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An ever present theme in function-theory is the study of a given family of
harmonic functions in terms of their boundary values. This theme persists
for investigations on open Riemann surfaces which are not embedded in larger
ones. In the absence of a natural boundary an ideal boundary can be tailored
to suit the study of a particular type of harmonic function. Royden [9]
showed that an open Riemann surface can always be compactified in "such a
fashion that the HBD-functions (harmonic, bounded, Dirichlet-finite) have
continuous extensions and are determined by their behavior on the harmonic
boundary, a small subset of the "new" points. Nakai [7] discovered that this
same harmonic boundary serves as the basis for a representation theory for the
HD-functions.

It is natural to ask how much of this theory can be extended to Riemannian
manifolds. Not only do the known proofs rely on strictly Riemann surface
techniques but the Royden algebra which determines the compactification is
of an essentially different nature in higher dimensions. This difference lies
in the following result of Nakai [6]’ quasi-conformally equivalent Riemann
surfaces have isomorphic Royden algebras but only quasi-isometrically equiva-
lent manifolds have this property (also cf. [8]).

In this paper we show that the theory can be carried over in its entirety. In
Sections 1 and 2 we introduce the fundamentals. We establish the maximum
principle for HD-functions in terms of their values on the harmonic boundary
in Sections 4 and 5. The Royden-Nakai decomposition theorem for Riemann-
ian manifolds is given in Sections 6 and 7 and Section 8 contains some easy
consequences. At this point the theory on Riemann surfaces easily generalizes
and we conclude in Section 9 by simply stating two results. For a complete
account we refer the reader to the forthcoming monograph of Sario and Nakai
[10] on Riemann surfaces.
The authors have been informed that Loeb and Walsh [3] have obtained

similar results for Banach sublattices of HB-functions in the axiomatic setting.

1. Let R be a noncompact orientable Riemannian manifold. We focus our
attention on the Tonelli functions on R, the vector-lattice of continuous real-
valued functions on R with locally square integrable first partial derivatives.
The Dirichlet integral of Tonelli functions over relatively compact regions 2
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is given byD (f,g) f df/ *dg. A function" is sid to hve finite Dirichlet
integral if

D (f) sup D (f) < o, where D (f) Da (f, f).

The set of ll bounded Tonelli functions with finite Dirichlet integral form an
algebra, the Royden algebra M ssocited with R.

If {fn} is sequence of functions which converge uniformly to f on compact
subsets of R, then we write f B-lim fn or f C-lim fn depending on whether
or not {f} is bounded. If lira D (f f) 0, then we write f D-lim f..
The notations f BD-lim f, f CD-L lim f re used to indicate both
types of convergence.
The Royden lgebm M is lttice and is complete in the BD-topology.

Another essential fct is that the Cl-functions re dense in M in the BD-
topology. For the proofs of these two fcts we refer to Nkai [5, p. 203-6].
A subregion 2 of R will be called regular if it is relatively compact nd 02 is

smooth. If u M is harmonic on regular region 2, then the denseness of
the Cl-functions in M gives the following mild generalization of Green’s
formula, D (f, u) f f. du for every f M.. The Royden compactification R* of R is the unique compact Husdorff
spce such that R is dense in R*, every f M has continuous extension to R*
(gin denoted by f) and M separates the points of R*. (For the existence of
such compctifications see Loeb [2].) The set F R* R is called the Royden
boundary.
The Royden algebra M has the Urysohn property" for disjoint compact sets
K c R*, i 0, 1 there exists an f e M such that f K i and 0 _< f _< 1.
This cn be deduced from the denseness of M in the sup norm in the set of
continuous functions on R*.
The ideal in M consisting of the functions with compact support will be de-

noted by M0 and its BD-closure by Mr. The set

A {peR*If(p) 0 for every feM}

is called the harmonic boundary of R. In passing we remark that it can be
shown that A is nowhere dense in F. We reserve the symbol A for the closure
of A in R*.

3. We shall denote by H (A), H (A), B (A), P (A) and D (A) the set of
functions on A which are harmonic, harmonic with continuous extension to
2: n R, bounded, nonnegtive and Dirichlet-finite, respectively. The inter-
section of these sets will be denoted by juxtaposition. The class of subregions
G with OG smooth for which the set of functions u HX(G) with u OG 0
consists of only 0 will be denoted by SOx.
LEMMA. If a region G belongs to SOD then it belongs to SOe.
Choose an exhaustion Rn of R such that G R n G is regular region. Let
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u HCPD () such that u 0 and set n (, ). Consider the
continuous function on with () and

u u

The superharmonicity of v implies that {}-0 is decreasing and conse-
Hquently v B-lim v (G) By Green’s formula

Do(u v,) Do(u) Da(v,) 0
and

Do (v, vv) Do (v,) Do (vv) 0 for p n.

Therefore > d lim, Da(v,)exists. Since ]grad,v, converges point-
se in G o [grad v , we conclude by Faou’s lemma hat

Do(v . v.) Do(,..) d.

This implies that v D-lira, v, and ha v H"BD (G) $h v OG O.
We shall complete the proof by showing ha if v 0 for all m, then u 0.

We know that u D-lim u and u D-lim, g,, where g, u
Since supp , G,, we have

0

and herefore Do (u) 0.

4. The role played by A in determining HD-funcions is already impliei$
the following theorem and corolla established by A. Mori [4] and Kusunoki-
Moil [1] for Riemann surfaces.

Toa. Every region G with OG smooth and n 0 belongs to SOn,v

Since G n 0 for every p G there exists an f Ma such Cha fv (p)
> 1. The compactness of allows us to find points p, ..., p, such that

Since Ma is also a lattice, we can construct using thefv a function f Ma which
is identically 1 on . We choose a sequence {f,} M0 thf BD-lim,

Suppose that u HBD (G) and u OG 0. Then the functions uf, con-
verge to u in the Difichlet norm on G. In fac$ for any compae$ subse K of
G we have

(uf. u)

supo ]u Da(f,) + sup [A 1 ] D(u) + supa A 1 ] Da-(u).
Thus lim sup, Do(uf, u) supo ]A 1 Da_x(u). Since we can make
Che right-hand side arbitrarily small by choosing K appropriately, we have
u D-lira. uf..
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We choose an exhaustion {R} of R such that suppf. c R and G. G n R.
is a regular region. We have that Do(uf,, u) fao,, uf,,du O, since
uf,, OG, O. Our assertion follows from the fact that Da(u)
lim. Do (uf u) O.
We can now make a stronger statement.

COROLLARY. Every region G with OG smooth and G n A belongs to

Assume that there exists a nonconstant u HD (G with u OG 0 and we
may assume in addition that supo u > 0. By Sard’s theorem the critical values
of u are nowhere dense and therefore we can find an a e (0, supo u) with u-1 (a)
smooth. Let G’ be a component of {x e G u (x) > a}. Since OG’ smooth,
r n A , u a e HcPD (G’) and u a ]OG’ O, it follows that u a - 0
in G’. This contradicts the definition of G’ and establishes the corollary.

5. We are now able to state the following counterpart of Nakai’s result [7].

THEOREM. Let F be an arbitrary region in R and u e HD(F). If
lim supx._, u (x

_
m for every p e (F u OF, then u

_
m,

Assume that there exists a point x0 e F with U(Xo) > m. Choose an
a e (m, u (x0)) with u-1 (a) smooth and let G be a component of {x eF u (x) > a}.
We immediately arrive at a contradiction by noting that G satisfies the hy-
potheses of the corollary to Theorem 4.

6. Let {RI be an exhaustion of R by regular regions. Let be the con-
tinuous function on R with I/0 1, o R R 0 and cos e H (R -/0).
The sequence {o} c M0 is BD-Cauchy and consequently 0 BD-lim e M.
If 1, then we shall write R e 0o and if dim HD (R) 1, then we shall write
R e 0.

LEMMA. If R 00, then R 0. Moreover, R 0o if and only if A .
Let u HD (R) and set u min (m, max (u, -m)). As in the proof of

Theorem 4 we conclude that u D-lim. u. But D (. u, u)
fo ,, u,,,,du 0 and u D-lim u which implies that D (u) 0.

If R e 0a then it is immediate from the definitions that h . On the other
hand if A , then (R R0)- A and by Theorem 4 we conclude that
R- oeSO). Note thatl--eHBD(R- /0) andl-0 [0Ro 0;
therefore, 1.

7. Denote by/r the set of Tonelli functions on R which have finite Dirichlet
integral. It is easily seen that every function in 2r has an extension to a con-
tinuous extended real-valued function on R*.
A compact subset K of R* will be called distinguished if (K R)- K and

0 (K n R) is smooth. Note that the empty set is distinguished. The set of
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functions f in . such that f 0 on A u K will be denoted by 21u. The
following decomposition theorem holds Riemannian manifolds (cf. [7], [9]).

THEOREM. Let f e M and a distinguished compac set K be given. There
exists a unique pair offunctions u, g with u e I n H (R K) and g e /u: such
that f u g. Moreover, D (, u) 0 for every eu and

We shall also use the symbolffor u. If R 0 and K , then in view of
Lemma 6 there is nothing to prove and we exclude this case from consideration.
The uqueness of the decomposition and the maximum principle are direct
consequences of Theorem 5.

Let {R be an exhaustion of R with 0 R K and R K regar.
Let u., u,,u be the continuous functions on R which are harmonic in R, K
and u. f, u, , u. on R (R. K). Green’s formula gives

D u,) Dff+) D(u’) 0 and D (u. u) D(u) D(u) 0

for p n. Thus we see that {u.} is D-Cauchy.
Denote by w the continuous function with

w.[0 1, w.[R- (R.- K) 0 and weH((R- K) o)
and set g’ u,. It follows that

( w) +.d,- .dw.

Le inf0 and b sup f+. sing he above idenigy we obtain

D ,
Noe hag wehae eliminated from consideration he ease where lim D (w) 0
and herefore lim sup < .

he Harnaek inequality now gies
on every eompae subse of N K. Consequently we can invoke he Nat-
naek principle o obtain a subsequenee, denoted by {}, and a function

’ e H( K) such ha ’ D-lim. Since he sequence [} lends i-
self go hesame argument, we concludehahere is a function e nH( K)
wih f on K.

Seg f , f and observe ha ,, g 0 on K and
D-lim g. Ig is easily seen

BD-m
1 + 1

herefore 0 on u K and he existence of he decomposition is established.
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To prove the orthogonality of .rauK and r n H (R K), choose a 9 e/rauK
and a sequence {gn} c M0 with 9n 0 on K and 9 D-lim. Since 7rK 0,
we may choose for 9 the g constructed above for 9 f. For any
u e M n H (R K) Green’s formula gives D (9, u) 0 and consequently
D(,u) =0.

8. We now give several applications of the decomposition theorem. We
begin by reestablishing (cf. [11]) the Virtanen relation, OH. 0HB,, for
Riemannian manifolds.

COROLLARY 1. If U is a nonconstant function in HD (R ), then there is a non-
constant v e HBD (R ).

By Theorem 5 weknow that u A is nonconstant and therefore for sufficiently
large m, um / is nonconstant, where um min (m, max (u, -m)). The
function 7u is a possible choice for v.

COROLLARY 2. If G e SOp,, then G n A (OG)- .
Suppose that there is a point p (OG)-. Then K (R G)- is

a distinguished compact set and is disjoint from p. The Urysohn property
enables us to find an f e M such that 0 _< f _<: 1, f K 0 and f(p) 1. The
function rKf HcPD (G) vanishes on OG but is nonzero on G and thus G

Lemma 3, Theorem 5 and its corollary may be summarized as follows"
SO, SO SO. and ( n A is a sufficient condition for G to
belong to SO,,. By virtue of Theorem 5 the latter statement has a stronger
formulation" ( n A (0G)- 0 implies that G e SO,. This combined with
Corollary 2 gives the following complete result.

COROLLARY 3. SO///,/) SOHBD
Indeed if G e SOpv, then ( n A (0G)- and consequently G e SOv.

COROLLARY 4. The vector space HD(R) is a lattice under the operations
greaes harmonic minorant and least harmonic majorant.

This lattice structure is derived from the structure of -IA by means of
the decomposition theorem. It is easy to see that the greatest harmonic mi-
norant of u and v is (min (u, v)).

COROLLARY 5. The dimension of HD (R ) is n if and only if A consists of
n points, n >_ 2 and it is 1 if and only if A is empty or consists of 1 point.

If A is empty, then by Lemma 6, dim HD (R) 1. Now suppose that
consists of n points p, ..., pn, n _> 1. The decomposition theorem allows
us to find n linearly independent functions u e HBD (R) such that u (p) .
For any v e HD (R) we must have v (p) d= , that is v e HBD (R). Since
v v v2, v vv+, v v-, it is enough to show that v (p) < oo. If
this were not the case, then we would have by Theorem 5 that nu <_ v for all
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n, contradicting the fact that us is nonzero. Therefore every v e HD (R) can be
represented by a linear combination of the us, v v (p)u. This proves
the corollary in one direction.
Now suppose that dim HD (R) n. If A consisted of more than n points,

then we could find n W 1 linearly independent functions in HD (R). Thus A
is either empty or consists of m points, m _< n. Then by the first part of the
argument we must have m n, if n _> 2 and if n 1, then either m 1 or
A is empty.

9. As in the two-dimensional case it turns out that the harmonic boundary
supports lower bounded superharmonic functions (cf. Sario-Nakai [10]).

THEOREM. Let F be an arbitrary region in R and u a superharmonic function
on F with inf u > . /f lim inf,, u (x >_ m for every p ( n t OF,
then u >_ m.

A Poisson-Schwarz type representation is also a consequence of this theory
(cf. [10]).

THEOREM. There exists a kernel P (x, p) on R X F and a positive regular
Borel measure on F with the following properties:

(i) for fixed x, P (x, p) is a nonnegative Borel function on F;
(ii) for fixed p, P (x, p) e HP (R )
(iii) if f (p ) is #-integrable, then u (x) f P (x, p )f (p ) d is the C-limit of

functions in HBD (R ), in particular, u e H (R )
(iv) if in addition f(p) is bounded and continuous at q e /, then

lim.q u (x f (q ).
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