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1. Introduction
This paper embraces three main sections, the contents of which are inter-

related chiefly by their common placement or origin in the theory of regressive
sets and regressing functions. In order to avoid yet another recital of nota-
tional and terminological conventions, we simply refer the reader to the
recital given in 2, 4 of [1] (which follows, in the main, the conventions
established in [2]). A number of the results contained in this paper were
either (a) found by someone other than the present author, or (b) found
independently by the present author and someone else; we have attempted
to be scrupulous in drawing attention to such cases.

2. Potential recursiveness of regressing functions

In [5] we gave a proof of the existence of retraceable sets having no general
recursive retracing functions. The existence of such sets having been noted, a
natural question is this: is there a retraceable set whose elements cannot be
ordered so as to admit, relative to that ordering, a regressing function with
general recursive extension? The answer, as we shall see below, is yes, even
if a number of additional requirements are imposed. We shall, moreover,
demonstrate (Theorem 2) the existence of a retraceable set a such that a

has no general recursive retracing function but a suitable ordering of a ad-
mits a regressing function with general recursive extension. We remark that
Robinson [6] has announced a result--also obtained, independently and in
stronger form, by A. H. Lachlan--from which a slightly weaker form of our
Theorem 1 follows as a rather easy corollary. However, we wish to state
Theorems 1 and 3 in the strongest formulations known to us; also, we wish
to introduce Lemma 1 into the literature as an item of independent interest
(this lemma, previously unpublished, is due to D. A. Martin).

LEMMA 1 (Martin). Let a be an infinite set of natural numbers. The
following condition on a is necessary and sucient for the existence of an infinite
set such that c a and is retraced, by a general recursive function: there is a
general recursive function g(x, y) such that
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(1) (Wi)(g(i, y) is the characteristic function of a set which intersects a),

(fi)(fj)( {y g(i, y) 0}. {Y g(J, Y) 0} 0 if i j).

Proof. The proof of necessity is quite easy; suffice it to remark that it is
very similar to the first few lines of the proof of Corollary 1 below. Sufficiency
is a little trickier; we shall now describe a construction for establishing it.
Suppose then that g(x, y) is a recursive function related to a as in 1 and (2).
The idea is to use heavily the fact that for all j, lyli <= j)(g(i, y) 0)}
is recursive, in order to construct by stages a recursive functionfwhich retraces
an infinite subset of a. Let [J, {ylg(n, y) 0}, and let h be a 1-1 re-
cursive function with range .

Stage O. Place in f all pairs (x, x) such that g(0, x) 0. Compute h(0).
Let ]0 be the least/ such that k > 0 and (y)(g(k, y) 0 y > h(O)).
Place in f all pairs (x, h(0)) such that g(/c0, x) 0. Then go to Stage 1.
Stages + 1. Computeh(s + 1). Let r0 be the least r such that (i) no

member of {ylg(r, y) 0} has been added to the domain of f at aa earlier
stage, and (ii)

(Vy)(ft <- s)(g(r, y) 0 y > h(O) q- h(t q- 1)).

Place in f all pairs (x, h(s + 1)) such that g(r0, x) 0. Finally, if < s
and has not yet been added to the domain of f, place (t, 0) in f; then proceed
to Stage s q- 2.

It is evident that f, so defined, is a recursive function. Let a0 be a particular
element of a such that g(0, a0) 0. Then (a0, a0) enters f at stage 0. Now,
a0 h(1) for some uniquely determined 1. It follows from the construction
that, at stage l, all pairs (x, a0) for which g(l*, x) 0 enter f, for some l*
determined by 1. Let al satisfy g(l*, al) 0 & a a. Then by the con-
struction,

a > a0 & a > max{h(0),h(1), ...,h(1)}.

Hence there is a uniquely determined k,/ > l, such that, at stage/c, a h(/)
and all pairs (x, al) for which g(/*, x) 0 enter f, for a certain ]* determined
byk. Let a2 satisfy g( k*, a2) 0 &a=ea. Then

a > a & a. > max {h(0), ..., h(/)}.

Continuing in this way, we obtain a sequence a0, a, a2, with at < a+ &
at a for all i -> 0, such that f retraces {a0, a, }.|

C01OLLAnY 1. Let a be an infinite set of numbers, and suppose that there
exist a number no and two general recursive functions f and t, with strictly
increasing, such that, for every m, a contains a number q, for which

ft(m) q, no and
(ii) k < t(m) f(q,) no.

(As usual, fO(x) x, fh+l(x) f(fh(x) ), for all x and h.) Then a has an
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infinite subset retraceable by a general recursive function (and hence, by [5, Lemma
6], a can be split by a recursive set).

Proof. Let a function r(x, y) be defined as follows"

r(x, y) 0 if f()(y) no and (fk < t(x))(f(y) no);

1 otherwise.

Clearly, r(x, y) is general recursive; und, for each m, r(m, y) is a characteristic
function. Moreover, it is evident that

m

From the hypotheses concerning t, we see that

(Vm)( {x r(m, x) 0}.a ).

Hence, by Lemma 1, a has an infinite subset t such that is retraced by a
general recursive function.|
The next lemma is, like Lemma 1, an unpublished theorem of D. A. Martin.

We shall indicate the construction needed for its proof, and we shall point
out those properties of the construction which show it to have the desired
effect; beyond this, however, we leave details of verification to the reader.

LEMMA 2 (Martin). There exists an infinite set a, a recursive sequence
{o(n)} of disjoint finite sets, and a recursive function r, such that

(1) a cannot be split by a recursive set,
(2) (n)(w().a 0), and
(3) (fn)(r(n)

Sketch of proof. Let R], R, R, be a simultaneous enumeration of all
recursive sets, carried out so that all but finitely many R 0 for each s and,
for each n and s, either

+l

for some k, and, in the latter case,/ > max {x Ix e R}. For each number n
and each subset S of {0, 1, n}, we set aside a finite set G, of numbers
which is sufficiently large to insure that at least n + 1 members of G. all
belong to exactly the same sets R. for j e S this can easily be done, and is
to be done, in such a way that the Gni form a strong array; i.e., {G.} is a
recursive sequence of disjoint sets such that ]G] is a recursive function of
n and S,. The sequence /()} is obtained from a certain constructed se-

The construction here sketched is exactly the one used by Martin, in September
1963, toobtainLemma2. (ThoughMartin did not explicitly refer, in his communication
to the author at that time, to property (3), there is negligible room for doubt as to his
awareness of it. It is precisely property (3) which gives Lemma 2 an advantage, for our
present purposes, over the Lachlan-Robinson result (which in other respects is stronger,
but for which, to the author’s knowledge, property (3) has not been verified).)
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quence A0, A, as follows. We assume that an arrangement is being
followed whereby each S and associated G is considered at each of
finitely many stages. At stage s, suppose we are considering G. If some
n W 1 of the members of G are, by inspection of R0 R8, 1, proven to
lie in exactly the same R for each j e S, then we choose the least n W 1 such
elements of Gi and place one of them in each of A0, Am, with the fol-
lowing exception" If ]c =< n and Ak already contains a number q such that q
has by now been proven to be in exactly the same R. as the n 1 numbers in
question, for each j =< k such that j e S, then we abstain from giving Ak
new member. The sets Ak obtained from this procedure, as s -- , are
clearly nonempty, finite and disjoint; further, it is easily seen that there is
recursive function r such that (n)(r(n) > A [). We let q be a recursive
function such that () Am for all n. Now suppose J0, J1, "", J is
given, where each Ji, 0 =< i <= n, is either Ri or R. Call J0, J1, ,J
an n-sequence provided, for each ]c -< n, A contains a member of
l.=<, ,o J. It is easily seen from the construction that an n-sequence
exists for every n. We order the n-sequences by the stipulation that J0, J,

J is lower than Ko, K, K, just in case J R and K R where
i is the smallest integer such that J K. For each n, let J, J be
the lowest n-sequence. It is straightforward to verify that, for arbitrary n,
there exists an m, m > n, such that q -> ra J J: ;i.e., lim J: exists for
all n. Finally, it is easily seen from the foregoing discussion that each set
A contains a least number ak such that

letting a a, a, }, it can now be checked that a is not split by any
recursive set.|

Before turning to Theorem 1, we prove an incidental corollary to Lemma 2
which illustrates nicely the utility of property (3). In [4], Gonshor announced
the following result in answer to a question of Dekker" there exist recursive
equivalences between hyperimmune and non-hyperimmune sets. We point
out that a stronger form of this assertion follows from Lemma 2. We first
remark that, in Martin’s terminology, an infinite set a which does not satisfy
the condition of Lemma 1 is called superimmune; it is easy to show that any
superimmune set is hyperimmune (i.e., not bounded..by any recursive func-
tion), but not conversely. We further remark that, by Lemma 1 and [5,
Lemma 6], a set which cannot be split by a recursive set must be a super-
immune; hence, the set {a, a, constructed for Lemma 2 is superimmune.

COROLLARY 2. There exists a superimmune set a and a 1-1 partial recursive
function f defined on such that f(a) is not hyperimmune.

Proof. Let a be/a, a., }, the set constructed for Lemma 2; and let r
be a recursive function bounding the cardinalities of the sets A occurring in
the proof of Lemma 2. Define a recursive function as follows"
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t(O) r(O), t(k- 1) t(/) -b lq-r(/-b 1).

Let p be any 1-1 partial recursive function with the following property:

and
if neAo, then p(n) {0, r(0)},

if n eAk+l, then p(n)

Then clearly, using the "array" definition of hyperimmunity (see [3]), we
have that p(a) is not hyperimmune.|
We now proceed to state three definitions, and then Theorem 1. For the

definitions of basic and closed basic retracing functions, the reader is referred
to [9]; our definitions are the obvious flankers to Yates’ notion of a closed basic
retracing function.

DEFINITION. Let f be a basic retracing function; and let r be a recursive
function enumerating the range of f. f is bounded if and only if there is a
recursive function g such that, for every n, g(n) > f-l(r(n)) I.

DEFINITION. Let f be a basic retracing function; and let r be a recursive
function enumerating the range of f. f is weakly closed if and only if there is
a recursive function g such that, for every n, f-(r(n)) c D(,). (The
sequence/D/ is defined at the beginning of 3.)

DEFINITION. Let f be a closed basic retracing function, f is strongly
closed if and only if its range is a recursive set.

THEOREM 1. There exists an infinite set of numbers such that
(1) is retraced by a bounded basic retracing function; and
(2) neither nor any of its infinite subsets can be sequentially ordered so as

to admit a potentially recursive regressing function.

Proof. Let {on)} and a be as in Lemma 2. We define a certain bounded,
basic retracing function h by means of the construction used by Yates to
prove [9, Theorem 6]; however, as is done in [7, Chapter 12], we apply this
construction in a way appropriate to defining a finite-to-one function. Let r
be a recursive function such that r(n) > 10,(n)l for all n, and let I, be a recur-
sive function such thatp U 0() and I,-(/) is infinite for each k e U o().

Stage O. Place in h all pairs (x, x) such that x e o(0).
Stage s + 1. Compute ,I(s). Let ms be that number m such that, at the

conclusion of stage s, precisely the sets %(0), o1), o(m) have made con-
tributions to/th. If I,(s) is not yet in/th, or if I,(s) has previously entered
ph other than at Stage 0, go on to Stage s + 2. Otherwise: place in h pre-
cisely those pairs (x, I,(s)) such that

(i) x > I’(s) and (ii)

This construction evidently determines h as a partial recursive function
with all properties of a retracing function (see [9]) save possibly that of
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retracing some infinite set. Moreover, in view of the fact that r(n) > o()
holds for all n, it is clear that, given a 1-1 recursive function g which enumerates
ph, there is a recursive function such that, for all n, (n) >
The next step is to check that h retraces an infinite subset of a. But, some
member b0 of a is in o(0), and we therefore have (b0, b0) e h. Then, at the
first stage s for which I,(s) b0, we adjoin to h any pair (x, b0) such that
x > b0 & x e U<__<+0+l co(). But each co() contains some member of a;
hence [J.<_<.+0+ o() contains at least b0 + 1 members of a, at least one
of which, sayb, is greater than b0. Therefore (b, b0) enters h at stage s.
Then, since -(b) is infinite, there comes a first stage s s at which
bl I,(s), etc., etc. Thus h retraces some infinite subset of a. But this is
a suitable t for our theorem. For if/ admitted, in any ordering, a potentially
recursive regressing function, then, by Corollary 1 (with the identity
function, f recursive extension of a regressing function for/, and no
the fixed point of/ under f), we would have that can be split by a recursive
set; this, however, contradicts Lemma 2 in view of our choice of a. Similarly
for any infinite subset of .|
Our next theorem shows that the affirmative answer to the question posed

at the beginning of this section is not simply a corollary to [5]. Let be
1-1 recursive "pairing" function mapping N (R) N onto N; here of course

the symbol (R) denotes cartesian product. We place the usual requirement on

h
that there be recursive functions h and h such that h(x), h(x) x

ol(s for every x.

THEOREM 2. There is a continuum of retraceable sets a such that
(1) a admits a general recursive regressing function; but
(2) a admits no general recursive retracing function.

Proof. Let A(n)} be an r.e. sequence of pairwise disjoint r.e. sets; and
let {S} be a sequence of infinite sets such that (Vn)(S A:(,,)) and
cannot be recursively split. (For the existence of such sequences
and {S}, we may cite either Lemma 2 above (simply lump together the
elements of disjoint recursive subsequences) or Theorem 2 of [5].) Let

B {0} (R) U,A:(,), B {0} (R) A:(,), B* {0} @ S.

We shall construct, in stages, a general recursive regressing function r. We
introduce some terminology to be pplied to our function r. For each n-
rural number s, r() {(m, n) (m, n) has been placed in r by the conclusion
of stage s}. Suppose that there exists a sequence y, y (/c 1) such

rthat yk (0, 0) and, for 1 < </c 1, (yt, yt+l) e Then we denote this
sequence by (yl), and we say that yl is complete at stage s q- 1 (or simply
complete, if there is no danger of confusion as to what stage we are referring
to). Suppose that y is complete at stage s + 1; and suppose, moreover,
that (y) has the following form"
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(Yl) z11, Zlrl Zkl Zkrk O,

where (i) ]c _>_ 1 & (1 =< =< ] r -> 1), (ii) for 1 __< -< /c, the block
zl, zr is of the form (0, j), (1, j), (r 1, j), and (iii) for
1 __< < It, zl > zz+.r+.
Under these circumstances, we shall say that (y) is admissible at stage

s 1 (or simply admissible if there is no attendant danger of confusion).
Finally, if y is in the domain of r(’) and if, at the conclusion of stage s, there is

ra sequence z, zt, > 1, such that (yl, zl) e and

1 <= m < t (z,,z,+)er()

and zt is not yet in the domain of r, then we say that z is the’ s-end of y,
and we denote z by y8.
We are now ready to describe the construction of r. We assume, with no

loss of generality, that 0 e (J,A() (so that (0, 0) B), and we let g be a
1-1 recursive function with range B. We also assume that our pairing func-
tion is such that

(0,0) 0, k _>_ & m->_ r(/c,m) >= (1, r).

Stage O. Place (0, 0), (0, 0) in r, mark 1, 0), and proceed to Stage 1.
Stage s, s > O. There re two steps.

Step A. There are three cases.
CaseI. g(s- 1) eBb(0). Letg(s- 1) (0, z). Ifg(s- 1) is not as

yet in the domain of r, place (g(s 1), (0, 0)) in r, mark (1, z), and then
go to Step B. Otherwise, let the (s 1)-end, g(s 1)*-, be the number
(/c, l). (When the description of Stage s is complete, it will be clear that

zand] > 0.) Place ((/c, 1), (0,0)) inr, mark (t + 1,1), and go to
Step B. (Again, when our description of Stage s is complete it will be plain
that (k + 1, l) was never previously a marked pair.)

Case II. g(s 1) e B(t with > 0; moreover, g(t 1) is complete and
(g(t 1) is admissible; and, finally,

g(s- 1) > max {(j,z) g(t- 1) (O,z) & (j,z)e(g(t- 1))}.

Let n be that number, if one exists, such that, for some sequence
r, r.,j -> 1, we have r. n,

(g( s 1), r) e r(’-),
(t y)((r., y) e

and, forl _<_ q <j(ifj> 1),
rq rq+l e r(s-l).

Then (as will be clear when our description of Stage s is complete) n has the

Indeed, it will be clear that no number is ever marked more than once.
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form (j, z) for some z. Mark (j - 1, z), place (n, g(t 1) in r, and proceed
to Step B. If no such n exists, marlc (1, z) (where g(s 1) (0, z)), place
(g(s 1), g(t 1) in r, and go on to Step B.

Case III. g(s 1) e B(t) with > 0, but either g(t 1) is not complete or
(g(t 1 is not admissible or

g(s- 1) _<_ max {(j, z)Ig(t- 1) (0, z) &(j,z) eC(g(t

In this case, proceed directly to Step B.
Step B. There are four substeps to be carried out.

Substep B1. If there are no marked pairs not previously added to the do-
main of r, go directly to Substep B2. Otherwise, let (g, h) be the smallest
marked pair not yet in the domain of r; place ((g, h), (g 1, h)) in r, then
go to Substep B2.

Substep B2. If there are no unmared pairs of the form (j, m), with j ->_ 1,
such that (j, m) is already in the range of r but not yet in the domain of r, go
directly to Substep B3. Otherwise, let (j, m) be the smallest such pair.
Place (j, m), (j - 1, m) in r; then go to Substep B3.

Substep B3. Let (0, m) be the least pair with first entry 0 which is not yet
in the domain of r. Place (0, m), 1, m) in r. Then proceed to Substep B4.

Substep B4. Suppose there is a number so, 0 , So s, such that, at stage
so, g(s0 1) was found to come under Case III of Step A, but such that
g(t 1) is complete at stage s and (g(t 1)) is admissible at stage s and

g(so- 1) > max {(j, z)ig(t- 1) (O,z) &(j,z) ei’(g(t- 1))}.

(Here is the unique number satisfying > 0 & g(s0 1) e Bq(t) .) Take the
least so, and proceed for g(s0 1) as in Case II of Step A, except that instead
of concluding with a return to the beginning of Step B, we conclude by termi-
nating Stage s.

This completes the description of Stage s and so of the construction of r.
It is clear from the construction that r( [.J8 r(8)) is a general recursive func-
tion. We shall now argue that a suitable restriction of r regresses (in the
sense of [2]) a continuum of retraceable sets a having property (2). We shall,
in fact, explicitly define one such set; it will then be clear to the reader that
there are continously many others. Let b0 be the least element of B*(0).
Then eventually, under Case I of Step A, b0 becomes complete and (b0) ad-

B(.0+l)missible. Suppose b0 g(s0) Now let bl be the least element b of *

such that
b > max {(j, z) g(so) (0, z) & (j, z) e (g(so))};

It will also be seen that z must be such that gs 1) (0, z).
When the construction is completely described it will be clear that (a) completeness

of g(t 1) == admissibility of ?(g(t 1)), and (b)

g(s 1) -<- max {... g(s 1) < max {...}.
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we let sl be such that bl g(s). If b0 is complete and (b0) admissible by
Stage s -{- 1, then, at that stage, b will become complete and (bl) admissible,
with boe (bl), in virtue of Case II of Step A. Otherwise, this will occur at a
stage > s -{- 1 in virtue of Substep B4. Suppose now that we have already
defined bo, bl, bin, with bm= g(s). We let b+l be the least element b of,
B (..,+) such that

b > max {(j, z) ]g(s) (0, z) & (j, z) e(g(s))};

we further let s+l be such that b,+l g(s+x). Just as in the case of b0 and
b, we now see that we must eventually have b+ complete, #(b+) admissible,
and bme (b+). Thus, the sequence 0, b0, bl, b, thus defined is
a strictly increasing sequence such that (J, (b) is regressed by r (or rather, if
we use the definition of regression in [2], by a suitable restriction of r); it re-
mains to be shown that (a) U (b) is retraceable, and (b) O (b,.) admits no
general recursive retracing function.
Ad (a). We define a partial recursive function p, such that p retraces

U. (b), as follows.
Given a number x, allow the construction of r to run until the first stage s

(if such exists) at which x is found to be complete. (p will be seen to be un-
defined for precisely those x which do not lie in any set of the form (g(t)),
where is such that g(t) is eventually complete and (g(t)) eventually ad-
missible; and this in turn is just the set of those x which never become com-
plete as s --* o.) Then, as is clear from the construction of r, there will be a
(unique) number g(t) such that g(t) e (x) at Stage s,

(o, z) g(t) (w, u)(r(z) (0, z) a r(O, z) g(t)),

and (g(t) satisfies the conditions (i)-(iii) for admissibility. Let ?(g(t) be

We place the following pairs in p: (0, 0), (zk, 0), (z, z+l.r+l) for each
such that 1 __< < ]c, and (z, z.i_) for each and j such that 1

_
_-< k,

j 1. By the definitions of completeness and admissibility together with the
definition of the set {0, b0, b, }, it is clear that [J, (b.) is retraced by p.
Ad (b). Suppose f were a general recursive function, some restriction f0 of

which retraced (J (b,) in the sense of [2]; thus, in particular,

(/x)(]y)(f+(x) f(x) ).

But then there must be a general recursive function f which itself meets the
conditions of [2] for being a retracing function of [J. (b). So,

(/x)(y)(J+(x) f[(x) ).

But then, if R is any recursive set, se see easily that R. U (b.) must also be
retraced by a general recursive function. Hence, in particular, ({0} @ N).
U. (b) is so retraced; therefore {0} (R) N). (J. (b) can be recursively split.
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But
({0} (R) N).lJ (b) {0, b0, b,, ...} c [J,S,

hence [J S can be recursively split" contradiction.|

Remarlcs. 1. The above proof of Theorem 2 is, unfortunately, a good illus-
tration of one of the less pleasant facets of recursion theory’ intuitively simple
arguments frequently fail to have correspondingly short statements at the
written level.

2. It remains an open question whether, in Theorem 2, (1) can be strenth-
ened thus: (1’) a admits a general recursive regressing function f such that

(Vx)(y)(ff+l(x) if(x)).

Certainly, no such construction as the one used in ourabove proof of Theorem 2
can produce such an a.

3. It is (in view of Corollary 1) an immediate corollary to our proof of
Theorem 2 that there is a continuum of pairs (a, R) such that (i) a is a re-
traceable set and R is a recursive set with a.R infinite, (ii) a can be sequentially
ordered in such a way as to admit regression by a function with general re-
cursive extension, and (iii) a.R cannot be so ordered.
We conclude 2 by stating a theorem, the proof of which we shall omit,

which shows that the condition in Theorem 1 concerning all infinite subsets of
/ is not a consequence of the other conditions.

THEOREM 3. There is a pair , " of sets of natural numbers, such that the
following statements hold:

(1) and . are recursively separated;
(2) is retraced by a bounded basic retracing function;
(3) " is retraced by a general recursive, basic retracing function;
(4) " is retraced by a bounded basic retracing function; and
(5) no sequential ordering of + " admits a potentially recursive regressing

function.

3. R.e. relations with regression-like properties, k-immunity,
and a characterization of recursively

infinite number sets

As in 4 of [1], we use "D," to denote the m-th term in the standard binary
indexing of the class of all nonempty finite subsets of N. In the discussion
which follows, we consider sequences {Dr()}, r a recursive function, such that

m n Dr(,).D,(,o 0

and there is a fixed number/ _-> 1 such that D()I k for all m.

sequence we call a disjoint k-array.
Such a

7We do not know whether’ bounded can be replaced by "closed" or "weakly closed"
in Theorems 1 and 3. Certainly it cannot be replaced by "strongly closed".
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DEFINITION. A set a of natural numbers is l-immune ( a given number
>__ 1) : a is infinite and, if {Dr(m)} isany disjoint k-array, then (t)(Dr(t) c a’).

Our next theorem merely generalizes to ll k 1 pir of well-known ele-
mentary fcts concerning ordinary 1-immunity.

THEOREM 4. () k-immunity is preserved under recursive equivalence.
(b For each pair j, of positive integers, there exists an infinite, co-infinite

set a such that a is j-immune but not (j 1)-immune while a’ is k-immune but
not 1):immune.

Proof. () Suppose that a is n infinite, -immune set, nd that a vi
the prtil recursive function p. Suppose is not k-immune. Let {Dr()} be
disjoint k-rry ll of whose terms meet . Let j be the lrgest number such

that 1 j nd, for infinitely mny m, j elements of D,() lie in pp; since
pp nd ech D() meets , such number must exist. Let b be number

such that m b not more thn j elements of D() belong to pp. Now, it is
clear that we my construct recursive function q such that {D()} is

disjoint j-rry consisting of precisely those sets D().pp for which
m b & ]D().pp j. Since pp, it follows from the choice of b that
ech set D() meets . Thus, {p-(D())} is disjoint j-rry ech term of
which meets a. Since j k, it is routine to modify p-(Da(n))} so s.to ob-
tain disjoint k-rry ech term of which meets a" contradiction. () follows.

(b) Let j 1, k 1 be given. Let {D(} be disjoint (j + 1)-rry
nd D()} disjoint (k 1)-rry such that

(Vm, n)(D(.D( ).

Let Dg, D{, D, be n enumeration of all disjoint j-arrays; and let
D D, D, be an enumeration of all disjoint k-arrays. Let "k t(resp. D. denote the r-th term of D (resp. D). We define a, by
stages s follows"

Stage O. Let
no (n)(D.o (D + D));

let bo, bo be the least numbers in Do, Do, respectively,
which re not in D,o nd set

o {bo,-", bno},
,o [o(D + D)] .

Stage I. Let
ro (,r)(D..’ );

and let
n (tn) [n > no & DO.ro [J_(Dr() - Dr.())].

Let Co,..., c-o- be the least numbers in Dr(o+), Dr(,), re-
spectively, which are not in Do,ro and set
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,() ,o) + {co,"., c-o-},

([Uso<_l(Dbl() + D,.())] a’(1)) + a(.

Stage 2(s H- 1).

and let

Let

r28+1 (ttr) at(2s+l)Ds+,. 0);

n2(+1) (#n)[n > n2+1 & D+l,r8+lJ c U<s(Drl()_ + D,())].
Let do, ..., d(,+,)_,+_ be the least numbers in D,,(,+,+),

D+,,,+ and setD,(,(,+ ,)), respectively, which are not in

a
(2(s+1))

a
(2s.1) + {do, ’’’,

at(2(s+l)) a’(2s+l) + ([Un2s+l<ln2(,+l)(Drl(l) +
Stage 2s 3. Let

r:(+l) (,r) D.+,.
and let

Let eo, ..., en2+a--n2(+l)--I be the least numbers in Dr(,(,+,)+),...
D,+,,(,+) and setDr(.+), respectively, which are not in

a(2a) (2s1)) {eo en+-n(+)-l}

Let
{x (Vn)(x

We set at + Us a(). Then at’ Us a’(’); and it is easily seen from the
construction that a, a’ have the properties required in part (b) of the theorem.I

In Theorem 5, we shall exhibit necessary and sufficient conditions of "con-
fluence" or "connectivity" under which an infinite, non-k-immune set
a (] > 1) is in fact non-j-immune for some j k. These conditions are in-
tuitively rather simple, though their precise formal statement is a trifle messy.
That they are necessary will be rather obvious; their sufficiency is somewhat
less apparent. If R is a binary relation on N, we denote by "R I" the set
{x (ly)R(x, y)}, by "R " the set {x (ly)R(y, x)}, and by "R " the set
RI.R].

THEOREM 5. Let k > 1 and let a be a non-k-immune set of numbers. Then,
if I <= j k, a is non-j-immune if and only if there exist a binary r.e. relation R
and a disjoint k-array Dr()} such that the following conditions are satisfied:

(1) {Dr(s)} witnesses the non-t-immunity of at;
(2) (]x,m,’)[(xa.Dr(,n)&risaj-elementsubsetofD,(,).R1 &xr)=

(n)(k >= n) (y)( a.D,) Dr() possesses a j-element subset such that
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R & y & " the R-posterity of & (q )(’. [the R-posterity of q]
))];
(3) (x,m, r)[(xea.Dr() &xeaj-elementsubsetof Dr(,o & (k) (ris
j-element subset of Dr(k) for which r c the R-posterity of and r. [the R-posterity

of ] )) . ];
(4) (-ia)(-:lt) [t is a j-element subset of Dr(o) & a e t’a & t R ].

Proof. It is virtually trivial to show that if k > j and a is both non-k-
immune and non-j-immune, then (1)-(4) hold for suitable R and
For, suppose {Dr(,)} is a disjoint j-array witnessing that a is non-j-immune.
There is clearly no loss of generality in assuming that (U, Dr(,))’ is infinite.
Let {D(,)} be a disjoint (/c j)-array such that U. D(,) c (U, Dr(n))’ and
set D,(,o Dr(n) + Dq(n) for all n. Now define a r.e. (in fct, recursive) rela-
tion R, as follows:

R(x, y) = (n)(x Dr(+l) & y Dt()).

It is plain that for this choice of R and {Dr(,)}, (1)-(4) hold. Suppose, on
the other hand, that a is non-k-immune, that {Dr(,)} is a disjoint k-array
witnessing the fact, and that {D,(,)} and a certain binary r.e. relation R satisfy
(1)-(4), for a certain positive integer j < k. We must show that a is not
j-immune. We denote by "/(a)" the R-posterity of a set a; "(n)" shall be
used in place of "/( {n} )". (Note that the relation m e/(n) is transitive.)
Applying condition (4) let a0 be a particular element of a. Dr(0) and p0 a par-
ticular j-element subset of Dr(o).R such that a0et0. Given n ca,
1 -< <- (), and a j-element subset J of D,().R such that he J, let
K(n, J, t) be the set of all j-element sets , satisfying the following condition"

(lk)[ Dr(k.R & J [(’)
& (ll)(3tl,..., t)(i, h)(1 -< i, h =<

(K)

Clearly, (K) is an r.e. predicate. We see by (2) that there is a least number
y such that (Wk >- y)(fz)(z a’Dr(k) Dr(k) has a j-element subset such
thatnR" &zen &Jc /(n) &(Cqen).(J.[(q) 0)). Wedenote

By the "R-posterity of n" we mean the set P defined inductively as follows:

p(O) {x Y)(Y & R(y, x))};
P() & R(y, x))};P(+) {x (y)(y

P, U.
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by "K*(n, J, t)" this uniquely determined y. Now, it is readily seen from
condition (2) that K(ao, o, 1) isinfinite. Let to bethelargest t, 1 =< -<(),
such that K(ao, o, t) is infinite. Let po be a number and Jo a set such
that" Jo has j elements, Jo c Dr(o)’R ’, Jo" a 0, every set belong-
ing to [Jto<8__<() K(ao, to, s) is a subset of some DrCm) where m , po, and
finally,

o c/(Jo) & (fqeJo)(o’/(q) # 0);

the existence of such po and Jo is insured by (2). Suppose that there are
infinitely many j-element sets L such that, given a number q Jo.a, we have
(i) L K(q, Jo, to), and (ii) among the numbers (see (K)) witnessing that
L K(q, Jo, to), there are some which exceed K*(q, Jo to). Then, clearly,
the set of all such L (i.e., those satisfying (i) and (ii)) can be effectively
enumerated in a list Lo, L1, .... From this list, we can obviously then ob-
tain a disjoint j-array {D()}, every term of which is one of the L our claim
is that D().a 0 holds for every n. Suppose not: let no be such that
D(o).a ). Let be a number > K*(q, J,o, to) such that, for some k,

D(0) D().R & Jo /(Do))
& there are distinct j-element subsets , 1 _-< i _-< to, of D,(,).R ’ such that

D.(0) /() and (fq e)(D(o)./(q 0)

hold for 1 _-< i -< to. Since we are assuming D(o).a 0, it follows from
(3) that.a 0for1 _-< i_-< to. ButD().a 0;hence, by(2) and the
choice of l, D().R ’ has aj-element subset/0+ which meets a and is such that

Jo k(to+l) & (fqeo+)(Jo’[(q) 0)

Since D(o) e K(q, Jo, to) and the relation x e/(y) is transitive, we also have,
for each i with 1 =< i -< to, that

Jo C/() & (fqe ,)(Jo’k(q) 0).

But this implies that Jo K(ao, to, to - 1), contradiction. If, on the other
hand, there are only finitely many L satisfying (i) and (ii), then let t be the
largest t, 1 _<- to, such that there are infinitely many elements L of
K(q, J0, t) for which some witnessing L e K(q, J0, t) is > K*(q, Jo, to)
the existence of t is insured by (2). Let p be a number and J a set such
that" J has j elements, J D().R ’, J. a 0, every set belonging to

tL (t)(to >= > t & L K(q,Jo t) is witnessed bysome > K*(q,J,o to))}
is a subset of some D(m) where m pl, and, finally,

Jo [(J) & (q eJ)(Jo’[(q) 0);

the existence of such p and J is insured by (2). Now repeat the argument
of the preceding paragraphs, replacing K(q, Jo, to) by K(w, J, t) where
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w eJl.a, and replacing K*(q, Jo, to) by

K*(w, Jl, tl) + K*(q, J0, to).

It is clear (in view of (2)) that at most () repetitions of this procedure will
lead to a disjoint j-array each term of which meets a.|

CORO..ARY [1, Footnote (2)]. An infinite set a of natural numbers has an

infinite recursive subset (i.e., is not 1-immune) there is a binary r.e. relation
R, and a disjoint j-array {Dr(s)} for some j >= 1, such that

(i) ([n)(a.Dr(n) 0),
(ii) [xea.[JDr() &yeUsD(n) &ye/(x)]yea, and
(iii) yea. U,D,(s) (tm)[(x > m & xea.tJD,(n)) ye/(x)].
From this corollary follows, in turn, Theorem 2 of [1].

4. Topolectomy on a proof of Dekker and Myhill classification
of an index set

In their paper [3], Dekker and Myhill show, by the well-aimed firing of a
battery of facts about metric spaces, that ifR is the family of all sets retraced
by a fixed partial number-theoretic function p, then, continuum hypothesis or
no continuum hypothesis, we must have R] 2 or R k, where h
is any countable cardinal. In Theorem 6 below, we prove this again but with-
out any use of topology; nothing is required but a straight-forward examina-
tion of branching properties. The method (if such it may be called) lends
itself, further, to proving an adjunct to a recent result of Yates [8] on "basic"
retracing functions. For the remainder of the paper, all (partial) functions
re assumed to be "special", i.e., (i) range (f) domain (f), and (ii)

(x)(x domain (f) =, (ly __> 0)(ff+"(x) if(x))).

We furthermore assume (iii) there is at least one nonrepeating infinite se-
quence a0, a, of numbers such that {a0, al, ...} domain (f) and
a0, a, is "regressed" by f. (We use quotation marks since we are not
requiring, here, that f be partial recursive.) If f satisfies (i)-(iii), we inquire

whether the graph of f embraces a tree as in Fig. 1, where a relationship
d -- b means that b e ](a) {a} ,0 and where the ellipses indicate more of the
same indefinitely (i.e., binary branching at each node). We use "CU"
to denote the statement that a countable union of countable sets is countable;
as usual, "ZF" means (choiceless) Zermelo-Fraenkel set theory.

The chief topological theorem used by Dekker nd Myhill in their proof is the result
that n uncountable closed set in separable complete metric spce hs tho power of
the continuum. Wht we do in our proof of Theorem 6 is, essentially, to mke use of the
one (exceedingly simple) combinatorial ide contained in the standard proof of the cited
topologicM theorem, while forgetting about the topology.

lo now is used s in [1].



272 T.G. MCLAUGttLIN

FIGURE

THEOREM 6. It is provable in ZF - CU} that the following three assertions
are equivalent for a function f satisfying (i)-(iii)"

a) f regressesu uncountably many infinite sets;
(b) f regresses 2u infinite sets;
c the graph of f gives rise to at least one tree of the type shown in Fig. 1.

Proof. (c) =, (b) and (b) (a) are obvious;we concentrate on (a) (c).
Assume (a). Let 0 be the (countable) set of fixed points of f. By CU and
(a), there must exist at least one such fixed point x for which

{ala is infinite & f regresses a with x as fixed point}

is uncountable; let x0 be the least such x. Let

1 {Yl Y e domain (f) & y x0 &f(y) x0}.

I must contain at least one number y such that

{ is infinite & f regresses & y e }

is uncountable. Suppose there is only one such y; call it y0. Then let

{zlzedomain(f) &f(z) y0}.

in turn must contain at least one w such that

{’1 is infinite & f regresses /& w e 1
is uncountable. If there is only one such w, say w0, define 8 from wo as
was defined from yo. We claim that, eventually, we must arrive at a k 0
such that k contains at least two numbers, tl and t, for which

{1 is infinite & f regresses & t e }

11 Note, however, that for this theorem we are not requiring thatf be partial recursive;
thus "regresses" has here a much wider meaning than is usual.
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and
{51 5 is infinite & f regresses

are both uncountable. For, if not, let r0 x0, rl y0, r w0, r3, r4,
be the sequence of uniquely determined numbers r, with r e, such that
r0 x0 and, for k > 0, rk is the only r in k for which

I is infinite & f regresses

is uncountable. Now, if a is any infinite set regressed by f with x0 as fixed
point, then either a {r0, rl, r, or else, for some w and some least
> O,f*(w) f*(r), w a, and w r. (Thus, f(w) r_.) Hence,

if a {r0, r, r, then a is one of the countably many sets regressed by]
and containing w. But since, for each r, > 0, there are only countably
many different numbers of f-height t, it follows that f regresses only countably
many sets with fixed point x0 contradiction. Let k0 be the least k such that
k > 0 & has two numbers tl and t of the required type; let h, t be fixed as
the least two such numbers in . Now our argument repeats itself above
each of h, t thus, by limitless repetition of the above phenomena, we see that
f yields a tree of the sort claimed in (c). Finally, it is not hard to see that all
of this can be formalized in ZF W {CU}.|

Remarks. (1) The above proof of Theorem 6 is easily rewordable as a
proof of Lemma 3 on page 372 of [3]; the latter is the crucial lemma in the
Dekker-Myhill proof of their TT.

(2) We have been informed (private communication to the author from
Azriel Lvy) that ZF W {CU} does not ZF -t- {CAC}, where CAC is the
axiom of choice for countable families. Thus the above proof is formalizable
in a rather weak set theory. Of course, the topological lemmas used by
Dekker and Myhill can also be proved using only ZF W {CU}.

We now impose an additional restriction on our functions f, namely: (iv)
f is finite-to-one on its domain. If f obeys all of (i)-(iv) and is partial re-
cursive, it is said to be a basic regressing function. Such functions have been
treated, with regressiveness specialized to retraceability, by Yates in [8] and
[9]. In particular, in [8] Yates has, by means of a very interesting ad hoc
construction, shown that there exist basic regressing functions (in fact, basic
retracing functions) which do not regress any infinite set belonging to II -t- 2
(i.e., having a 2-quantifier form in the arithmetical hierarchy). It is, on
the other hand, not very difficult to show, by a (KSnig’s Lemma)-type argu-
ment, that if f is a basic regressing function which regresses only one infinite
set, then the infinite set regressed by f is in II.2.
LEMMA 3. Suppose is the unique infinite set regressed by a certain finite-

to-one partial recursive function f. Then e .
The author originally noticed this for retraceable sets with immune complements;

this he pointed out to Yates, who then in turn pointed out to the author that the im-
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Proof. We shorten the work by taking advantage of a fact pointed out to
us by Carl Jockusch" if a is any regressive set lying in o, t > 1, then a is
also in II. There are at least two easy proofs of this, one of which goes as
follows: the result for retraceable sets is a virtually immediate consequence
of Post’s Theorem ii(2+. + the sets of degree -< 0()) and the fact that
2+ the sets r.e. in sets of degree _-< 0() But ([2]) any regressive set is
recursively equivalent to a retraceable set; and from this, since a recursive
equivalence has domain and range of degrees

_
0), the fact in question now

follows. Thus, we need only show that e 2. We first restrict f to a basic
regressing function g (with a unique fixed point) such that g regresses ;
the procedure for obtaining g from f is evident. Let e be a GSdel number for
g; thus, in the standard Kleene notation, g(x) - U(yT(e, x, y) ). Let b0 be
the fixed point of under g; and, as in [1], for each x in the domain of g let
g * x denote/ (gk(x) b0) and let x denote the set x, g x ), gg* () x }.
(Our use of the hat notation in the proof of Theorem 2 was iust a special case
of this convention.) We define a predicate P(x, .y, z) as follows (where, as
usual, (x) is the power to which the y-th prime divides x):

If (z)0 , y or ,Tl(e, (Z)o, (z)), then P(x, y, z);

Otherwise, P(x, y, z) : x ( (z)0).

This predicate is plainly recursive, g being a basic regressing function. Our
claim is that

x e = (y)(Vz)P(x, y, z).

Obviously, x ,(y)(Cz)P(x, y, z). So let x0e/, and suppose

(y)(Vz)P(xo, y, z).

For each natural number n, let H(g, n) be the set

{x g(x) is defined & g*(x) n}.

Since g is finite-to-one, each H(g, n) is finite. Let no be such that Xo H(g, no).
Now, since ,(y)(z)P(xo, y, z), there must be infinitely many numbers w
in the domain of g such that x0 (w). Hence, since H(g, no) is finite, there
must be some k e H(g, no) such that / x0 and, for infinitely many w in
the domain of f, / e (w). Let /Co be the least such/ in H(g, no). Then,
since H(g, no 1) is finite, there is some k ell(g, no - 1) such thatf(k) /0
and, for infinitely many w e the domain of f, ] e (w); let/ be the least such
/ in H(g, no - 1), etc., etc. Thus, since lc0e(/) /e, we see that f

munity of the complement is irrelevant. The present lemma is the generalization to
regressiveness of Yates’ observation. The proof, however, would be no different in the
retraceable case; its main portion is just a verification of KSnig’s Lemma in a special
situation. (It does not appear, however, that much space would be saved by formulating
that part of the proof as an explicit application of KSnig’s Lemma.)
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witnesses the regressiveness of an infinite set disioint from " contradiction.
It follows that if x e/ then (y)(fz)P(x, y, z).|

Remarks. 1. Lemma 3 is easily extended to the case of a basic regressing
function which regresses finitely many infinite sets.

2. As Jockusch has pointed out to the author, if a is any set regressed by a
basic regressing function, and a H with / > 1, then a e 2 One way of
seeing this is to "relativize" the above Lemma. First, note that if a e II
and a is regressed by a regressing function f, then a is the unique set regressed
by some restriction of f; this is not difficult to verify, and is proved explicitly
in [8]. For the case/c 2, the claim therefore follows from Lemma 3; for
k > 2, simply let all "regressing" functions-be, not partial recursive, but
partial recursive in 0(-2, and use the thus-relativized versions of Lemma 3
and the cited II result. It follows from constructions of Yates in [8] and [9]
that the word "basic" can not be omitted in stating this II 2 relation;
nor can it be omitted from Lemma 3.

Our next theorem shows that any f which is a basic regressing function and
which does not regress at least one infinite element of II.2 must regress
continuum many infinite sets.

THEOREM 7. Let f be a basic regressing function which regresses exactly
o infinite sets. Then f regresses at least one infinite set a such that a e II.

Proof. The idea is to isolate some one infinite set a such that a is the unique
set regressed by some partial recursive subfunction of f; then the above lemma
about basic regressing functions which regress only one infinite set applies to
yield a e II. 2. We note, for use below, the (easily verified) fact that if, - are distinct infinite sets regressed by f, then t’’ is finite. There is no
loss of generality in assuming that f has a unique fixed point, say, b. Consider
the following assertion"

(fn) ((I/) (/ is infinite & f regresses & n e ) (l, )
(P)

(, are infinite & f regresses both and & n e . t} & , )).

We claim that if (P) were true, f would regress too many infinite sets. For
suppose (P) holds. Let

no (n) (l) (n e & is infinite & f regresses )

clearly such n exist. Next let

nl (tn)[(l)(n e , & is infinite & f regresses , & no ](n) & n (no))];
nl must exist by (P). Again define:

n (tn)[n0 el(n) In} & (:/)(n e & t is infinite &fregresses )],

n3 (n) [n e (n) n} & (t) (n e & is infinite & f regresses t) ],
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n4 (tn)[noe](n) --{n} & n2e](n)
& n e](n) & ()(n e & is infinite & f regresses #)],

n5 (n)[nl e(n) {n} & n3 e/(n)
& n /(n3) & (t5) (n e & is infinite & f regresses ) ].

The existence of n2, m, n4, m is guaranteed by (P). At this point, we have
obtained from the graph of f a graph as in Fig. 2. Clearly, by continuing to
apply (P) in this manner, we obtain fromf a graph of the type shown in Fig. 1.
Thus f must regress 20 infinite sets’ contradiction. So, (P) is false; let m
be the smallest number for which (#) [(# is infinite & m &f regresses #) &
(Vn) (m ](n) = (V) (/ infinite & n e , & f regresses ,) = , ) ].
Let #0 be the unique such #, and define a partial recursive function h as fol-
lows"

h(x) f(x) if x m, x domain (f), and m (x)
___m ifx m;

undefined otherwise.

Then h is, apart from its definition on m, a subfunction of f; and, furthermore,
h regresses exactly one infinite set, namely, (#0 ](m)) {m}. It follows
that floe II. .|

Remark. As Jockusch has pointed out to us, it can be shown that any
partial recursive function which regresses only 0 infinite sets in fact regresses
only hyperarithmetical sets. (Indeed, Kripke has shown that if a 2 predicate
of functions has a non-hyperarithmetic solution, it has 20 solutions. The
relativization of Kripke’s result gives another, but rather more technically
complicated, derivation of (a) (c) of Theorem 6.) One might be tempted
to conjecture that any hyperarithmetical set which is in fact regressive is
actually regressed by some partial recursive function which regresses only
countably many infinite sets (especially since the corresponding statement
with "of degree =< 0’" for "hyperarithmetic" and "exactly one" for "only
countably many" is true). However, this is not the case. By combining
two of the theorems of [8] with a certain lemma on "common branches" which
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we recently noticed, it is possible to produce a set a’such that a e II. 2;, a is
retraced by a basic retracing function (in fact, by a two-to-one general
recursive function), and a is not regressed by any partial recursive function
(basic or otherwise) which regresses fewer than 2u0 infinite sets.
Yates has shown, in [8], that any retracing function which retraces a set a

of degree =< 0’ has a basic restriction q such that a is the unique set retraced
by q; this result holds equally well (and is no more difficult to prove) in the
case of regressive sets of degree =< 0’, relative to basic regressing functions.
Let "G(Reg (0’))" denote the set of all indices of basic regressing functions
which have restrictions that regress a unique infinite set; by Lemma 3 and the
cited result of Yates (extended to the regressive case), G(Reg (0’)) is the
set of all indices of basic regressing functions that regress some set of de-
gree <= 0’. From the finite-to-one-ness property of basic functions, it is
easily seen that G(Reg (0’)) can be expressed at level 2; thus (where "{ e}"
denotes the function with index e, and "{e}-l(x)" denotes the r.e. set

e e G(Reg (0’))
= (x)[{e} is basic regressing & x e range ({e}) & {e}-l(x) is infinite

& (Vz)([iel((z)o) x a {e}((z),)

x & (z)0 {e}^((z)l) & (z) {e}^((z)0)]

[{e}-l((z)0)is finite V {e}-l((z)l) is finite])].

It is not hard to see that "{e} is basic regressing" can be expressed in 2; form13;
so, by obvious remarks concerning the forms of the remaining conjuncts to-
gether with the usual prenex form manipulations, we obtain the right-hand
side of the above equivalence as a 2; predicate. It remains to prove the
completeness portion of the following assertion"

THEOREM 8. G(Reg (0’)) is a (many-one) complete set at level o
Proof. Suppose P(w) ,= (x) (Vy) (lz) (Vu)F(w, x, y, z, u), F recursive.

We shall describe informally a procedure for obtaining a many-one reduction
of {wlP(w)} to G(Reg (0’)). Our description will proceed with reference to
Fig. 3; the argument will probably be clearer this way than if written out
formally in terms of 3-tupling and un-3-tupling functions.
We begin by partitioning N into a recursive sequence of infinitely many

infinite recursive cells, marked "0", "1", in Fig. 3. Then each cell m
is in turn partitioned into a recursive sequence of infinitely many infinite re-
cursive subcells, labelled "mO", "ml", in Fig. 3; this is to be done so
that the collection of all subcells of all cells forms a recursive sequence. Given

la If we make the condition of having finitely many fixed points a part of the definition
of basic regressing function, then, as Yates has independently noted, the set of all
indices of basic regressing functions is complete in level II.
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m and n, we let am, aml, a2, be the elements of subcell ran, in increasing
order. Our procedure, for a given number/, is now as follows.

Stage O. Place (a0, a0) in g, give a00 a +, and proceed to Stage 1.
Stages - 1. Let (s + 1)0 q, (s-t- 1)1 p we shall concentrate on

cell qp. If (aq, aq) is not yet in g, put it there and give aq & --; otherwise,
begin at the next instruction. Now let r be the least number such that
aqp is not yet in the domain of g, and let aqp be that element of cell qp which
currently bears a + (when the description of the procedure is complete, it
will be clear that, at any given stage, (a) at most one member of any given
cell bears a and (b) the particular cell being looked at does contain such a
number). Considerthe predicate F(], q, p,z, u). Let z* be the least number
z such that z has not yet been rejected for cell qp. If there is a number =< s
such that F(k, q, p, z*, t), then" (i) reject z* for qp; (ii) for each j _> p, if
any aqj bears a -, remove the + from aqj and place it on aql; (iii) place
(a, a) in g; and (iv) for each j < p, if some a bers + and there is

0 w -.+ < b 1sequence aqj, aqj, aq for which b > p, aq- > for 0 < cq

then remove thew O, (aq, a+) e g for 0 =< c =< b 1, and (aq., aq.) e g,
w0-t- from aq and place iton a-. Then go to Stage s 2. If, on the other

hand, F(k, q, p, z*, t) holds for all -<- s, place (a, aq) in g, move -t- from
aq to aq, and then proceed to Stage s 2.
This completes the description of the construction; it is clear that this

construction is uniformly effective with respect to k, and produces for each
k a general recursive function g. Further, the reader should be able easily
to convince himself, on the basis of the above description, of the following" if

(lx)(Yy)(tz)(Yu)r(, x, y, z, u),

then gk is basic and extends some regressing function regressing a unique
infinite set; while if
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(Bx)(Yy)(2z)(Yu)r(, x, y, z, u),

then g does not regress any infinite set (and is everywhere lacking in adequate
finite-to-one-ness). Theorem 8 follows.

Remark.1 By essentially the same argument as in the proof of Theorem 8
(only the computation of the upper bound in the hierarchy changes from case
to case), we can show that the following index sets are also 2;-complete

(a) the set of indices of partial recursive extensions of basic regressing
functions;

(b) the set of indices of general recursive extensions of basic regressing
functions;

(c) the set of indices of partial recursive restrictions of partial recursive
extensions of basic regressing functions;

(d) the set of indices of partial recursive restrictions of general recursive
extensions of basic regressing functions;

(e) each of (a)-(d) with "regressing" replaced by "retracing";
(f) the set G(Ret(0’)) obtained by substituting "retracing" and "re-

trace" for "regressing" and "regress", respectively, in the definition of
G(Reg (0’)).
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