QUASI-NORMAL RINGS

BY
WoLMER V. VASCONCELOS

The aim of the present paper is to exploit ideal-theoretic properties of a
class of rings, called quasi-normal for lack of a proper designation, which in-
cludes integrally closed domains (i.e. normal domains) and Gorenstein rings.
Broadly speaking, they are commutative noetherian rings in which prinecipal
ideals have a unique representation as an intersection of irreducible ideals.
One could also say that quasi-normality occurs when one substitutes ‘‘discrete
valuation ring” by ‘“one-dimensional Gorenstein ring” in the usual charac-
terization of normal domains. Such rings were first introduced in [4], where a
non-intrinsic definition was used and solely for the purpose of studying re-
flexive modules.

Here we propose, by analogy with the normal case, to describe two classes
of ideals which play, in general, interesting roles: the class of reflexive ideals
and that of closed ideals. The main tools are Rees’ theory of the grade of an
ideal [3] and portions of Bass’ survey of the basic properties of Gorenstein
rings.

1. Quasi-normal rings

Throughout, all rings are commutative and noetherian. Also, unspecified
modules are assumed finitely generated. Before we begin our journey we
recall some basic definitions. For an irreducible ideal I in a ring it is under-
stood that I is not an intersection of properly larger ideals. In the noetherian
case any ideal I can be written as an intersection Jy n - -+ n J, of irreducible
ideals without superfluous ones; there might be several such representations
but the integer » is invariant. After [3], we say that the ideal I has grade n
if it contains an R-sequence of length # but no R-sequence of length n» 4 1.
Finally, for basic facts and terminology on commutative noetherian rings,
we refer, without mention, to [2]. Leading to our main object are the follow-
ing

LemMa 1.1. Let I and J be primary ideals, P and Q their corresponding
primes. If P C Q but are distinct, there exists a primary ideal J', properly con-
tatmed m J,withInJ = InJ’.

Proof. WecanassumeInJ = (0). Letn bean integer such that Q" < J;
then Q™ the n-th symbolic power of Q, is contained in J. Now Q™ = Q™
for otherwise, localizing at Q, Q5" = Q% and Q3 = (0) by the Nakayama’s
lemma. Since height @ > 1 this is impossible. Now take J' = Q.
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ProrosiTion 1.2.  Let R be a ring and I an ideal which admits a unique repre-
sentation as an intersection of irreducible ideals. Then I has no embedded primes
and all of its primary components are irreducible.

Proof. We can assume that I = (0). By (1.1) there are no embedded
primes. Now if P is any minimal prime all we have to do is to show that the
null ideal in Rp is irreducible. If not, there would exist more than one repre-
sentation (0) = @ n -+ n Q,, Q; irreducible, in Rp, which could easily be
lifted to a primary component of (0) in R.

Altogether we have

TureorEM 1.3. For a noetherian ring the following are equivalent:
la. For every prime ideal P of height <1, Rp 7s a Gorenstein ring.
b. For every prime ideal P of height >2, grade PRp > 2.
2. The null ideal or any ideal generated by a nonzero divisor has a unique
representation as an tntersection of irreducible ideals.

Proof. (1) = (2). Immediately we have that the null ideal has no em-
bedded components. Thus for every associated prime P of the null ideal, R
is a zero-dimensional Gorenstein ring and by [1] (0) is irreducible in Rp and
hence all primary components of (0) in R are irreducible and the uniqueness
follows. If a is a nonzero divisor, by passing to B/ (a) we get a similar result
for (a).

(2) = (1). Follows from same reasoning plus (1.2) and the fact [1] that
in dimension one a local Gorenstein ring is characterized in the following way:
the maximal ideal does not consist entirely of zero divisors and these elements
generate irreducible principal ideals.

DEerFiNiTION 1.4. A quasi-normal ring is a commutative noetherian ring
satisfying the equivalent conditions of (1.3).

Remarks. In case R is a domain the definition of quasi-normality is that of
the introduction but allowing zero divisors, at a small scale, extends appre-
ciably the class of such rings and the various ways of obtaining other quasi-
normal rings from given ones. When R is a normal domain, any primary
component of a nonzero principal ideals (a) is a symbolic power of some
prime P with Rr = discrete valuation ring; such component is then irreducible.
Hence, normal = quasi-normal. Also, if R is a normal domain one can see
that for every finitely generated abelian group @, the group algebra R[] is
quasi-normal. Another class of examples is given by Gorenstein rings of
arbitrary dimension.

2. Reflexive ideals

Let R be a commutative ring and K its total ring of quotients. If I is any
R-submodule of K containing a nonzero divisor, Hom (I, R) can be identified
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with
I = {zeK:2l C R).

Such a I is said to be reflexive if I = (I"*)™ and this amounts to saying that
the second dual map

I — Homy (Homg (I, R), R)

is an isomorphism. From this it follows that if I is reflexive it remains so
under localizations, thus underplaying the role of K. In this section we de-
seribe those ideals of a quasi-normal ring which are reflexive; in the case of a
normal domain, as it is well known, an ideal is reflexive if and only if all of its
associated primes are of height 1. We get a similar description here.

Lemma 2.1. Let R be a noetherian ring and I an deal containing a nonzero
divisor. Then grade I > 24f and only if I* = R.

Proof. From 0 - I — R — R/I — 0 we get the exact sequence

0 — Homy (R/I,R) - R —I" — Exty (R/I,R) -0
or
nclusion
0 — R ——— It — Exth (R/I, R) — 0

since I contains some nonzero divisor. ThusI™ = Riff Exty (R/I,R) = (0),
i.e. iff grade I > 2 by [3].

We next look at the primary decomposition of reflexive ideals.

ProposiTioN 2.2. Let I be a reflexive ideal. Then any associated prime has
grade 1.

Proof. Let P be such a prime. It is enough to show that locally P has
grade 1 and thus assume R local. We can describe the relationship between
I and P by saying that there exists a ¢ I sothat P = I :a = {z e R : zael}.
One can even pick a to be a nonzero divisor: If a’ = a + r, r eI, then also
P =TI:d. Nowifris a nonzero divisor, the distinct elements a + r*, ¢ > 1,
cannot all be zero divisors for otherwise two of them, say a + r‘ and a + 7,
J > %, would be contained in a same prime associated to (0). But then
a+1 —a—1r" =r(l—r") would be a zero divisor which is impossible
since r* is a nonzero divisor and 1 — 7’ ' is a unit. We thus have Pa C I,
with a a nonzero divisor not contained in I. Inverting this relation twice we
get: P D I'' and (P") e < I. Hence, by (21), P! = R if
grade P > 2 and a ¢ I, a contradiction.

As a consequence we have

CoROLLARY 2.3. Let P be a prime ideal containing a nonzero divisor. Then
P s reflexive if and only if grade Pp = 1
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Proof. If P = (P™)™ by localizing at P we get (P»)™" = R and so
grade P > 2. The converse follows from (2.2).

We can now give the promised description of reflexive ideals in a quasi-
normal ring. Possibly it is characteristic of quasi-normality.

TrEOREM 2.4. Let R be a quasi-normal ring. Then the ideal I is reflexive
if and only if all of its associated primes are of height 1.

Proof. Recall that grade and height one denote the same thing here. Let
I be unmixed of grade 1 and consider the inclusion

0-I—>J—->C—0

with J = (I'")™. Let P be a prime ideal of height <1. Localizing at P
it results that C» = (0) since over a zero or one-dimensional Gorenstein ring
all ideals are reflexive [1]. Let P be an associated prime of C; the preceding
shows that grade P > 2. Applying Home (R/P, ) to the above sequence
we get

0 — Homg (R/P,I)— Homg (R/P,J)— Hom; (R/P,C)— Exty (R/P,I).
Since P contains nozero divisors, Homg (B/P, I) = Homg (R/P,J) = (0).

On the other hand
0—-I—-R—->R/I—>0
gives rise to

0 — Homg (R/P, R/I) — Exty (R/P, I) — Ext; (R/P, R).

Now, since grade P > 2, Exty (R/P, R) = (0) and Homz(R/P, R/I) % (0)
would mean that there was a ¢ I so that Pa C I and P would be contained in an
associated prime of I. This is impossible since they are all of height 1. To
resume we proved that Homg (R/P, C) = (0), which is clearly impossible by
the choice of P and thus C = (0). The converse follows from (2.2).

3. Closed ideals
We begin with

DEeriniTION 3.1.  Anideal I of aring R is said to be closed if Homg (I, 1) = R.

If R is a normal domain then all nonzero ideals are closed since for any such
ideal I, Hompg (I, I') can be identified to the set of elements « in the field of
quotients of R with I < I. But Homgz(Z, I) is finitely generated and thus
integral over B. Also, if the ideal I in the ring R is large enough, say, grade
I > 2, then an argument similar to (2.1) would show I closed. Another ex-
ampleis given by an ideal I of a ring R, containing a nonzero divisor and having
finite projective dimension, but this is less immediate. Here we determine the
class of closed ideals for a quasi-normal ring.
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We examine the lowest dimension first.

ProposiTioN 3.2. Let I be an ideal of a one-dimensional Gorenstein ring.
Then I s closed if and only if it is invertible.

Proof. We can assume R to be local. Let I be a closed ideal. We must
show that I . I"* = R. This is the same as showing that the mapping

¢:1 ® Homg(I, R) > R

given by ¢ (r ® f) = f(r) is an epimorphism. The image of ¢ is the so called
trace ideal of the R-module I. Now let a be a nonunit, nonzero divisor in E.
If we show that modulo (a), ¢ is an epimorphism, the claim will be sustained.
Consider the exact sequence induced by multiplication by a

0141 —1I/al—0.
It leads to
0 — Homz (I, I) % Homgz (I, I) — Homz (I, I/al)
or 0-R%R— Homg /@y (I /al, I/al).

Thus Homg @y (I/al, I/al) contains a submodule isomorphic to B/ (a). In
particular, I/al, as an R/ (a)-module, has trivial annihilator. Since R/ (a)
is self-injective [1] it follows that I/al contains a direct summand isomorphic
to R/ (a) and the trace ideal of the B/ (a)-module I/al is R/ (a).

Consider now the exact sequence

0-RERSR/(a)—0.
Applying Homz (I, ) to it we get

0 — Homz (I, R) % Homz (I, R) — Homz (I, R/ (a)) — Extk (I, R).

Since R has self-injective dimension 1, Extx(I, R) = (0) [1] and thus

Homg ) (I/al, R/ (a)) = Homz (I, B) ® R/ (a) and from this it follows that

the trace ideal of I maps onto that of the R/ (a)-module I/al. The desired

conclusion follows then by the Nakayama’s lemma. The converse is obvious.
The next technical fact needed is

ProposiTION 3.3. Let R be a ring and S an over-ring of R contained in the
total ring of quotients of R. Then the conductor C of S with respect to R, <.e. the
largest common ideal, is a reflexive ideal, as an R-module.

Proof. Letze (C)™, seS andletye C . First, C is an S-module:
syC = y(sC) € yC € R. Next, (sz)y = z(sy) e (C)7".C C R and so
(C™")'is also an S-module and (C™)™* = C.
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We can now state and prove the main result in this section

TureoreMm 3.4. Let R be a quasi-normal ring. Then the ideal I is closed if
and only if grade I . I>a2.

Proof. If is closed, by (3.2), we have that Ip is principal for every prime
ideal P of height 1. Thus (I « I ")p = Ipe(Ir)™ = Rpand I.I " lies out-
side of any such prime, i.e. grade I . I > 2.

Conversely, assume grade I« I™* > 2 and let 8 = Homz (I, I). Let C de-
note the conductor of S with respect to B. At every height 1 prime P, I»is
principal and thus for such primes C» = Rp. This shows that grade C > 2.
From (3.3) however C is a reflexive ideal and hence by (2.4) it is unmixed of
grade 1. Thus C = R and S8 = R as wanted.

Remark. An example of a non-invertible closed ideal in a one-dimensional
local domain can be obtained in the following way: Let S denote the power
series ring in the variable ¢ over the field K and R the subring of all power series
without first or second degree terms. Let I be the ideal of R generated by ¢*
and ¢*; it is clear that I is not a principal ideal. Homg (I, I) is a subring of S
containing R and since £ is not in I, by direct checking, one sees that a series
a+bt+cff + - isin Homg (I, I) only if b = ¢ = 0 or, in other words, only
if it already in R.
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