
(2.12) Iln, 50,01 = f [6*Bs — o™ Mn — p*Mn’ + p*Cnl dx + p*Mn 2,
and consequently if u e D:v and p e ‘Doﬁ,:o then

b
Ilu, v; p, o] = f (¢ — M*0)*Bv — Mw) + p*(C — DM
(2.13) a
— MA — MBM)n]dx
For brevity, let A(z), B(z), C(z), D(z) be defined on [a, b] as

A=A+ BM, B =B,

(2.14) .
(=C—DM— MA— MBM, D=D+ MB,
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and denote by 9, 9", Dy SADO* the above defined classes D, ®°, D , DY when
A, B, C, D are replaced respectively by 4, B, €, D. It follows readily that
neD:torneD:if and only if § = ¢ — My is such that ne D:¢ or ne D1,
correspondingly, p e Dy ic0rpe @‘;:a if and only if 6 = ¢ — M™p is such that
pe@,g,:& or peﬁ)g}:&. Moreover, if u e D:v then (4, 9) = (u, v — Mu) is
such that @ ¢ ©:9 and (2.5) holds if and only if

b
(2.15)  Ila, 0;p, 6] = f [6*Bd + p*Calde = 0 for p e DY 0™

Also, an integration by parts of [7 [dM(¢)]U(¢) in (2.1) provides the follow-
ing precise derivative result, which is basic for future discussion.

TaEOREM 2.3. A pair (u, v) s a solution of (2.2) if and only of (4, d) =
(u, v — Mu) vs such that (4,9) € A X W and s a solution of the vector ordinary
differential system

’ A 7 =
(2.16) ) C(Ax)u + D@ﬁ 0, e<o<h
-4 4+ A(z)4 + B(x)d = 0,

It is to be emphasized that in order for the system (2.16) to be well defined
and have integrable coefficients given by (2.14) it is not necessary that M (z)
be of bounded variation on [a, b]. In particular, (2.16) has integrable coeffi-
cients if A, B, C, D satisfy the conditions of (§), while it is supposed merely
that M(z) € G .

3. Adjoint systems
For A, B, C, D and M matrix functions satisfying hypothesis () the
generalized vector differential system

dz — [C*y — A% dx — [dM*ly = 0,
(3.1) N N a<z<b,
Ly(x|y,2) = —y' + D'y + Bz = 0,
is termed “adjoint to (2.2)”. Corresponding to the notation of §2, the oper-
ators @, and Ay are defined as

0.z |92) = [ (C*0w®) — 4* W@+ [ @O,

A*(.’I} I Y, z) = Z(:l)) - Q*(.’l) l Y, 2).
In particular, (3.1) is obtained from (2.2) upon replacing A, B, C, D, M by
D* B* C*, A*, M™, respectively, so that (2.2) is also adjoint to (3.1) in the
sense thus defined. Moreover, under this substitution the classes ®, ©’ are
interchanged with the respective classes Dy, , Dy, , while for (n, {) € €, X L
and (p, o) € €, X € the functional

b b
(82)  Iinosn sl = [ "Bl +a"Clde + [ 1lam*lp
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is such that (Ilp, o5, )™ = In, ¢; p, 0]. Consequently, results for (3.1)
corresponding to those of Theorems 2.1, 2.2, 2.3 for (2.2) may be stated as
follows in terms of the functional Iy, {; p, o] defined by (2.3).

TaeoreM 3.1. If (y, 2) € G, X L, then the following two conditions are
equivalent:

(3.3) Iln, &5y, 2] = 0 for neD:¢;
(3.4) there exist a constant vector vy and a zo e BL, such that
B*e — 2] =0 ae, and An(z|y,2) = v5 on [a,b]

THEOREM 3.2. If y € ., there exists a z such that (y, 2) is a solution of (3.1)
if and only if there exists a 21 such that y e Dyiz1 and Iy, &5 y, 21 = 0 for
ne€ % {.

TareorEM 3.3. A pair (y, 2) is a solution of (3.1) if and only if (g, 2) =
(y,2 — M™y) is such that (4, 2) e U X A, and is a solution, of the vector ordinary
differential system

¥ — C*2)) + A%=)s = 0,
(3.5) (*)y A(* a<z<h
~7 + D¥(2)¢ + B*(2)z = 0,

As (3.5) is adjoint to (2.16), the following result for solutions of (2.2) and
(3.1) is a direct consequence of the corresponding result for ordinary differ-
ential systems.

CoroLLARY. If (u, v) and (y, 2) are solutions of (2.2) and (3.1), respec-
tively, then z*u — y™v is constant on [a, D).

The result of the following theorem is of basic importance for the study of
solutions of (2.2) and (3.1).

TaEOREM 3.4. Suppose that (1, ¢) e An X L, (0, 0) €A X L5 , and there
exist (U, V) eWnp X Conp, (Y, Z) € Ung X Lng and h ey, ke W, such that
n = Uhandp = Yk. Then fora < ¢ < d < b the value of the functional

d d
(3.6) Iln, ¢ 0,0 ¢, dl = fc "Bt + p*Cn) dz + f pdM1n
1s equal to each of the following expressions:

d
[ 1 = Z1)*B( = Vh) = (Ly(a | 5, IV

+ k*Z*(L(x | U, V)h — L(z | 1, %))
(3.7) + k*(Z*U — Y*V)h'} dx

d
— [ B*YaG| U, VYR R TTRE,
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[t = 2B — vi) = K2 | 0)

(3.8) + (B Ly(x | Y, 2)1* = [Ly(x | p, )T VR
+ "Y'V — Z¥U)R) da

d
— f k*dak (x| Y, Z)1 UL+ E*Z*Uh .

The fact that I[n, ¢;p, 0 | ¢, d] is given by (3.7) may be established by direct
comparison of the involved integrand functions. In turn, the fact that (3.6)
is also equal to (3.8) may be deduced from the preceding result applied to the
adjoint functional Iy[p, o5 7, ¢ | ¢, d] and the fact that

Iln, &5 0,0 )¢, dl = (Iylp, o5m, ¢l e, d)™

Of particular significance are the following results which are direct conse-
quences of the above general results for the special instance of h and £ arbi-
trary constant vector functions.

CoroLLARY. If (U, V) eWup X Bnp, (Y, Z) €Uy X Ly, while
L(z|U,V) =0and Ly(2z| Y, Z) = 0 a.e. on [a, b], then fora < ¢t < b,

t
(39) LU, VY, Z|afl = — [ YAz | U, V)] + T*VLE,

(3.10) YV - Z*U | = f t Y¥da(z | U, V)] — ( f tU*[dA*(xI Y,Z)]>*.

4. A Riccati matrix integral equation

In view of Theorems 2.3 and 3.3, results concerning solutions of (2.2) or
(3.1) are equivalent to corresponding results for the respective systems (2.16)
and (3.5). Entirely analogous to the consideration for the special case
n = m, (see, for example, Reid [8; §1I]), one may show that there exists a
W € ., which is a solution of the Riccati matrix differential equation

(4.1) RW)l =W — F(z, W) = 0,

where

(4.2) Fla, W) = C(z) — WA(z) — D(2)W — WB(x)W,

if and only if there exists a solution (T, V) of the differential system
V' — C(x)0 + D(2)V = 0,

(4.3) R N a<z<b
~U0 + A(x)0 + B(x)V =0,

with U(z) non-singular on [, b] and W(z) = V(z)0'(x) on this interval.
The general Riccati equation of the form (4.1) has been considered by J. J.
Levin [5], and the reader is referred to his bibliography for references to other
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studies of related problems, especially of the form (4.1) withn = 1, m > 1.

In accord with the remark following the statement of Theorem 2.3, it is to
be noted that the validity of the above comments does not depend upon
M(x) being of bounded variation, and these comments are true under the
following weaker assumption:

(o) Aely, Bem, Celm, DeRun, Meln.

Now for 4, B, C, D related to 4, B, C, D, M by (2.14), and

(44) F(z, W) = C(z) — WA(z) — D(2)W — WB(z)W,

it may be verified directly that if W and W are m X n matrices satisfying
(4.5) W(z) = W(z) — M(z), a<z<h,

then F(z, W) = F(x, W), and hence W(z) is the solution of the differential
system

(4.6) RWl=0, W) =1,

on a subinterval containing # = sif and only if W = W + M is the solution of
the Riccati matrix integral equation

47) W) — [ “FGL W) di = M(z) + ¥, zeX.

In particular, for X a subinterval containing = s of sufficiently small length
there is a unique solution of (4.7) on X, and in the following discussion many
criteria involve the existence of a solution of an equation of the form (4.7) on
the entire given interval [a, b].

TarorREM 4.1.  If hypothesis (£o) holds, and s € [a, b], then an m X n matrix
¥ is such that (4.7) has a solution on [a, b) if and only if the solution (U, V) of
(4.3) determined by the initial conditions U(s) = E, , V(s) = ¥, is such that
U (z) is non-singular on [a, b, and in this case

W(z) = M(z) + V(2)0 ().

If M(2) € BB , then an equivalent condition is that the solution (U, V) of
(2.2y) determined by U(s) = E., V(s) = M(s) + ¥ is such that U(x) 7s non-
singular on [a, b), and in this case

W(x) = V(z)U ().
If Wo(2) is a solution of K[W,] = 0 on a subinterval X, and s e X, let
G(z) = G(x, s|Wo), H(z) = A(x,s| W)
be defined as the solutions of the matrix differential systems
G+ D+WeBG=0 Q)= En,
A + A(A + BW,) =0, H(s) = Ea,

(4.8)
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and define the n X m matrix O(z, s | Wo) by
(49) O, s|Wo) = [ Als| WBOOWs | W) i, zeX.

As in the case n = m, (see Reid [8]), it may be shown that W(z) is a solution
of (4.1) on X if and only if the constant m X n matrix T' = W(s) — Wo(s)
is such that the n X n matrix E, + O(z, s | Wo)T is non-singular on X, and
in this case

(4.10) W(z) = Woz) + G(z, s| Wo)T[E, + O(z, s| Wo)TT H(x, s| Wo).

Now for ® an n X m matrix and T an m X n matrix the identity
(Ewm + TO)T = T(E, 4+ OT) implies that the m X m matrix E, + T'O is
non-singular if and only if the n X n matrix E, + OT is non-singular, and

T[E, + O1]" = [E, + T'O]"'T. Consequently, the non-singularity of the
n X n matrix E, + @(x, s WO)I‘ on X is equivalent to the non-singularity
of the m X m matrix E,, + I‘@(x, s| W,) on this interval, and an alternate
form for W(x) is

(4.11) W(z) = Wo(z) + Gz, s| Wo)[Em + TO(x, s |Wo)'TH(z, s | W).

From (2.14) it follows that if W, W, are related to respective matrices W, W,
by (4.5) then

D+WoB=D+WoB, A+BWO=A+BWO,
W(s) — Wo(s) = W(s) — Wo(s),

and in view of the above remarks we have the following theorem, which ex-
tends to systems (2.2) a result of Reid [8].

THEOREM 4.2. Suppose that hypothests (Do) holds, s € [a, bl, and W = Wy(x)
18 a solution of (4.7) for ¥ = ¥, on a subinterval X of [a, b] containing x = s.
If G(z) = G(=,s| W), H(z) = H(z, s| W), and O(zx, s| W,) are definedby
the differential systems and integral relation

G + (D + WyB)G = 0, G(s) = E
(4.12) H' + H(A + BW,) = 0, H(s) = E

0| Wo) = [ H(t,s | WBWOGU, s | W) d, veX,

then W (x) 1s a solution of (4.7) on X if and only if T = ¥ — ¥, is such that
E, + O(x, s| Wo)T s non-singular on X, and in this case

W(CI}) Wo(x) + G(x) s | WO)P[En + ®(xa $ l WO)F]—IH(x’ s l WO))
Wo(z) + G(z, 5| Wo)[En + TO(x, s| Wo)]"TH(z, s | Wo).

I

It

Correspondingly, the results of Lemmas 2.2, 2.3 and 2.4 of Reid [8] are ex-
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tensible to (2.2). In particular, if (U, V) is a solution of (2.2,) with U non-
singular on a subinterval X and W = VU™, then for s ¢ X and

K(x,s|W) = H 'z, s| W)O(z, s| W),
L(z,s| W) = W(x)K(z, s| W) +G(z, s|W),
the solution of (2.2) satisfying u(s) = 0, v(s) = £1is given by
(u,v) = (K(z, s| W)E L(, s| W)E).

Similar to the special case of n = m, M(z) = 0, as treated in [8, §III], two
distinct points s and ¢ on [a, b] are termed (mutually) conjugate with respect to
(2.2) if there exists a solution (u, v) of this system with 4 £ 0 on the sub-
interval with endpoints s and ¢, while u(s) = 0 = wu(¢). The system (2.2)
is said to be non-oscillatory on a subinterval provided no two distinet points
of this subinterval are conjugate. Moreover, for a non-degenerate subinterval
X the order of abnormality of (2.2) is defined as the dimension of the linear
space A[X] of m-dimensional vector functions »(z) which are solutions of
v" 4+ Dv = 0 and satisfy Bv = 0 a.e. on X; clearly, v ¢ A|X] if and only if
(u, v) = (0, v(x)) is a solution of (2.2) on X. If (2.2) has order of ab-
normality equal to d on a subinterval X,; with endpoints s and ¢, then there
exists an m X d matrix A(s) such that the solution (U, V) of (2.2y) with
U(s) =0, V(s) = A(s) has U = 0 on X,; and the column vectors of V(z)
form a basis for A[X;]. Moreover, if W is a solution of (4.7) which exists on
X, , then as in Lemma 3.4 of Reid [8] it may be shown that the column vectors
of G(z, s| W)A(s) form a basis for A[X,] so that @(z, s| W)A(s) = 0 for
2 e X, , and the (n + d) X m matrix

H e, s| W) H
A*(s)
has rank less than m if and only if ¢ is conjugate to s with respect to (2.2). It
is to be noted that if n + d < m, then ¢ is conjugate to s.
5. Self-adjoint systems

In this section we shall consider generalized differential systems (2.2) and
Riceati matrix integral equations (4.7) for which n = m, and the coefficient
matrices satisfy on [a, b] the following conditions:

(5.1) A*(z) = D(z), B(x) = B*(z), C(z)=C"(=z), M(z) = M"(x).

The symbols (5.1; ©) and (5.1; $o) will denote the hypothesis that (5.1)
holds, together with the respective condition § or $o,. In particular, (5.1)
implies that F(z, W) defined by (4.4) is now

F(x, W) = C(z) — WA(z) — A*(2)W — WB(2)W,

so that [F(x, W) * = F(z, W*). Henceif (5.1; $o) holds and for ¥ = ¥, the
Riccati matrix integral equation
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(5.2:5) W) — [ “FGL W) di = M(z) + ¥

has a solution W = Wy(xz) on a subinterval X containing z = s then
W = Ws () is the solution of (5.2:s) on X for ¥ = Wy ; in particular, if ¥ is
hermitian then the solution W(z) of (5.2:s) is hermitian throughout its
interval of existence. Moreover, (5.1:9o) 1mphes that the classes D, ©°, D,
$’ are equal to the respective classes Dy, DY, SD* , SD* , and the ordmary
differential system (2.16) is identical with its adjoint (3.5). In case the
stronger condition (5.1:9) holds, then the functional Iy, ¢; p, o] defined by
(2.4) is hermitian on © X D, so that Iy, ¢] = I[n, ¢;, {]is real-valued on D.
By $.[D"] we shall denote the condition that I[y, ¢] is positive definite on °;
that is, I[y, ] > 0 for g e D:¢, and the equality sign holds only if » = 0 and
Bt = 0 a.e. on [a, b]. The basic criterion concerning non-oscillation of (2.2)
on a compact interval [a, b] is embodied in the following result, which extends
Theorem 3.1 of Reid [7].

TaEoREM 5.1. If condition (5.1:9) is satisfied, then $,[D] holds if and

only if B(x) > 0 a.e. on [a, b], together with one of the following:
(i) (2.2) 4s non-oscillatory on [a, b];

(ii) there exists a solution (U, V) of (2.2x) with U(x) non-singular and
U*V — V*U = 0 on [a, bl;

(iil) there exists an hermitian n X n constant matrix ¥ such that (5.2:a) has
a solution W(x) on [a, b;

(iv) there exists a non-increasing hermitian matrix ®(x) on [a, b] such that
on this interval there is a solution W(z) of

(5.3) W) — [ F, W) dt = M) + 9(a).

For a system (2.2) the condition (5.1:9) implies that $.,[D] is equivalent
to the corresponding condition for the related ordinary differential system
(2.16), and thus from the result of Theorem 5.1 of Reid [8] applied to (2.16)
we have that $,[D’] holds if and only if B(x) > 0 a.e. on [a, b], together with
either (i) or (ii) of Theorem 5.1. On the other hand, from Theorem 4.1 it
follows that the existence of a solution (U, V) of (2.24) with U non-singular
and U*V — V*U = 0 on [a, b] is equivalent to the existence of a constant
matrix ¥ such that (5.2:a) has a solution W(z) on [a, b]. Finally, (iii) im-
plies (iv) with ®(x) = ¥, whereas if B(z) > 0 a.e. on [a, b] and (iv) holds
then the established results applied to (2.2) with M(x) replaced by
M(z) + @®(z) imply that

b b
[ 6B+ ol e + [ o @M @) + 2@

is positive definite on ©’ and consequently, since ®(z) is non-increasing her-
mitian, that Ify, ¢ ] is positive definite on ©’.
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In particular, the basic relation in the proof that the positive definiteness
of In, ¢] = Iln, ¢;n, ¢] on D' is implied by B(z) > 0 a.e. and condition (ii) for
the related system (4.3) becomes the following result when translated into a
condition on Iy, ¢]. This result is a direct consequence of Theorem 3.4, and
is presented here for specific later use.

Lemma 5.1, If (5.1:9) s satisfied, and (U, V) is a solution of (2.2x) for
which U*V — V*U = 0 on [a, b], while 1 ¢ D:{ is such that there exists an h € A,
satisfying n(z) = U(z)h(x) on a subinterval [c, d], then

d d
f [§*Bt + n*Cn] dz + f 7" [dMn

c

(54) .
= [ = VW)*BG — Vh) o+ B UMV,

Application of Lemma 5.1 of Reid [8] to the system (2.16) yields the follow-
ing result for (2.2).

TaROREM 5.2. If condition (5.1:9) is satisfied, and $,[D°] holds, then for
1€ D¢ there exists a solution (u,v) of (2.2) such that u(a) = n(a), u(b) = 5(db)
and Iy, ¢] = Iu, v], with equality if and only if n = w and B[ — v] = 0 a.e. on
[a, b].

TaEOREM 5.3. If condition (5.1:9) is satisfied, and I[n, ¢] > 0 on D°, then
either there exists a solutton (u, v) of (2.2) with w # 0 on [a, b] and
u(a) = 0 = u(b), or there exists a « > 0 such that if I(z) s an n X n non-de-
creasing hermitian matriz function which is not constant on [a, b] then

b
(55) )2 (Vi) [ oflammln forn e 0z,

where Va, b:11] is the supremum of D=1 | M(ta) — M(tas) | for all partitions
a=1to< -+ < tn = bof [ab]

If I[n, ¢] > 0 on D’ then for ¢ > 0 the functional Iy, {] + ¢ fg | |* dz is
positive definite on ®°, and therefore B(x) > 0 a.e. on [a, b] by a result of
Theorem 5.1. Consequently, from Theorem 5.1 it follows that if Iy, {] > 0
on ', and I[n, {] is not positive definite on D°, then (2.2) is oscillatory on
[a, b]; that is, there exists a solution (uo, vo) of (2.2) and x1, 2, such that
a6 < 21 < 22 < b, wo(w1) = 0 = up(x2), and ue(z) # 0 on [x1, x2). Let
(770’ (0) = ('Lto ) 1)0) on [xl ’ $2], (7707 ?0) = (O on [a7 .’1?1) and (xz ) b] Then
n0 e D°:¢0, and with the aid of Lemma 5.1 it follows that I[n, {o] = 0. As
the non-negativeness of I[y, ¢] on ©° implies the “Schwarz inequality”
| ITno, to 51, €11° < I, €10 , to] = O for n e D°: ¢, it then follows from Theorem
2.2 that there exists a sohition (u, v) of (2.2) such that v = goon [a, b]. On
the other hand, if I[y, ¢] is positive definite on ©° and (U, V) is a solution of
(2.2x) satisfying conditions (ii) of Theorem 5.1, then for n ¢ ©°:¢ the vector
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function h(z) = U '(z)n(x) belongs to A, , h(a) = 0 = h(b), and with the
aid of Lemma 5.1 it follows that for n e °:¢,

Iy, ¢] = fb *Br dx, where r(z) = ¢(z) — V(z)h(z) on [a, b).

a

Since L(z |9, {) = 0 and L(z | U, V) = 0 imply that U’ = Br, it follows
that

hz) = — f U OB &,

and, in view of B(z) > 0 a.e., for arbitrary vectors £ we have

| £1@)|* < [ f b £UTBU g dt]-[ f ' 7*Br dt:|.

This inequality, combined with an analogous one for the interval [a, 2],
implies

[h(z)]* < % ko f: r*Br dx, where ko = supg-1£" [fb U'BU*™ dx] 3
Consequently, for n e D:¢,
(56) @) <t [ " *Br dz, where s = sup | U™(z)] on o, B,
and for II(z) a non-decreasing hermitian n X n matrix on [a, b],
[ "Iy < 3 ol Via, bl [ " *Br da,

so that (5.5) holds with x = 2/(ko«%).

COROLLARY. Suppose that condition (5.1:9) holds, and II(x) vs a non-de-
creasing hermitian mairixz which s not constant on [a, b]. If the subclass D1
of ©° on which [5n*[dIIln = 1 is non-empty, and the infimum N of I[n, ¢]
on Dy is finite, then for N = A\ there exists a solution (u, v) of the boundary
value problem

dA(z | w, v) + NdIu = 0,
(5.7) L(z|u,v) = —u + Au + Bv = 0, a<z<b,
u(a) = 0 = u(b),
with u(z) $# 0 on [a, b].

The corollary follows immediately from the application of Theorem 5.3 to
the functional ITg, {1 — N [ n*[dIl]y. By definition, a value \ is a normal
proper value of (5.7) if there exists a corresponding solution (u, ») of this
system with « % 0 on [a, b]. Under the hypotheses of the corollary it may be
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established readily that all normal proper values are real, and that the value
A = N of the corollary is the smallest normal proper value.

Under the weakened assumption (5.1:9o), in view of Theorem 4.1 the
application of Theorem 5.1 to (2.16) yields that Iy, ¢] is positive definite on
®' if and only if B(z) = B*(z) > 0 a.e. on [a, b] and either (iii) or (iv) of
Theorem 5.1 holds. Consequently, for Riccati matrix integral equations one
has the following comparison theorem.

TurorEM 5.4. Suppose that (5.1:90) holds, B(xz) > 0 a.e. on [a, b], and
that for each n X n constant hermitian matrix ¥ the solution of (5.2:a) fails to
exuist throughout [a, b]. Then for ®(x) an arbitrary monotone mon-increasing
hermitian matrix function on [a, b} the solution of (5.3) fails to exist throughout
[a, b].

A more precise result on the solvability of the Riccati matrix integral equa-
tion is afforded by the study of the functional

(5.8) Jln, ¢ = n*(a) xn(a) + Ifn, ¢,

where x is a given n X 7 constant hermitian matrix, and 7 is restricted to the
class ©* consisting of those n of D satisfying n(b) = 0; H,[D*] will denote
the condition that J[n, ¢] is positive definite on D*'.

THEOREM 5.5. If condition (5.1:9) is satisfied, then $.[D*] holds if and
only if B(x) > 0 a.e. on [a, b], and one of the following conditions:
(1) 4 (U, V) is the solution of (2.2x) satisfying U(a) = E, V(a) = x,
then U(x) s non-singular on [a, b;
(ii) the (mecessarily hermitian) solution W(z) of

(5.9) W) — [ P& W) @ = M@) ~ Mla) +x

exists on [a, b];
(iil) there exists an hermitian xo such that x — xo = 0 and a non-increasing
hermitian ®(x) such that

(510) W) — [ P W) & = M(z) — M(@) + () — $(a) + x

has a solution on [a, b].

As ©° < D, it follows from Theorem 5.1 that $.[D*] implies B(z) > 0
a.e. on [a, b]. If (U, V) is the solution of (2.2y) satisfying U(a) = E,
V(a) = x, and for a ¢ on (a, b] we have U(¢c)¢t = 0, then (n(z), {(z)) =
(U(2)t, V(2)£) on [a, cl, (n(z), ¢(x)) = (0, 0) on (¢, b] is such that n e D*":¢.
With the aid of Lemma 5.1 it then follows that J{y, {] = 0, and hence n = 0
and £ = 0 by $.[D™), so that U is non-singular on [a, b].

Conversely, if (U, V) is determined by the conditions of (1) then
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UV — V*U = U*a)V(a) — V¥a)U(a) = 0,

and if U is non-singular on [a, b] then for 5 e D*:¢ the equation n(z) =
U(x)h(x) determines an A e A, such that 2(b) = 0. Consequently, Lemma
5.1 implies that

b
Tl = [ ¢ = VAYBG — Vh)

and if B(z) > 0 a.e. then J[n, {] > 0 for n ¢ D*:¢ and equality sign holds
onlyif 0 = B(¢ — Vh) = Uh' a.e.on [a,b]. Thislatter condition implies that
h(x) = h(b) = 0, and hence 9 = 0 and B{ = 0 a.e., thus completing the proof
that (i) and B(z) > 0 a.e. on [a, b] imply $,[D™.

In turn, from Theorem 4.1 it follows that (i) is equivalent to (ii). In this
connection it is to be noted that if 7 ¢ ©™:¢ then

(5.11) Iln, §1 = 4%(a)[x — M(a)li(e) + T4, §l,

where 4 = n,{ = ¢ — Mnand4e *°:f. For brevity, the right-hand member
of (5.11) will be referred to as J[#, §]. Finally, condition (ii) implies (iii)
with xo = x, ®(x) = 0, whereas if B(z) > 0 a.e. on [a, b] and (iii) holds, then
the previously established results applied to (5.8) with x replaced by xo and
M(z) replaced by M(x) + ®(z), imply

b
(5.12) T 1) 2 7 (@) — xahi(a) — [ o'ldhn,
with the equality sign holding only if # = 0 and B¢ = 0 a.e., and since the
right-hand member of (5.12) is non-negative it follows that £,[D*] is satis-
fied, and hence (ii) also holds.

Corresponding to the deduction of Theorem 5.4 from Theorem 5.1, under
the weakened assumption (5.1:9,) one obtains the following comparison
theorem through the application of the criteria for the positive definiteness of
the functional (5.11) on D*.

TuEOREM 5.6. Suppose that (5.1:8,) holds, and B(z) > 0 a.e. on [a, b].
If x 1is such that the solution of (5.9) does not exist throughout [a, b}, then for
arbitrary xo < x, and non-increasing hermitian ®(x) the solution of (5.10) does
not exist throughout [a, b]; equivalently, if x is such that the solution of (5.9) exists
on [a, b] then for arbitrary xo > x and non-decreasing hermitian ®(x) the solution
of (5.10) also exists on [a, b).

TuroreM 5.7. Suppose that condition (5.1:90) s satisfied, that B(z) > 0
a.e. on [a, b], and there exists an 4 € O*:¢ such that J[4, §] < 0. Then there
exist constants 8y , & such that if xo is an hermitian constant matriz and ®(x) s
an hermitian matriz function of class Lun satisfying | x — xo + ®(a)| < 8 and
the set {x || ®(x)| > 8} has measure zero, then the solution of (5.10) does not
exist on [a, b).
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Let II(z) be a non-decreasing hermitian matrix function on [a, b] for which
there exist constants k., (e = 1, 2, 3, 4), such that for arbitrary £(z) € €, ,

b b
@ —£@k — M@k — [ oo < [ elam,

b b
) [ 1B [1£F @ <o [ flan,
(5.13) ’

© [ 1@ el < w [ elam

b
@ e [ < w [ glamg

For example, if
v = Max {1, | x — M(a)l}, »(z) = Max{|B(2)|, | A(2)l, | C(z)]},

and I(z) = w(x)E, where 7(0) = 0, =(z) = v + [2»(s) ds on (a, b], then
the relations (5.13) hold with k., = 1, (a = 1, 2, 3, 4). If @*O(II) denotes
the subclass of ®* on which ffi n"[d]y = 1, then the hypotheses of the
theorem and condition (5.13a) imply that if A; is the infimum of J[4, §] on
@’ko(ﬂ) then0 < — M < k1.

Now if Jo[#, §] denotes the functional (5.11) with x replaced by xo, M(z)
replaced by Mo(z) = M(z) + ®(z), and ©s° denotes the corresponding class
for Jo[4, §], then for n e ©*(II):¢ we have that 4o = 4, § = § — &4 is such
that 4o e Ds°: o and

jo[ﬁo , ol
b
= Ji4, §] — 7 (a)[(x — x0) + ®(a)l4(a) — 2 Re f (£*B® + 7'®*4%) da.

Since B(x) > 0 a.e. on [a, b], it follows that

2 b b
< < f & B¢ dx)( f 7'®* Bdy dx),

< s+ ([ 1eriBIaras).

b
f B4 dr

Moreover,

b b
[iednas| < [(o1141101

Consequently, if | x — xo + ®(a) | < 81, | ®(z) | < § a.e. on [a, b], and rela-
tions (5.13) hold, then in view of ff; #*[dI]4 = 1 we have

Joldo, & < T, & + b1k + 20[{xe (JI8, § + x0)}"* + K.
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Since \; is the infimum ofJ[#, §] on *(II), if & and & are chosen so that
d1ics + 28[{ka(is + M} + k)] < =M1,

it follows that there exists an 4 ¢ D*:¢ for which Jo[fis, §] < 0. Indeed,
by an argument similar to that employed in the proof of the Corollary to
Theorem 5.3 one may show that A = \; is the smallest normal proper value
of the boundary value problem

do — [Co — A% de + \[dIT]a = 0,
(5.14) —t+A0+BV=0, a<az<hb,
Uub) =0, [x— M(a)ld(a) — 0(a) =0,

and that if (1, 9) is a corresponding solution with 4 5 0 on [a, b] then J 4,0 =
M [o4*[dila. Consequently, in view of Theorem 4.1, and the result of
Theorem 5.6 applied to Jo[fo , o, it follows that the solution W(zx) of (5.10)
does not exist throughout [a, b].

It is to be noted that Theorems 5.1, 5.2 permit the immediate extension to
systems (2.2) of the results of Reid [8, §5] on principal solutions.

6. A special scalar Riccati integral equation
For the scalar integral equation

(6.1) w(z) + fox w'(s) ds = m(z), 0<z<1,

Cameron [2] posed the question as to whether or not it has a solution for
almost every choice of m(x) in the class @ of functions continuous on [0, 1],
and which vanish at * = 0, where “almost every’’ means all but a set of
Wiener measure zero. Woodward [11] answered this question in the negative,
by showing that if m e @ and | m(z) + 4z | < 0.1 then (6.1) does not have a
solution on [0, 1]. We shall proceed to apply to this particular equation some
of the results of the preceding section. Firstly, if mo(x) e @ is such that the
solution of (6.1) does not exist on [0, 1] for m = mq , then Theorem 5.6 implies
that for ¢(x) real-valued monotone non-increasing with ¢(0) = 0, and
m = mo + ¢, the solution of (6.1) does not exist on [0, 1].

In the notation of §5, if m(x) is real-valued then A(z) = C(z) = 0,
B(z) = 1, 4(z) = m(z), C(x) = —m’(x),

(62) T8 = [ (8P = m@ [0P) ds,

and D* is the class of 4 € %y for which 4(1) = 0 and there exists a { ¢ 27 such
that 4’ = m(z)4 + §(z) ae. on [0, 1. If 4¢D*:§ then

(6.3) Jig, §1 = f,, (|4 — mg | — m’(z) | 4" da,
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and, in particular, if m(z) ¢ A, and m(0) = O then
1
(6.3") T, §1 = fo (4 + m'@) | 4] da.

As the minimum of [§|4 [*dx on {|4eD™, [§| 4 dz = 1} is equal to
7°/4, the smallest proper value of the boundary value problem u” + \u = 0,
w(0) = 0,u(1) = 0,it follows that if m(z) = —rz, (r > 7°/4),and () = z,
0 <z<1,then\ = —r 4+ 7°/4. Moreover, inequalities (a), (b), (¢) of
(5.13) hold with xy = °, k; = 1, ks = r, and requirement (d) may be neglected
when attention is limited to functions m(x) which vanish at « = 0. From
Theorem 5.7 it then follows that if ¢ € & and ¢(0) = 0 then the solution of
the integral equation

(6.4) w(z) + fo " wis) ds = —rz + 6(x)

does not exist on [0, 1] if
| o(z) | < (4r — o")/(4l(4" — 4r 4 )" + 21]).

In particular, for » = 4 the above bound reduces to 0.098, which is almost
identical with the bound 0.1 derived by Woodward [11].

Actually, with a little additional attention one may obtain a greatly im-
proved bound. Form(x) = —rx + ¢(x), with ¢ e &7, $(0) =0, | ¢(z) | < 8
a.e. on [0, 1], one has

T, 81 < fo (L + ok] [# | + [—r + o/k1 |4 ]") da,

for arbitrary k > 0. Consequently, there exists an 4 ¢ ©*:§ with J[4,§] < 0
if
[—r + 6/k}/(1 + k] < —n'/4,

that is, if 8 < (47 — 7°)/(kn" + 4/k), and the optimal bound 6 < (4r — =)/
(4r) is obtained for k = 2/x. That is, if ¢(z) €L, $(0) = 0, | ¢(z) | <
(4r — 7°)/(4r) a.e., then the solution of the integral equation (6.4) does
not exist on [0, 1]. For r = 4 this estimate provides the bound | ¢(z) | <
0.488, in place of the bound | ¢(z) | < 0.1 of Woodward [11].

7. Further results on Riccati matrix integral equations

In this section there will be presented two theorems which extend to
generalized differential systems (2.2) results of Hestenes [3], Bliss [1, §87],
and Reid [6, §§8-10] on accessory systems for variational problems of Bolza

type.

TrEOREM 7.1. If condition (5.1:9) s satisfied, then H4[D] holds if and
only if B(z) > 0 a.e. on [a, b] and one of the following:
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(1) there exists a solution (U, V') of (2.24) such that U is non-singular and
U*V — V*U = 0on [a, b], while — U*(a)V(a) > 0and U*(b)V(b) > 0;

(ii) there exists an hermitian matriz ¥ such that on [a, b] the integral equa-
tion (5.2:a) has a (necessarily hermitian) solutton W(x) satisfying —W(a) > 0
and W(b) > 0.

As $,[D] implies $,[D’], it follows that B(x) > 0 a.e. on [a, b] is a con-
sequence of $,[D]. Moreover, for D* defined as in §5, H.[D] implies
$.D™], and if (U, , V,) is a solution of (2.2,) such that Vi(a) = 0, Ua(a)
non-singular, then Theorem 5.6 implies that U.(x) is non-singular on [a, b].
Correspondingly, if (Us, Vs) is a solution of (2.2)) for which Vi(b) = 0
and Uy(b) is non-singular, then Uy(z) is non-singular on [a, b]. Now
UsVa— VaUs,=0,Uy Vs — Vi Uy = 0, and the constant matrix P such
that Ux Vi, — Vi Uy = P isnon-singular. Indeed, if P£ = 0 then

(u(z), v(2)) = (Us(2)§ Va(2)§)

is a solution of (2.2) such that Us(®)v(b) — Va(b)u(b) = 0, and as the
n X 2n matrix | Us(b) — Va(b) | is of rank n and

UX()Va(b) — Va(d)Uald) = 0
there exists a & such that

(uo(x), 'I)o(x)) = (Ua(x)£01 Va(x)&)

is a solution of (2.2) satisfying wuo(b) = u(d), ve(b) = w(b), and thus
(uo(),vo(x)) = (u(x) v(z)). Inparticular,v(a) = v(a) = 0andv(b) = 0,
so that ITu, v] = ™ |5 = 0. Hence $,[D] implies 0 = u(z) = Us(x)E, so
that ¢ = 0 and P is non-singular. If the values of U.(a) and Uy(b) are so
chosenthat P = —E,and (U, V) = (U, + Uy, V. + V3), it may be verified
directly that U*V — V*U = 0. Moreover, if cela, b] and U(c)t = 0,
then (777 g-) = (UG E’ Va E) on [ay C], ("1’ g‘) = (—Ub ‘E) Vs ‘E) on (C, b]) is such
that 7 ¢ D:¢ and application of Lemma 5.1 to the individual intervals [a, c]
and [c, b], with the (U, V) of the lemma equal to (Ua., V.) and (U, V3),
respectively, yields

I, ¢]

V() Ud(e)E — £*U5 () V(o)
— £ V() Us(c)t + £ UL (c)Vi(e)E = —E£*;

therefore, $,[D] implies £ = 0 and hence the non-singularity of U(¢). More-
over,

U¥(a)V(a) = Ul(a)Vi(a) + Us(a)Vo(a) = —E + Us(a)Vi(a),
U¥D)V(b) = Us(b)Vub) + Us(b)Vub) = Us(b)Va(b) + E,
and hence

EUMa)V(a)E = —£t — I[U &, Vo 8] < —£%,
FUDYV(b)E = IULE Vo g] + £ > £%,
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for arbitrary £, so that —U*(a)V(a) > 0 and U*(b)V(b) > 0.
Conversely, if B(z) > 0 a.e. on [a, b] and (i) holds, then for n e D:¢ and A
defined by 5 = Uh it follows from Lemma 5.1 that

b
Iin, ¢ = [ (¢ — VAY*B(t — Vh) do + K*U*VA[,
(7.1) \
> [ (¢ = VRY*B( — Vh) da,

with the equality sign in (7.1) holding only if A(a) = 0 = h(b), that is, if
and only if 7 e ©°:¢, in which case Theorem 5.1 implies that I[y, ¢] > 0, with
equality only if » = 0 and B¢ = 0 a.e. on [a, b].

Finally, (ii) is equivalent to (i) in view of Theorem 4.1 and the fact that
if W(z) is a solution of (5.2:a) on [a, b], and (U, V) is a corresponding solu-
tion of (2.2y) such that W = VU™, then U*V — V*U = U*[W — W*U.

Let 6, and 6, ben X r, and n X r, matrices with 0 < r, < n,0 < r, < m,
it being understood that if either r, = 0 or 7, = 0 the respective matrix
6, or 6, does not occur, and that if 0 < 7, < nor0 < 7 < n then the cor-
responding 6, or 6, has rank r, or r, . For M, and M, given n X n hermitian
matrices we shall now consider the condition $,[®% that the functional

(7.2) 1%*(a)Man(a) + 1*(b)Mwm(d) + Ifn, ¢]
be positive definite on the class ©° consisting of (n, ¢) such that n e D:¢ and

8z n(a) = 0, 8 n(b) = 0. In particular, ®’ = D°if 6, = 6 = E,, D’=D
if 6, and 6, are non-existent, and ®° = ©*’if 6, = E, and 6, is non-existent.

THEOREM 7.2. If condition (5.1:9) is satisfied, then $.[D’] holds if and
only if B(z) > 0 a.e. on [a, b] and there exists an hermitian matriz ¥ such that
on [a, b] the integral equation (5.2:a) has a (necessarily hermitian) solution
W (z) for which there is an associated constant k satisfying

M, + k6, 0 — W(a) >0, M,+ k6 65 + W(b) > 0.

Since $.,[D’] implies $,[D"], condition $,[D implies that = b is not
conjugate to = a, and if the order of abnormality of (2.2) on [a, ] is equal
to d then independent solutions (v (z), v?(2)), (j = 1, --+, 2n) of (2.2)

may be chosen so that «'”(2z) = Oon [a, b] fora =n —d + 1, ---, 2n,
and the 2n X (2n — d) matrix
uij)(a)

is of rank 2n — d. In view of Theorem 5.2, if n e D:¢ there is a solution
(uu(2), vu(z)) = (327 pu? (@), 2357w o9 (2))

of (2.2) such that
(uu(@), uu(d)) = (n(a), n(d)) and Iy, §] 2 Iuy, v,

ugj)(b) }’ (7/=1y"'7n;.7=17"')2n_d)
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with equality if and only if  — w, = 0 and B({ — v,) = O a.e.on [a, b]. As
in the special instance of the accessory system for a variational problem
of Bolza type, (see, for example, Reid [6, §9]), application of a theorem on pairs
of hermitian forms and Theorem 5.2 yields the result that there is a real
constant k& such that the functional

(7.3) 2*(a)[Ma + k6. 0¥n(a) + n*(b)[Mb + k6, 651n(b) + Ifn, ¢

is positive definite on ©. Conversely, if (7.3) is positive definite on D then
condition ©.[D’] holds, so that the considered problem is reduced to the
positive definiteness of (7.3) on ©. Now (7.3) may also be written as a
functional o[y, {] of the same form as I[y, {], with M (z) replaced by the Mo(z)
defined as: Mo(a) = M(a) — M., My(z) = M(z) on (a, b), Myb) =
M(b) + M,. It may be verified readily that if (U, , V) is a solution of the
matrix system (2.2y) associated with oy, ¢] then (U, V) defined as:

U(z) = Uo(2),

V(a) = Vo(a) + [Ma + kb, 6:1Uo(a),
V(x) = Vo(z) on (a,bd),

V(b) = Vo(b) — [My + ks 6¥1Ux(b)

is a solution of the system (2.2) for the original I[y, ¢], and consequently
Theorem 7.2 follows from the result of Theorem 7.1 for the functional Io[y, {].
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