ON THE MACINTYRE CONJECTURE

BY
L. R. Sons
1. Introduction
Let
(1) f(z) = 2iocn2™
where {nz} is an increasing sequence of non-negative integers satisfying
(2) no=0 and Dt l/m < .

Macintyre [10] conjectured that if f(z) is an entire function of the form (1)
with the gap condition (2), then f has no finite asymptotic values. Macintyre
proved the conjecture for radial paths, and Fuchs [5] implicitly proved the
conjecture for functions of finite order. Kovari [8], [9], Gaier [6], and most
recently Anderson and Binmore [1] have shown the nonexistence of finite
asymptotic values for functions with stronger gap conditions than (2). In
this paper we obtain the desired conclusion for the gap condition (2), but we
must restrict the rate of growth of the function. We have

THEOREM 1. Let f(2) be an entire function of the form (1) for which {nu}
satisfies (2). Suppose f(z) has finite lower order u. Then f has no finite
asymptotic value.

The ideas of the proof of Theorem 1 also yield two theorems which are
related to theorems of Gaier [7] and Anderson and Binmore [1].

TaEOREM 2. Let f(2) be an entire function of the form (1) for which {n}
satisfies (2). Suppose f(z) has finite lower order u. If, for some positive

integer n,
|f(2) | = 0(lz]™)

on a path T receding to © (a Jordan curve joining zero to infinity), then f is
a polynomial of degree at most n.

TueEorEM 3. Let f(2) be an entire function of the form (1) for which {ny}
satisfies (2). Suppose f(2) has finite lower order u. If, for some a > 0,
[f(2) | = O(e*')
on a path T receding to «, then f is of order at most a.

Gaier proved Theorems 2 and 3 for radial paths I' without the growth
assumption on f, and Anderson and Binmore proved Theorems 2 and 3 for a
stronger gap condition than (2) without the growth assumption on f.
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2. Statements of preliminary lemmas
The following lemmas are needed to obtain the stated theorems. Lemma 1
is closely related to Lemma 2 in [11] and will be proved in Section 5.

Lemma 1. Let {m} be a strictly increasing sequence of integers satisfying
(2). For each sequence so, 81, 83, *++ , with s = =1 there exists a real-valued
function g(t) in 0 < ¢ < 1 such that

(1) s Jog®)t™dt = By > 0,

) folg(®) |ldt <3,

(iii) infx Bxp ™ > A(p, €)
for each fixed e in 0 < e < land 0 < p < € * where

A(p, &) = K(logp~ — &)*(exp {—e2(log p™" — &)™} ) o720 #7797,
(K s a constant independent of the sequence {si} ).
Lemma 2 (Edrei [3]). Let f be an entire function for which
lim inf,.o(log log M(r))/logr = u < + =,

where M(r) = max)q— | f(2) | . Then there exists a sequence of Polya peaks
forlog M(r). That s, there exists an unbounded positive sequence ry , 73 75, * - *
which s strictly increasing and four sequences of nonnegative terms

{810}) {ak}’ {Ek}7 {Ak}
such that

LMy, & = liMpaw 0 = liMpow & = 0,  liMg,e A = liMgaw ax 16 = + o,
and such that the inequalities ar 1, < x < Ay 1 tmply
log M(z) < (1 + &) (x/re)*** log M(rs).

Lemma 3. (Edrei [4]). Let G(f) be a real, continuous, non-decreasing
function defined fort > t, > 0. Assumethat there exist o, v such that 0 < o < 7
and such that

G(t) G(t) _

lim SUpP¢-»0 T = +°°, lim inft-»w T =

Then there exist arbitrarily large values ' such that stmultaneously
i) (") <G,
i) G/ < GE)/(r), (b <t < (1)),

Lemma 3 forms part of the proof of Lemma 2.

3. Proof of Theorems 1 and 2

Suppose the theorem is false, and let T' be a path tending to « along which
| /() | is bounded by L < «. Choose 0 < & < 1 such that 2ep < log 4/3.
Let 2, be the first point at which T intersects |z| = r, and let arg 2 = 0 be
the ray joining the origin and the point z, .
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We assume first 6 = 0 and estimate

U(r) = supocu<r | f(u) |
from below. Let

s, = sign (Rec;) = 1 if Recy 2 0,
= —1 if Rec <0O.

Construct the function ¢g(¢) of Lemma 2 for this choice of {s;}. Then, for
0<p<es

Alp, €)- 22| Reau(pr)™ | < f{infi By o™} - 20| Re cu(pr)™ |
<

2= | Re ci(er)™ | B p™™,
The right-hand side is equal to

1 1
> Re ckr”"/; t"4g(t) dt = Ref0 flrt)g(t) dt
< [ 15119 | at
0

1
< U [ g0 d < U,
Hence, for 0 < p < ¢,

(3) Ap, &)+ 20| Re cu(pr)™ | < $U().
By the same argument, for 0 < p < ¢,

(4 Alp, )+ 22 1 Im e(pr)™ | < 3U(r).
But

2o Rea(pn)™ |+ 2 [Ima(pr)™ | = 25 | eu(pr)™ | > M(pr).
Thus, adding (3) and (4), we obtain, for 0 < p < ¢,
(5) U(r) = A(p, &) -M(pr).
By considering f(ue®) instead of f(u) and noting that K in A(p, €) is independ-

€

ent of the sequence {s:}, we see, for 0 < p < ¢,
(6) Supo<usr | f(ue) | = Ap, &) M (pr).

We now use a reflection trick of Polya. Let T be the reflection of T' across
the radius joining the origin and 2,. Since | f(z) | £ M(r) for z on T, the
inequality

/@) | < M(r)"*.L'"

holds for 2’ on the radius joining the origin and z,. Hence, (6) becomes
(7 M(pr)-Ap, &) < M(r)**.L"
for0 < p<e".
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Take p to be e **. By Lemma 2 there exists a sequence {ri} of Polya peaks
for log M(r). Since a; approaches zero and A4, approaches infinity as k&
approaches infinity, there exists an integer ko such that for k > k&,

Qi T <1< Tk/p < Akrk.
Hence, for k > k,
(8) log M(ri/p) < (14 &)(1/p)"*** log M (r:).
If we set pr = 7, for & > ko, we find that (7) and (8) imply

log M (pr) + log A(p, &) < 3 log M(r) + % log L,
and

(9) (L4 &) 79" log M(r) + log A(p, &) < § log M(r) + % log L.

But since & and & both approach zero as k approaches infinity and
2ep < log 4/3, there exists an integer k; for which

(10) (14 &) 7" = (14 &) e ™4™ > 3/4
when k > k1. Thus, using (9) and (10), we see, for £ > max (ko , k1),
}log M(p'rs) < % log L — log A(p, €),

in contradiction to the fact that log M (p ') approaches infinity as & ap-
proaches infinity.

We remark that Theorem 1 shows that there is no path tending to infinity
along which | f(2) | is bounded. Hence, Theorem 2 can be obtained by apply-

ing Theorem 1 to
9(2) = (f(2) — 2om<n r2™) /2"

(The author would like to thank Professor W. H. J. Fuchs for this latter
simplification.)

4. Proof of Theorem 3

We split the proof into two parts according to whether f has regular or
irregular growth (i.e., whether the order of f and the lower order of f are equal
or distinct).

1If f has regular growth, for each 7, 0 < n < 1, we choose ¢ > 0 so that
e 2 > 1 — /2. Proceeding as in the proof of Theorem 1, we find (7) re-
placed by

M(pr)-Alp, &) < M(r)'? e K,

for 0 < p < ¢ ° where K’ is a positive constant, and (9) replaced by
(11) (1 + &) 70" log M(r) + log A(p, &) < } log M(r) + log K’ + r°/2

where p = ¢ and pr = r, for k > kq.

Since &, and & both approach zero as %k approaches infinity and
¢ > 1 — 7/2, there exists an integer k; such that for £ > k; the inequality
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(11) implies

(1 —19/2 —1/2) log M(r) < (log K" — log A(p, €)) + r%/2,
and
(12) (1 — 9) log M(r) < 2(log K” — log A(p, &) + r*

But (12) easily implies that ¢ < a.
We now turn to the case when the lower order of f is strictly less than the
order of f. Let 7 be a real number for which 7 > u and
lim sup;.. (log M(t)) /' = 4+ .

Choose ¢ to satisfy the conditions of Lemma 3 with G(¢) = log M (¢). Choose
€ so that 2¢*” < 5 < 1. Proceeding as in the proof of Theorem 1, we obtain

(in place of (7))
(13) M(pr)-A(p, &) < M(r)"*-K7¢™"

for 0 < p < ¢ ° and K” a positive constant.
Set p = ¢ . By Lemma 3 (with pr = ') there exists a sequence S of
radii  approaching infinity for which

log M(r) < (r"/(pr)") log M(pr).
Hence, for r in S, (13) implies
log M(pr) + log A(p, &) < (1/2¢7) log M(pr) + log K” + r°/2,
< nlog M(pr) + log K” + r*/2.
Thus, for r in S,
(1 — ) log M(pr) + log (A(p, &) (K")™) < r%/2.
However, (ii) of Lemma 3 gives
(14) o 1"(1 — n) + log (A(p, &) (K")7) < 1%/2
for r in S, and since the radii in the sequence S approach infinity, (14) yields
7 < a. It follows from our choice of 7 that the order of f is not greater than .
5. Proof of Lemma 1
Consider the function

G(2) = (so/(z+ 1)%) ITomo (mu + 1 — 2)/(mu + 1 + 2),

where the m; are the midpoints of the segments (n , nx41) for which s, and
si41 are distinet. By (2) we see that 3 1/m; < «. Hence G(2) defines
an analytic function in Re z > —1.

A Laplace inversion theorem (see Churchill [2, p. 178]) implies that G(z)
is the Laplace transform of the function

co+t0

o) = (t/2m) [ ¢G() de

0—i%
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where ¢, is any real number greater than —1. Therefore the function
o
9 = (1/2m) [ e mGay) dy

satisfies (i), with By = | G(m, + 1) |.
(ii) follows easily, because

' L™ .
[lowia< g [ 166 a
mk-l—l—-@y dy<1

400 1 )
=(1/21r>.[w <1+y2)kI-Io mi + 1 + iy =2

To obtain (iii), we proceed to estimate | G(n, + 1) | for fixed ¢ > 1. We
note that for positive 2z

1 1130 4+ me) + 1 — 2
> ]
6(=)] 2 lz 4+ 112 k=c |$(m + ) + 1 + 2]’
so that
1 27T | + Mg + 4 + 20,
< 2 _
(15) IG(nq + 1)' - (nq + ) g e + N1 — 2’nq

Setting px = nx + k41, we estimate separately the terms of the products
I, , I, and II; with ux < 2ng, 2n, < we < 40y, and iy > 4n,, respectively.
We have the inequalities

g—1

m=]]
k=0

e + M + 4 4+ 2n,
N + Ty — 20,

—2
i {RETH TV
2
(¢ — D!
< <2e(1 + nq))"’. 2(¢ — 1)
< =1 p )
since n"/n ! < e"forn =0,1,2, ---. But then
log I < 7y (g/ny) {log (ny/q) + C} + log (2(g — 1)/e),
where C a constant. Since k/ny — 0 as k — «, we have
(16) log I, = o(n,) (g — ).
Assume II, contains N factors (if N = 0, put II, = 1). Then as above
IL < ((4n, + 4 + 2n,)/2)7-2/N | < ((3nq + 2)e/N)¥ -2,
and therefore,

log I, < g+ (N/ng){log (ng/N) + C'} + log 2,

<(2+ 2nq)q .
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where €’ is a constant. But ¢ + N = o(ngn) = o(n,), so N = o(n,), and

(17) log I, = o(n,) (g > ).
Finally,
m= I () < I (0 450,
Thus,
(18) log My < 2uoin log (1 + 4(1 + ng) /mi)
< 4(1 + ng) Duing 1/mi = o(ng) (g— ).
Combining (15), (16), (17), and (18), we find
1/|G(ng + 1) | < (ny + 2)%" "0 (g— ).

Hence, for a given ¢ in (0, 1) we see for all n,
1/| G(ng + 1) | < Ki(ng)’e™,
where K is a positive constant. So if Ky = (K;)™, for all n,,
| G(ng + 1) | > Ky ng'e ™
For0 < p < e ¥ let
h(u) = Kyu'e *(1/p") (u > 0);
then
B (w)/h(u) = —2/u — & + log (1/p).

Therefore, inf h(u) occurs when

log (1/p) = 2/u + &

w = 2(log (1/p) — &)\
Returning to h(u), we have for 0 < p < ¢™°,
inf, By p ™ > K. ((log p* — €)/2)? exp {—2¢ (log p™* — &) ™} p 2tos #7719~

from which (iii) is clear.

That is,
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