RESTRICTED PRODUCT OF THE CHARACTERISTIC POLYNOMIALS OF MATRICES OVER A FINITE FIELD

BY L. Carlitz¹

1. Put $\Phi = GF(q)$, the finite field of order q and let Φ_m denote the set of $m \times m$ matrices M with elements in Φ . We separate Φ_m into similarity classes and let Φ_m^* denote a set of representatives of the similarity classes. Now put

$$U_m = \prod_{M \in \Phi_m^*} f(M),$$

where the product is extended over the elements of Φ_m^* and

$$f(M) = \det (xI - M).$$

It is known [1] that

$$F_m = \prod_{\deg A = m} A(x),$$

the product of the monic polynomials of degree m in GF[q, x], satisfies

$$F_m = \prod_{s=0}^{m-1} (x^{q^m} - x^{q^s}).$$

We shall show that

$$(1) U_m = \prod_{t=1}^m F_t^{u_t(m)},$$

where

(2)
$$u_t(m) = \sum_{s \ge 1} s\{\beta(m-st) - q\beta(m-s(t+1))\}$$

and $\beta(m)$ is defined by

$$\beta(m) = \sum q^{c_1 + c_2 + \dots + c_m},$$

the summation extending over all nonnegative c_1, \dots, c_m such that

$$c_1 + 2c_2 + \cdots + mc_m = m.$$

It is known [2] that $\beta(m)$ is equal to the number of similarity classes of $m \times m$ matrices over Φ .

2. Let A_1, A_2, \dots, A_m denote the invariant factors of xI - M, so that the A_j are monic polynomials in GF[q, x] that satisfy

$$A_j \mid A_{j+1} \qquad (j = 1, \dots, m);$$

moreover

$$f(M) = \det(xI - M) = A_1 A_2 \cdots A_m$$

and

$$m = \deg A_1 + \deg A_2 + \cdots + \deg A_m.$$

Received December 16, 1965.

¹ Supported in part by a National Science Foundation grant.

If we put

$$A_1 = B_1, \quad A_j = A_{j-1}B_j = B_1B_2\cdots B_j \quad (j = 1, \dots, m)$$

then

$$f(M) = B_1^m B_2^{m-1} \cdots B_m;$$

also if

$$(4) b_j = \deg B_j (j = 1, \dots, m)$$

then

(5)
$$m = mb_1 + (m-1)b_2 + \cdots + b_m.$$

Except for this condition the B_j are arbitrary monic polynomials. It therefore follows from the definition of U_m that

$$(6) U_m = \prod B_1^m B_2^{m-1} \cdots B_m,$$

where the product extends over all monic polynomials B_1 , \cdots , B_m that satisfy (4) and (5). Making use of the definition of F_m it is clear that (6) reduces to

(7)
$$U_m \prod F_{b_1}^{mq^{b-b_1}} F_{b_2}^{(m-1)q^{b-b_2}} \cdots F_{b_m}^{q^{b-b_m}},$$

where $b = b_1 + b_2 + \cdots + b_m$ and the product extends over all nonnegative integers b_1 , b_2 , \cdots , b_m that satisfy (5).

It is convenient to change the notation slightly. If we put

$$c_j = b_{m-j+1} \qquad (j = 1, \cdots, m)$$

then (7) becomes

(8)
$$U_m = \prod_{c_1} F_{c_1}^{q^{c-c_1}} F_{c_2}^{2q^{c-c_2}} \cdots F_{c_m}^{mq^{c-c_m}}$$

where $c = c_1 + c_2 + \cdots + c_m$ and the product now is over all non-negative c_1, c_2, \cdots, c_m such that

$$(9) c_1 + 2c_2 + \cdots + mc_m = m.$$

Clearly (8) implies

$$(10) U_m = \prod_{t=1}^m F_t^{u_t(m)},$$

where

(11)
$$u_t(m) = \sum_{\pi(m)} \sum_{k_j=t} j q^{k_1 + \dots + k_m - k_j},$$

where the outer sum is over all partitions

$$(12) m = k_1 + 2k_2 + 3k_3 + \cdots.$$

Then by (11) and (12)

$$\sum_{m=0}^{\infty} u_t(m) x^m = \sum_{m=0}^{\infty} x^m \sum_{\pi(m)} \sum_{k_j=t} j q^{k_1 + \dots + k_m - k_j}$$

$$= \sum_{k_1, k_2, \dots = 0}^{\infty} x^{k_1 + 2k_2 + \dots} \sum_{k_j = t} j q^{(k_1 + k_2 + \dots) - k_j},$$

so that

$$\sum_{t=1}^{m} \sum_{m=0}^{\infty} u_{t}(m) x^{m} y^{t} = \sum_{k_{1}, k_{2}, \dots = 0}^{\infty} x^{k_{1} + 2k_{2} + \dots} q^{k_{1} + k_{2} + \dots} \cdot \sum_{j=1; k_{j} > 0}^{\infty} j q^{-k_{j}} y^{k_{j}}$$

$$= \sum_{j=1}^{\infty} j \sum_{k_{1}, k_{2}, \dots = 0; k_{j} > 0}^{\infty} x^{k_{1} + 2k_{2} + \dots} q^{k_{1} + k_{2} + \dots} q^{-k_{j}} y^{k_{j}}$$

$$= \prod_{n=1}^{\infty} (1 - qx^{n})^{-1} \cdot \sum_{j=1}^{\infty} j x^{j} y (1 - qx^{j}) / (1 - x^{j}y).$$

Now

$$\sum_{m=0}^{\infty} \beta(m) x^{m} = \sum_{m=0}^{\infty} x^{m} \sum_{c_{1}+2c_{2}+\cdots=m} q^{c_{1}+c_{2}+\cdots}$$
$$= \prod_{m=0}^{\infty} (1 - qx^{n})^{-1}$$

and

$$\sum_{i=1}^{\infty} j x^{i} y (1 - q x^{i}) / (1 - x^{i} y) = \sum_{j=1}^{\infty} \sum_{t=1}^{\infty} j x^{it} y^{t} (1 - q x^{j}),$$

$$\sum_{t=1}^{m} \sum_{m=0}^{\infty} u_t(m) x^m y^t = \sum_{m=0}^{\infty} \beta(m) x^m \sum_{j=1}^{\infty} j \sum_{t=1}^{\infty} x^{jt} y^t (1 - qx^j).$$

This implies

$$\sum_{m=0}^{\infty} u_t(m) x^m = \sum_{m=0}^{\infty} \beta(m) x^m \sum_{j=1}^{\infty} j x^{jt} (1 - q x^j)$$

and therefore

$$u_t(m) = \sum_{j \ge 1} j \{ \beta(m - jt) - q\beta(m - j(t + 1)) \}.$$

This completes the proof of (2).

In particular we have

$$u_m(m) = \beta(0) = 1,$$

 $u_{m-1}(m) = \beta(1) - q\beta(0) = 0$ (m > 2).

Note that

$$u_{m-2}(m) = \beta(2) - q\beta(1) = q \qquad (m > 4)$$

$$u_{m-3}(m) = \beta(3) - q\beta(2) = q$$
 $(m > 6)$

$$u_{m-4}(m) = \beta(4) - q\beta(3) = q^2 + q$$
 $(m > 8).$

3. Comparing degrees on both sides of (1) and using the fact that the number of factors in the product (6) is $\beta(m)$, we get

$$m\beta(m) = \sum_{t=1}^{m} tq^{t}u_{t}(m).$$

This can be verified directly, thus affording a partial check of (1). It follows from

$$\sum_{m=0}^{\infty} \beta(m) x^{m} = \prod_{1}^{\infty} (1 - qx^{n})^{-1}$$

by differentiating with respect to x that

(14)
$$\sum_{0}^{\infty} m\beta(m)x^{m} = \prod_{1}^{\infty} (1 - qx^{n})^{-1} \cdot \sum_{1}^{\infty} nqx^{n}/(1 - qx^{n}).$$

On the other hand

$$\sum_{m=1}^{\infty} x^{m} \sum_{t=1}^{m} tq^{t} u_{t}(m)$$

$$= \sum_{m=1}^{\infty} x^{m} \sum_{t=1}^{m} tq^{t} \sum_{s\geq 1} s\{\beta(m-st) - q\beta(m-s(t+1))\}$$

$$= \sum_{s,t=1}^{\infty} stq^{t} x^{st} \sum_{m=0}^{\infty} \beta(m) x^{m} - q \sum_{s,t=1}^{\infty} stq^{t} x^{s(t+1)} \sum_{m=0}^{\infty} \beta(m) x^{m}$$

$$= \sum_{m=0}^{\infty} \beta(m) x^{m} \{\sum_{s,t=1}^{\infty} stq^{t} x^{st} - \sum_{s,t=1}^{\infty} s(t-1) q^{t} x^{st}\}$$

$$= \sum_{m=0}^{\infty} \beta(m) x^{m} \sum_{s,t=1}^{\infty} sq^{t} x^{st}$$

$$= \sum_{m=0}^{\infty} \beta(m) x^{m} \sum_{s=1}^{\infty} sqx^{s} / (1 - qx^{s}).$$

Comparing this with (14) it is evident that we have proved (13).

Incidentally it follows from (14) that

(15)
$$m\beta(m) = \sum_{j=1}^{m} \sigma(j)\beta(m-j),$$

where

$$\sigma(n) = \sum_{st=n} sq^t.$$

Note that, for q = 1, β (m) reduces to p(m), the number of unrestricted partitions of m.

4. U_m can also be exhibited in the form

(16)
$$U_m = \prod_{k=1}^m (x^{q^k} - x)^{u_k'(m)}.$$

Indeed by (1)

$$U_{m} = \prod_{t=1}^{m} F_{t}^{u_{t}(m)} = \prod_{t=1}^{m} \{\prod_{k=1}^{t} (x^{q^{k}} - x)^{q^{t-k}}\}^{u_{t}(m)}$$

$$= \prod_{k=1}^{m} \prod_{t=k}^{m} (x^{q^{k}} - x)^{q^{t-k}u_{t}(m)}$$

$$= \prod_{k=1}^{m} (x^{q^{k}} - x)^{\sum_{t=k}^{m} q^{t-k}u_{t}(m)},$$

so that

$$u'_{k}(m) = \sum_{t=k}^{m} q^{t-k} u_{t}(m)$$

$$= \sum_{t=k}^{m} q^{t-k} \sum_{s \geq 1} s \{\beta(m-st) - q \cdot \beta(m-s(t+1))\}$$

$$= \sum_{t=k; st \leq m}^{m} s q^{t-k} \beta(m-st) - \sum_{t=k+1; st \leq m}^{m} s q^{t-k} \beta(m-st)$$

$$= \sum_{sk \leq m} s \beta(m-sk).$$

Thus

$$u'_k(m) = \sum_{1 \le s \le m/k} s\beta(m - sk).$$

Since $u'_k(m) - qu'_{k+1}(m) = u_k(m)$, it is evident that (17) and (2) are equivalent.

5. It would be of interest to evaluate

$$V_m = \prod_M \det (xI - M),$$

132 L. CARLITZ

where now the product is over all Φ_m . We can show that

$$(18) V_m = \prod_{t=1}^m F_t^{v_t(m)}$$

or equivalently

(19)
$$V_m = \prod_{t=1}^m (x^{q^t} - x)^{v_t'(m)}.$$

However it seems difficult to evaluate $v_t(m)$ or $v'_t(m)$.

To prove (18) let xI - M have k_{ij} elementary divisors P_i^j , where deg $P_i = d_i$. An exact formula for the number of nonsingular matrices that commute with M is known [3, pp. 229–236]. This number depends only on the elementary divisors but is very complicated. Let $e(k_{ij}, d_i)$ represent this number and let g(m) be the total number of nonsingular $m \times m$ matrices. Then

$$N(k_{ij}, d_i) = g(m)/e(k_{ij}, d_i)$$

is the number of matrices similar to M. It follows that

$$(20) V_m = \prod_i P_i^{jN(k_{ij},d_i)}$$

the product extending over all irreducible P_i of degree d_i such that

$$m = \sum_{i,j} j d_i k_{ij}.$$

Since

$$\prod_{\deg P=d} P = \prod_{rs=d} (x^{q^r} - x)^{\mu(s)},$$

it is evident that (20) implies (19) which in turn implies (18). Unfortunately the value of $v_m(t)$ obtained in this way is very complicated.

To illustrate we compute V_2 by a direct method. Take

$$M = \begin{pmatrix} a & b \\ c & d \end{pmatrix},$$

so that

$$xI - M = x^2 - (a + d)x + ad - bc.$$

Then

$$V_2 = \prod_{a,b,c,d} (x^2 - (a+d)x + ad - bc),$$

the product extending over all $a, b, c, d \in GF(q)$. Now

$$\prod_{bc} (y - bc) = y^{q} \prod_{b \neq 0} \prod_{c} (y - bc)
= y^{q} \prod_{c} (y - c)^{q-1}
= y^{q} (y^{q} - y)^{q-1}.$$

If we take y = (x - a)(x - d) it is clear that

$$V_{2} = \prod_{a,d} (x - a)^{q} (x - d)^{q} \cdot \prod_{a,d} (x^{2q} - x^{2} - (a + d)(x^{q} - x))^{q-1}$$
$$= (x^{q} - x)^{2q^{2}} \cdot \prod_{a} (x^{2q} - x^{2} - a(x^{q} - x))^{q(q-1)}$$

$$= (x^{q} - x)^{2q^{2}} \{ (x^{2q} - x^{2})^{q} - (x^{q} - x)^{q-1} (x^{2q} - x^{2}) \}^{q(q-1)}$$

$$= (x^{q} - x)^{2q^{2}} (x^{q} - x)^{q^{2}} (q - 1) \{ (x^{q} + x)^{q} - (x^{q} + x) \}^{q(q-1)}$$

$$= (x^{q} - x)^{q^{3+q}} (x^{q^{2}} - x)^{q(q-1)}.$$

Thus

$$(21) V_2 = (x^q - x)^{q^3 + q^2} (x^{q^2} - x)^{q^2 - q} = F_1^{2q^2} F_2^{q^2 - q}.$$

6. We can compute $v_m(m) = v'_m(m)$ in the following way. If det (xI - M) = P, where P is an irreducible polynomial of degree m, then M is nonderogatory. Thus the matrices that commute with M are given by f(M), where f(x) is an arbitrary polynomial of degree < m. To get the nonsingular matrices that commute with M we take $f(x) \neq 0$. Thus the number of nonsingular matrices that commute with M is equal to $q^m - 1$. Therefore the number of matrices similar to M is $g(m)/(q^m - 1)$, where g(m) is the number of nonsingular $m \times m$ matrices. It follows at once that

$$v_m(m) = v'_m(m) = g(m)/(q^m - 1)$$

$$= (q^m - q)(q^m - q^2) \cdots (q^m - q^{m-1}).$$

It is also not difficult to compute $v'_{m-1}(m)$ for m > 2. Put det (xI - M) = (x + a)P, where P is irreducible of degree m - 1. As before M is non-derogatory and we find that the number of nonsingular matrices that commute with M is equal to $(q - 1)(q^{m-1} - 1)$. Then the number of matrices similar to M is equal to

$$(q-1)^{-1}(q^{m-1}-1)^{-1}g(m).$$

It follows that

(23)
$$v'_{m-1}(m) = q(q-1)^{-1}(q^{m-1}-1)^{-1}g(m) \qquad (m>2).$$

REFERENCES

- L. Carlitz, On polynomials in a Galois field, Bull. Amer. Math. Soc., vol. 38 (1932), pp. 736-744.
- L. CARLITZ AND JOHN H. HODGES, Distribution of matrices in a finite field, Pacific J. Math., vol. 6 (1965), pp. 225-230.
- 3. L. E. Dickson, Linear groups, New York, Dover, 1958.

DUKE UNIVERSITY

DURHAM, NORTH CAROLINA