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Introduction

Every ring in this paper is commutative with an identity and a subring must
alw,ys have the same identity as the containing ring. A ring A which has
only one maximal ideal m is a quasi-local ring and is denoted by (A, m); a
quasi-local ring (A, m) is a local ring if --1 m (0) By the natural to-
pology of quasi-local ring (A, m), we mean the m-adic topology of A.
The purpose of this paper is to investigate unique factorization in the direct

limits of directed systems (R, f) of unique factorization domains (or
UFD’s) R relative to any directed set I. In particular, we concentrate on the
case that all the UFD’s are local rings (R, m) and every homomorphism
], q _> p, is a local homomorphism; namely f(m)

_
m for q _> p. Let R

be the direct limit of such a directed system of UF local domains R, andg the
natural mp of R into R for each p e I. We prove that R is UF local do-
main, ifg(R) for every p e I is a local ring having R as concordant extension;
that is, g(R) is topological subspace of R for the ntural topologies. Ap-
plying the result and the fact that every regular (Noetherian) local ring is a
UFD, we also prove that if (E,f) is a directed system of regular local rings
(E, m) such that each homomorphism f maps a minimal basis of my into
that of m for q >_ p, then the direct limit is a UF local domain.

1. Concordant extensions of local rings
Throughout this paper we shall denote by N the set of all positive integers.

DEFINITION. Let R, and R be two quasi-local rings such that R R
then R is said to be concordant extension of R, if R is a subspce of R for
the ntural topologies.

From the definition we know that (R, m) is a concordant extension of
(R, m) if and only if for any two integers h and k in N, we can find r and
s in N such that

h km mnR nd maR m.
Thus R

___
R and m a R m, i.e., R dominates R, is a necessary condi-

tion for R to be a concordant extension ofR (cf. [2]).
For any directed set I let (R) be a family of local rings (R, m) such

that R dominates R if q >_ p. Then the set (R) is a directed system of
local rings under set inclusion; the direct limit R lim R UR is a
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quasi-local ring having the maximal ideal M lim my Um, which
dominates every R.

PROPOSITION. Let (R) be a directed system of local rings (R m) under
set inclusion, such that R dominates R. if q >_ p. Then R lira_. R, is a
local ring if R is a concordant extension of R, for every p I. Conversely if R
is a local ring and an R is a complete Noetherian local ring for the natural
topology, then R is a concordant extension of the local ring R

Proof. The proof of the first statement is straightforward. The second
part is a direct consequence of Chevalley’s theorem in [4, p. 270].

Let (Rv)v be given as in the proposition. If R lim Rv is a concordant
extension of an Rv, then, as we shall see in the next lemma, every Rq for q >_ p
is necessarily a concordant extension of the Rv. The converse of this, how-
ever, is not true in general. For instance let K be a field, x an indeterminate
and consider the following sequence of local rings"

K[[x]] K[[x]] c: K[[xl/4]] C C: g[[x]] ...,
where R K[[x]] for each integer i No N u {0} is the ring of formal
power series in xlz over K. By [2, Theorem 6, p. 65] it is not difficult to see
that R. is a concordant extension of R if j >_ i. On the other hand

R lim R UoR
is a quasi-local ring having the maximal ideal M U, m, where

Xl,.Rm . Since x e I’l,, M, R is not a local ring; therefore R can not be
a concordant extension of R for all i e No by the proposition.

LEMMA. Let (R).,z be a directed system of local rings (R, m) under set
inclusion, such that Rq dominates R if q >_ p. Then R lim R is a con-
cordant extension of an R,, if and only if for every integer N there exists an

(’) C mt for all q > p.integer n(t, p) e N such that mq rl R,

The proof is easy, hence we omit it.
Let (R, f)z be a directed system of local rings (R, m) such that all

the homomorphisms f are local homomorphisms, and denote the natural
map of each R into the direct limit R by g. Then R and each g(R) are
quasi-local rings having, respectively, the maximal ideals limm and g(m).
Therefore the set (g(R)) is a directed system of quasi-local rings under
set inclusion, such that gq(Rq) dominates g(R) whenever q >_ p; furthermore
R U, g,(R). We remark that for any R of the directed system of local
rings, the quasi-local ring g(R) is a local ring if and only if the ker (g)
Uq> ker (f) is a closed ideal of the R relative to the natural topology;
evidently this is the case when the R is a Noetherian local ring or every

ff for q _> p is a monomorphism.
The following theorem is due to the proposition.
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THEOREM 1. Let (R, fq) be a directed system of local rings R, such that
all the homomorphisms fq are local homomorphisms. Then R lira_. R, is a
local ring if every g,(R,) is a local ring having R as a concordant extension;
the converse of this is also true, if all the R are complete Noetherian local rings

for the natural topologies.

COROLLARY 1. Let R f ,r be a directed system of local rings R, m,)
under local homomorphisms fq, such that every g,(R) is a local ring. Then
R lim R is a local ring, if for each p I the following condition is satisfied:
for every integer e N there exists an n( t, p) e N such that

m(’) n fq(R) f(mt) for all q >_ p.

Proof. First we prove that if the condition is satisfied for each p e I and
each e N, then

(g(m))’(t’’) n g,(R,) (g,(m,))

for all q >_ p. Let a* be any element of (gq(mq))(’) n g(R); then
,(t.) and some a e R, so that there existsa gq(a) g,(a’) for some a e mq

an r >_ q such that frq(a) f(at). Since

m(t’) n f f,(m)
by hypothesis, f(a) ef m hence

a gq(a) g,.fq(a) (gv(mv))

as we proposed to prove. Consequently R is a concordant extension of each
g(R) by the lemma, therefore the corollary follows from Theorem 1.
As a consequence of the Corollary 1 to Theorem 1, we hve

COROLLARY 2. Let R fq) be a directed system of local rings R, m)
under local homomorphisms fq, such that every g,(R,) is a local ring. Then
R lira_. R, is a local ring if any one of the following conditions is fulfilled:

for every e N and every p e I, we have that

mq n f(R) f,(m) whenever q >_ p;

(ii) for each p e I, there exists an integer n(p) N such that

m(’) G f(R) for all q >_ p.

The following corollary is a part of the statement of Lemma (10.3.1.3)
in [3, p. 21].

COROLLARY 3. Let R fq) be a directed system of local rings R,
under local homomorphisms fq. If mq mp Rq and Rq is a fiat R,-module
whenever q >_ p, then R lim_. R, is a local ring.

Proof. This follows from [1, Proposition 9, p. 51] and (i) of Corollary 2
to Theorem 1.
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2. Unique factorization in the direct limits of directed
systems of UF local domains

THEOREM 2. Let (R ,fqv)z be a directed system of UFD’s R such that each
homomorphism fv, q > P, maps every non-unit of R into a non-unit of Rq.
Then R lim_ R is a UFD if and only if every non-unit O) of R is a finite
product of irreducible elements.

Proof. Evidently R is an integral domain, and the necessity is also obvious.
To show the sufficiency, we let be any non-unit 0) of R and set

where all ’s und ’s are irreducible elements of R. Since R [J g(R)
and I is a directed set, there must exist some g(R) which contains all the, and !). Therefore g(x), g(x) and . g(y) for some non-
units x, x and y of R. It follows that

g,(x) g(xl) g(xi) g,(x,) g(yl) g(y) g(Yk);

hence

(,) f(x) fq(x) fq(xi) fq(x,) fq(y) f(y) f(yk)

for some q >_ p. All the fq(x) and the fq(y) are non-units of R by the
hypothesis on the f’s, moreover they are irreducible in R for if fq(x) ab
for some x (or y) and some non-units a, b of R, then clearly g(a) and g(b)
are non-units of R and g(x) g(a)g(b) which contradicts the fact that

g(x) is irreducible in R. Thus (,) is a decomposition of f(x) into
prime factors in the UFD R hence n k, and we can rearrange the order of
f(x)’sso that f(x) and f(y) are associates in Rq for each i. Accordingly

and are associates in R for every i, which yields that R is a UFD.

COROLRV. Let R, fq)x be a directed system of UF local domains R,
under local homomorphisms fq such tha R lim_, R is a local ring; hen R is
a UFD.

The next theorem is by Theorem i and the corollary to Theorem 2.

THEOREM 3. Let (R, fqv)x be a directed system of UF local domains R
such that every fqv is a local homomorphism. Then R lim R is a UF local
domain if g(R) is a local ring having R as a concordant extension for every
peI.

For any local ring (A, rn) we define an order function v on A as follows"

v(a) min {nla mn+i} if 0 a A

if and only if a 0.

FUOREM 4. Let (E,, fq) be a directed system of regular local rings
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(E, m), such that every homomorphism fq maps a minimal basis of m, into
that of mq if q >_ p; then E lim_. E. is a UF local domain.

Proof. Let S a) ap) -)xp }, k e N, be a minimal basis of m
for each p e I such that f (S) Sq if q >_ p. Letting

{xl,x2, "",xxp} and {yl,y., ...,yxq}
be two sets of indeterminates, we put

E,[x] E,[x, x, ..., x,,,] and Eq[y] Eq[y, y2, "", y,]
for any pair p and q of I such that q _> p. Applying the fact thatf(S,)
we define an extension] off on E,[x] into Eq[y] as follows" for each r e E,[x],
]q(r) r0 is to be an element of Eq[y] which is obtained from by replacing
each coefficient a of with fq(a) and each xi with some yj provided that
f(a’)) aq). We remark that each coefficient of ](r) r0 is either an
image of a coefficient of r, or an image of a sum of some coefficients of under
f respectively. Now we prove that E is a local ring by applying the first
part of Corollary 2 to Theorem 1. Obviously everyf is a local homomorphism
and every g(E) is a local ring; hence we only need to prove that the equality

mq f,(E,) f,(m)
is true for every integer e N. Let us assume that mtq n fq(E,) (Oq) where
0q is the zero of Eq, for otherwise there is nothing to prove; and take any
non-zero element b from mtq f(E,). Since v(b) < , every inverse image
f-(b) of b in E also has finite order which does not exceed v(b); among all
the inverse images of b in Ep we choose one, say c, which possesses the largest
order. If v(c) n, then we have

c h(a), a() "() a(),...,) =(
for some form (a homogeneous polynomial) of degree n in E[x]; since
c m+, not all the coefficients of are in m Put f 0 then 0
is a form of degree n in Eq[y] and

b f(c) f((a())) o(aq) aq) (q)"",x) o(a ).

We assert that not all the coefficients of 0 are in mq. By the previous remark
we already know that each coefficient of 0 has an inverse image u f-’()
in E, which is either a coefficient of or a sum of coefficients of . Therefore
if all the coefficients ’s of 0 are in mq, then all those corresponding inverse
image u’s of ’s are in m,; this suggests to us that there must exist form
( ) of degree n in E,[x] having all the coefficients u’s in m, such that

]() ,o.
Set

(ap) a() a()) y(a(’)) c’
Then

b ,o(a(q)) f(,(a(’))) fq(c’) and v(c) > n v(c)
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which contradicts the choice of c; hence not all the coefficients of 0 are in mq,
as asserted. It follows that v(b) v(#0(a(q))) n, since Eq is a regular
local ring (cf. [2, p. 85]); consequently n >_ by the fact that b e mq, and,
therefore

b f(c)ef(m) f(m)
which means that

n r f(E,)

_
Evidently mq n f(E)

_
f(m), so that

which we wish to show. Thus E is a local ring, and we can conclude that E
is a UFD by the corollary to Theorem 2. This completes the proof of the
theorem.
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